Digital Twins, Data Assimilation, and Model Reduction for Surgical Planning and Vascular Diagnostics

C. Alberto Figueroa, PhD
Edward B. Diethrich M.D. Professor of Surgery and Biomedical Engineering
University of Michigan

Integrating Machine Learning with Multiscale Modeling for Biomedical, Biological, and Behavioral Systems
October 24, 2019
Outline

• Digital Twins paradigm for Hemodynamic Simulations

• Data Assimilation for Parameter Estimation

• Surgical Planning of Fontan Surgeries

• Non-invasive diagnostics of Coronary Artery Disease

• Machine learning methods for reconstructing anatomy and flow
Digital Twins Paradigm for Hemodynamics Simulations
Digital Twins Paradigm for Hemodynamics Simulations

Data

Pressure data from applanation tonometry

Flow/velocity data from phase contrast MR

Flow/velocity data from doppler ultrasound

Computational model

Sequence of wall motion surfaces segmented from time-resolved MR or CT data

Data
Traditional CFD

• Solve “**Newton’s Law for a fluid**”, unknowns are velocity and pressure

\[
\rho \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} \right) = -\nabla p + \nu \Delta \vec{u}
\]

- **Acceleration**
- **Pressure**
- **Viscosity**

\[
\nabla \cdot \vec{u} = 0
\]

Continuity Equation

• “**Boundary conditions**”
 are on Q and/or P

• **Mesh independence**

http://bloodflow.engin.umich.edu/
CFD for Biofluids

• We simply almost never have enough data

• Instead we “plug in” reduced-order models of the circulation at inlets and outlets

• These models prescribe a property, not a waveform!

Windkessel Model

Vignon-Clementel, Figueroa et al. CMAME. 2006
CFD for Biofluids

- **Reduced-order models** can handle problems without enough data

- **Avoid** prescribing inconsistencies in non-simultaneous data

- Allow to correctly reproduce **pressure** (hardly ever reported!!) (operator that gives you pressure for a given flow)

- Most appropriate tool for **surgical planning**, in which we aim to study ‘virtual’ alternatives for which there is no data either
Image Segmentation and Mapping of Stiffness Parameters

Xiao, Humphrey, Figueroa, JCP, 2013
Full-body Scale Arterial Fluid-structure Interactions in Humans

Xiao, Humphrey, Figueroa, JCP, 2013

http://bloodflow.engin.umich.edu/
Full-body Scale Arterial Fluid-structure Interactions in Humans

Xiao, Humphrey, Figueroa, JCP, 2013

http://bloodflow.engin.umich.edu/
Full-body Scale Arterial Fluid-structure Interactions in Humans

Xiao, Humphrey, Figueroa, JCP, 2013

http://bloodflow.engin.umich.edu/
Key applications

- CV Disease Research
- Surgical Planning
- Medical Device Evaluation
- Non-invasive Diagnostics

http://bloodflow.engin.umich.edu/
Method: Data Assimilation for Parameter Estimation
Data-driven Estimation

Goal:
Minimize discrepancy between model observations and real measurements

\[
\min_{X} J(X)
\]

\[
J(X) = \int_{0}^{T} (Z - H(X))^\top (W)^{-1} (Z - H(X)) dt + (X(0) - X_0)^\top (P)^{-1} (X(0) - X_0)
\]

- "Variational" approach
 - Gradient-based minimization
 - Adjoint method

- "Sequential" approach

\[
\dot{\hat{X}} = A(\hat{X}) + K(Z - H(\hat{X}))
\]
Augmented State

• Augmented state

\[
\chi = \begin{pmatrix} X \\ \theta \end{pmatrix} \quad \text{parameters}
\]

\[
\dot{\chi} = A(\chi)
\]

\[
\chi(0) = \chi_0 + \zeta^\chi \quad \text{Includes uncertainty in the parameters}
\]

• Observation operator

\[
Z = H(X) + \zeta^z \quad \text{measurement error}
\]

- Includes uncertainty in the parameters
- Simulated wall boundary
- Segmented data
- Distance to a sequence of wall motion surfaces (interpolated linearly in time)

\[
Z - H(X_n) = D(X_n) = \alpha_k \text{dist}(x + u, S_k) + (1 - \alpha_k) \text{dist}(x + u, S_{k+1})
\]
Sequential Approaches

• Classical Kalman filter gives optimal estimates for linear models

• “Unscented” Kalman filter\(^1\) is an effective extension to nonlinear models

• Reduced-order unscented Kalman filter\(^2\) (ROUKF) enables estimation of an uncertain subset of augmented model states (i.e. the model parameters)

• A set of \((p+1)\) “sigma points” (also called particles) samples the estimation-error probability distribution at each time step (\(p\) is the # of parameters)

• In practice, this means running \((p+1)\) concurrent simulations

2. Moireau et al., ESAIM: Control, Optimisation and Calculus of Variations, 2010
Integration of Data Assimilation Libraries with Flow Solvers

Verdandi
generic library for data assimilation

\[
\begin{align*}
\hat{X}_{n+1}^+, \hat{\theta}_{n+1}^+ & \quad \text{Advance one time step} \\
\hat{X}_{n+1}^-, \hat{\theta}_{n+1}^- & \quad \text{Advance one time step} \\
\hat{X}_{n+1}^+, \hat{\theta}_{n+1}^+ & \quad \text{Compute a posteriori estimate} \\
\end{align*}
\]

\[
\begin{align*}
\hat{X}_{n+1}^+ & = A_{n+1}(\hat{X}_n^+; \hat{\theta}_n^+) \\
\hat{X}_{n+1}^- & = E_o(\hat{X}_{n+1}^-) \\
\hat{\theta}_{n+1}^- & = E_o(\hat{\theta}_n^-) \\
\Gamma_{n+1}^{(i)} & = Z_{n+1} - H(\hat{X}_{n+1}^i) \\
\Gamma_{n+1}^{(1)} & = 0 \\
\Gamma_{n+1}^{(2)} & = 0 \\
\Gamma_{n+1}^{(p+1)} & = 0 \\
\end{align*}
\]

\[
\begin{align*}
L_{n+1}^X & = [\hat{X}_{n+1}^i]D_o[I^o]^T \\
L_{n+1}^\theta & = [\hat{\theta}_{n+1}^i]D_o[I^o]^T \\
L_{n+1}^Z & = [\Gamma_{n+1}^{(1)}]D_o[I^o]^T \\
U_{n+1} & = 1 + (L_{n+1}^Z)^T W_{n+1}^{-1} L_{n+1}^Z \\
\hat{X}_{n+1}^+ & = \hat{X}_{n+1}^- + L_{n+1}^X U_{n+1}^{-1}(L_{n+1}^Z)^T W_{n+1}^{-1} E_o(\Gamma_{n+1}^{(1)}) \\
\hat{\theta}_{n+1}^+ & = \hat{\theta}_{n+1}^- - L_{n+1}^\theta U_{n+1}^{-1}(L_{n+1}^Z)^T W_{n+1}^{-1} E_o(\Gamma_{n+1}^{(1)}) \\
\end{align*}
\]

Xiao, Arthurs, Moireau, Schaeffter, Figueroa, in preparation

http://bloodflow.engin.umich.edu/
Full patient-specific aorta (real data)

Estimation of Windkessel Parameters (27 parameters)
Full patient-specific aorta (real data)

Lesson: all parameters are identifiable: estimates on C, R_1 and R_2 remain constant after several cycles
Full patient-specific aorta (real data)

Estimation of Windkessel Parameters (27 parameters)
Application: Surgical Planning of Fontan Surgeries
Fontan surgery for Hypoplastic Left Ventricle patients

• Cavo-pulmonary anastomosis (Fontan surgery) for patients with congenital heart defects in which the heart has a single working ventricle

• Split of hepatic flow between lungs critically important
Pulmonary AVMs

• Lack of hepatic angiogenesis inhibitors results in unchecked vascular proliferation in the pulmonary circulation.

• The right to left shunting of the PAVMs:
 1. Reduces hemodynamic resistance
 2. Reduces O_2 delivery to affected lung

Pulmonary AVMs

- Relatively common problem

Lack of hepatic venous return results in PAVMs in ~ 50% of patients with interrupted IVC & CVPA

Srivastava et al., Circulation, 1995
Pulmonary AVMs

• Evidence that rerouting of hepatic flow reverts PAVMs

Cavopulmonary pathway modification in patients with heterotaxy and newly diagnosed or persistent pulmonary arteriovenous malformations after a modified Fontan operation

Doff B. McElhinney, MD, Gerald R. Marx, MD, Audrey C. Marshall, MD, John E. Mayer, MD, and Pedro J. del Nido, MD

California, and Division of Cardiothoracic Surgery, Pediatric Cardiology, Lucile Packard Children’s Hospital at Stanford, Stanford University School of Medicine, Stanford, California
Patient history

- 19 yo female Fontan subject with severe right lung PAVM
- 82% O_2 saturation
- Dextrocardia
- Interrupted inferior vena cava (IVC)
- Leftward hepatic vein (HV) to pulmonary artery conduit
- Most systemic venous return through the azygous vein (AZV).
- Suspicion that all HVF was directed to the LPA, leading to PAVM in the RPA
Anatomical and hemodynamic data

CO = 6 L/min (PCMRI & Fick)
LPA flow via mass conservation
RPA : LPA split was 2.1 : 1
Digital Twin workflow for surgical planning

• A two-step process

1. Create the Digital Twin of the preoperative state (data verification)

 ![Diagram of data verification process]

 - Data on Flow
 - Verified Baseline Solution (Pre-operative)
 - Data on Pressure
 - Anatomical data

2. Explore different surgical or interventional alternatives (surgical planning)

 ![Diagram of surgical planning process]

 - Verified Baseline Solution (Pre-operative)
 - Option 1
 - Option 2
 - Option 3
Step 1: Digital Twin of the preoperative state

- Flow (SVC)
- Flow (INV)
- WK (LPA)
- Flow (AZ)
- WK (RPA)
- Flow (Shunt)

Pressure [mmHg]

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Red</td>
</tr>
<tr>
<td>11</td>
<td>Orange</td>
</tr>
<tr>
<td>50</td>
<td>Red</td>
</tr>
</tbody>
</table>

Velocity [cm/s]

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Blue</td>
</tr>
<tr>
<td>50</td>
<td>Red</td>
</tr>
</tbody>
</table>

(simulations run under rigid wall assumption)
Step 2: Surgical Planning

Option 1: Hepatic-to-Azygos

Pre
Post

Option 2: Fontan-to-Innominate

Pre
Post

Van Bakel et al., JCTR 2017
Step 2: Surgical Planning

Hepatic-to-Azygos

- 1 mL bolus into AZV
- 80:20 RPA:LPA split

Fontan-to-Innominate

- 1 mL bolus into FN
- 70:30 RPA:LPA split

Van Bakel et al., JCTR 2017
Step 2: Surgical Planning

- Sensitivity of bolus injection timing analyzed

- Fontan-to-azygos showed much higher variability
- Fontan-to-innominate was the recommended option
Step 2: Surgical Planning

- Post-operative angiogram shows more balanced RPA:LPA flow
- At follow-up, the patient’s systemic oxygen saturation has increased from 82% to 91%
- Overall symptoms improved
However, at long-term follow-up...

Dr. Palmer: Understanding the physiologic response
 Improve our goal functions
 Improve the model through reinforced learning
Application: Non-invasive diagnostics of Coronary Artery Disease
Coronary Artery Disease

- Plaque build-up in coronary arteries feeding the heart muscle
- Significantly increases likelihood of MI
- Most common CV disease in the US: 12 million+ diagnoses/yr
- CAD-related deaths > 20% total annual US mortality
- Total 1st year treatment in US: $5.54 billion
- 10 year cumulative cost: $126.6 billion
Diagnosis of CAD

Individual Presents with Chest Pain

Stress Test
CT Angiography
Quantitative Coronary Angiography (QCA)
FFR-Guidewire

Prior to Catheterization Lab
External during Cath Lab
FFR Data after Stenosis Assessment in Cath lab

http://bloodflow.engin.umich.edu/
CAD Diagnosis: Fractional Flow Reserve

- Invasive functional assessment: Ratio of **maximal blood flow** in a stenotic artery to normal maximal flow [Pijls]
 - Measure pressure in aorta and distal coronary artery via catheter
 - Drug-induced hyperemia

\[
FFR = \frac{\text{Distal Coronary Pressure (Pd)}}{\text{Proximal Coronary Pressure (Pa)}}
\]

- **FFR < 0.8 → ischemia → revascularization procedure**

https://www.radcliffecardiology.com/intervention/fractional-flow-reserve-ffr-0
CAD diagnosis: FFR

Benefits

- Quantitative measurement
- Accounts for variations in vessel geometry, collateral flow
- Better clinical outcomes than angiography alone

Drawbacks

- Increased risk to patient
- Costly
- Experimental variability

1 Year Adverse Events [Fearon 2012]

<table>
<thead>
<tr>
<th>Event</th>
<th>Angio-guided</th>
<th>FFR-guided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>40%</td>
<td>10%</td>
</tr>
<tr>
<td>MI</td>
<td>8.7%</td>
<td>3%</td>
</tr>
<tr>
<td>Repeat revasc</td>
<td>35%</td>
<td>9.5%</td>
</tr>
<tr>
<td>Death/MI</td>
<td>35%</td>
<td>11.1%</td>
</tr>
<tr>
<td>MACE</td>
<td>50%</td>
<td>13.2%</td>
</tr>
</tbody>
</table>

Variability in FFR measurement [Petraco]

Probability of changing diagnostic decision

http://bloodflow.engin.umich.edu/
Method: Machine learning methods for reconstructing anatomy and flow
• HeartFlow: FFR_{CTA} [Taylor, Min]

- **Vessel Segmentation**
 - Image segmentation algorithms extract 3D geometry from CTA data

- **CFD**
 - Make assumptions about boundary conditions
 - Solve for velocity and pressure fields in patient geometry (steady, hyperemic flow)

- **FFR-CTA**
 - Normalize mean pressure field by the average mean aortic hyperemic pressure
• Analysis conducted outside the cath lab environment (‘less time pressure’)

• Challenges with imaging artefacts in CTA: calcifications
FFR\textsubscript{CTA}: DeepLumen, extracting the anatomy

CT Data

Vessel Paths

r distance predictions

3D regression CNN

3D feature map: w * h * 2r (padded unfolded 3D ring)
FFR\textsubscript{CTA}: DeepLumen, extracting the anatomy

https://tinyurl.com/yy4ml7o6
FFR\textsubscript{CTA}: Physiology

- Lack of direct information on hemodynamics
- Flows done based on estimates of myocardial mass

[Diagram showing the process of FFR\textsubscript{CTA} with CT data submitted, Physiologic model, and HeartFlow Analysis delivered.]
Angio-based determination of FFR

- **Vessel Segmentation**
 - 2D biplane angiograms

- **3D Reconstruction**
 - Forward projection or backward projection

- **Flow Modeling**
 - Assimilate Flow Data
 - Physical modeling
Optimization of CNN for Automatic Vessel Segmentation

Train NN to ignore catheter
Optimization of CNN for Automatic Vessel Segmentation

\[\text{IOU} = \frac{|Y \cap \hat{Y}|}{|Y \cup \hat{Y}|} \]

\[\text{Dice} = \frac{2|Y \cap \hat{Y}|}{|Y| + |\hat{Y}|} \]

MIOU is the average of IOU for each class

<table>
<thead>
<tr>
<th></th>
<th>Synthetic Data</th>
<th>Clinical Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training set size</td>
<td>2460</td>
<td>1854</td>
</tr>
<tr>
<td>Validation set size</td>
<td>304</td>
<td>206</td>
</tr>
<tr>
<td>MIOU score</td>
<td>0.975</td>
<td>0.917</td>
</tr>
<tr>
<td>Dice score</td>
<td>0.980</td>
<td>0.916</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.980</td>
<td>0.952</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.994</td>
<td>0.995</td>
</tr>
</tbody>
</table>

http://bloodflow.engin.umich.edu/
3D Reconstruction

Forward projection
3D Reconstruction

Backward projection

Match pairs of points using epipolar lines, find closest point of intersection of matched pair in 3D space
Flow Modeling: Extracting Data on Velocity

- Coronary Angiography gives **dynamic data** on the movement of the contrast agent through the vessels

https://www.ahajournals.org/doi/full/10.1161/01.cir.93.5.879
Flow Modeling: Extracting Data on Velocity

- Physics-based Deep Learning for assimilating the flow data

Flow Modeling

- Different approaches possible, limited time for computations (~ 10 minutes!)
- Model reduction via Graph Theory

![Diagram of Flow Modeling](http://bloodflow.engin.umich.edu/)
Conclusions

• Multi-scale Modeling and ML methods for CV applications are subject to the constraints and needs of the clinical application:

• Surgical Planning:
 ✓ Can benefit from more data and longer time for analysis
 ✓ Understanding of the goal is not always clear
 ✓ Clearly benefits from data assimilation & from unbiased determination of anatomical DT

• Non-invasive Diagnostics:
 ✓ Subject to tight timelines (optimization extremely important)
 ✓ Automation extremely important (no direct input from human)
 ✓ Data mining for physiology currently main challenge
Acknowledgements

Brahmajee Nallamothu, MD
Kayvan Najarian, PhD
Kritika Iyer

Krishna Garikipati, PhD
David Nordsletten, DPhil
Onkar Sahni, PhD

R01 HL105297, U01 HL135842

European Research Council Starting Grant 2012-307532 INTEG-CV-SIM

National Science Foundation NSF-US 15-PAF04428

19A1ML34910010