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Today’s medical devices are increasingly:

Electric

IVD devices

Physiological
Monitors

Smarter

Mobile Medical
Apps

Wearables

Connected

Capital Intensive

Devices

Blood Analyzers
Immuno-assays

Breast Biopsy
Equipment

HIV Detection
Systems

Weighing scales
Pulse Oximeter
BP Meter
ECG
Ventilators

Blood Glucose
Meters

Heart Rate
Monitors

Medication
Adherence
Systems

Dosage
Calculation
Systems

Activity Tracker
Pedometer

Sleep Apnea
Detector

Implants
Prostheses

MRI/CT/
Ultrasound
Scanners

* Cogizant, How the IOT is Transformng Medical Devices, May 2016




Challenge: System Complexity

* Understand and optimize performance

* Eliminate late-stage integration failures

* Improve collaboration among design disciplines
* Enhance or reduce physical testing

* Accelerate innovation

m) Digital System Prototyping




Design Still Happens in Silos

Fluids Electronics Software

Structures

Each discipline has its’ own set of tools, processes, and expertise.
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Systems Engineering: A Unifying Approach

~ Systems
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Modeling Model Libraries with 3D Physics Model Creation Integration Interoperability



Insulin Pump Model Overview
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What is Diabetes?

* Insulin is @ hormone created by
the pancreas. Itis required for
sugar molecules (from the food
you eat) to move inside cells.
Patients with diabetes either do
not produce insulin (Type 1) or do
not use insulin the right way

(Type 2).

* Insulin pumps replace the
function of the pancreas by
injecting insulin under the skin
throughout the day.

Diabetes image from https://i.ytimg.com/vi/SCCb5Gghnrl/maxresdefault.ipg
Pump image from http://www.medtronicdiabetes.com/products/minimed-530g-diabetes-system-with-enlite
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Consumer Inquiries: 888-INFO-FDA

FDA Launches Initiative to Reduce Infusion Pump Risks
Agency calls for improvements in device design

...iInfusion pumps also have been the source of persistent safety problems. In the
past five years, the FDA has received more than 56,000 reports of adverse events
associated with the use of infusion pumps. Those events have included serious
injuries and more than 500 deaths. Between 2005 and 2009, 87 infusion pump
recalls were conducted to address identified safety concerns, according to FDA
data.

The most common types of reported problems have been related to:

» software defects, including failures of built-in safety alarms;

* user interface issues, such as ambiguous on-screen instructions that lead to
dosing errors; and

» mechanical or electrical failures, including components that break under routine

use, premature Eattery failures, and sparks or pump fires.

“many of the reported problems appear to be related to
deficiencies in device design and engineering”

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm209042.htm


http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm209042.htm

Digital Prototype of an Insulin Pump
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Engineering Challenge

- accurate and reliable drug delivery to the patient
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nsulin Pump — Drug Delivery Sub-System View
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nsulin Pump — Drug Delivery Sub-System View
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nsulin Pump — Drug Delivery Sub-System View

INFORMATION FLOW
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Insulin Pump — Drug Delivery Sub-System View
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Pressure-Flow Analysis of Tube Bending
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Insulin Pump — Drug Delivery Sub-System View
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Virtual Patient Model

- Overview
Two-compartment insulin model
dl .. (t 1 1- ) . .
ijt( ) =—@-Isc(t)+@ (1’ * The patient model requires a
a0 _ 1 2 mathematical representation of the
g gyt sl . relevant physics.
™ @ pny
Insulin effectiveness * The model should capture insulin
dzm(z) ) L DE L © _metqbohsm as well as the abI|ItY of
insulin to effect glucose uptake into cells.
Two-compartment gllicose model e Researchers and industry typically rely on
w0 t 10 ) GO KEGPIR,(D) pharmacokinetic/pharmacodynamics
e (PK/PD) modeling to represent these
=@2 1) ®) processes.
PK-related unknowns: 1., 1,, C, p,, S,, GEZI, EGP, V¢, 1),

*Kanderian et al., Identification of Intraday Metabolic Profiles during Closed-Loop Glucose Control in

Other model inputs: R,(t), ID(t) Individuals with Type 1 Diabetes, J Diabetes Sci and Tech, Vol. 3 (2009).




Virtual Patient Model
- Model Traininﬁodel

Two-compartment insulin
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. *Kanderian et al., Identification of Intraday Metabolic Profiles during Closed-Loop Glucose Control in
Other model inputs: R,(t), ID(t) Individuals with Type 1 Diabetes, J Diabetes Sci and Tech , Vol. 3 (2009).




Virtual Patient Mod
- Prediction

Two-compartment insulin model

el
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PK-related unknowns: t,, 1,, C, p,, S, GEZI, EGP, V¢, T\, /
Other model inputs: R,(t), ID(t)

*Kanderian et al., Identification of Intraday Metabolic Profiles during Closed-Loop Glucose Control in
Individuals with Type 1 Diabetes, J Diabetes Sci and Tech, Vol. 3 (2009).




Conclusions

® Chronic diseases and the aging population are placing significant strain on
healthcare systems, motivating the need for more effective medical technologies.

= A digital twin is a multiphysics, multiscale, probabilistic simulation of an as-built
system that combines models, sensor information, and input data to mirror and
predict activities/performance over the life of its corresponding physical twin.

= Computer modeling & simulation is a key enabling technology of the digital twin.

= Digital twin for implanted devices that include models of human physiology can
improve device design and treatment outcomes.

Link to youtube video of the insulin pump model: https://youtu.be/fuTQyZOKDww



https://youtu.be/fuTQyZ0KDww
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