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Multiscale Nature of Soft Materials

Polypeptide Collapse 3° Structure Formation
Peptide Bond Rotation 2° Structure Formation

Sidechain Rotation

Allosteric Transitions
Bond Vibrations

Coupled Folding-Binding Aggregation/Amyloidosis
101> 1012 109s 10®s 103s 109 103s

“Fundamental Emergent
principles”

Phenomena

Separation in time scales between atomistic
vibrations and emergent phenomena of
interest motivate coarse-grained models.




Inspiration

———————

Computer simulation of protein folding
Michael Levitt* & Arieh Warshel*

Department of Chemical Physics, Weizmann Institute of Science, Rehovoth, Israel

Nature Vol. 253 February 27 1975

“Here we tackle the [protein folding] problem differently. First,
we simplify the representation of a protein by averaging over fine
details. This is done both to make the calculations much more
efficient and also to avoid having to distinguish between many
conformations that differ only in these finer details. Second, we
simulate the folding of this simple structure ...”

“Our method ... is based on two assumptions: (1) that much of
the protein’s fine structure can be eliminated by averaging, and
(2) that the overall chain folding can be obtained by considering
only the most effective variables (those that vary most slowly yet
cause the greatest changes in conformation).”

Nature Vol. 267 16 June 1977

articles

Dynamics of folded proteins
J. Andrew McCammon, Bruce R. Gelin & Martin Karplus




A Warning

On the formation of protein tertiary structure on a computer

(protein folding/computer simulation/protein evolution/role of glycines)

ARNOLD T. HAGLER* AND BARRY HONIG?

“[Previous studies] have used extremely simplified representations of PTI,
which, upon energy minimization, fold into globular structures that in some
way resemble the native protein. ... The impression generated by these various
simulations is that major progress has been made ... i.e., the folding problem
may be far more tractable than generally been considered. ...

One of the major conclusions of this study is that the criteria that have been
used to evaluate the success of most folding simulations has been overly
permissive. ... First, we show that it is possible to obtain a computed structure
of PTI that satisfies all of the criteria that have been used previously to define
successful folding simulations, from a sequence that would certainly not yield
PTI-like conformation ... Many of the positive results that have been reported
are due entirely to [built-in features of the models] and may thus be regarded
as artifacts.

A careful examination reveals that despite superficial similarities to the native
protein, all computed structures have fundamental flaws ... they fail to
reproduce ... important features characteristic of the tertiary structure ... [and]
appear sterically inaccessible from the native conformation. ... “

The derailment at Gare Montparnasse, Paris, 1895.

Proc. Natl' Acad Sci. USA http://phys.columbia.edu/~tutorial/
Vol. 75, No. 2, pp. 554-558, February 1978



Protein Sequence

A Very Good Question

Structure

Tanaka and Scheraga (1976):

What interactions generated
the PDB structures?

(At a Coarse-grained level.)



Knowledge-based approaches

Foldability Criterion: given R, for each protein U

UR,)=minU(R) R

R

Crippen, Wolynes, Scheraga, Shakhnovich, Banavar, Elber, ...

Boltzmann hypothesis:

- Reference State
UR)=U,(R)+ D U,(1)
C \
p(R) = p, (R)H p(: (I,.C) Interaction
¢

exp[—U,(r)/ kT'1= p,(r)/ psy(r)

Scheraga, Jernigan, Sippl, Baker, Skolnick, Dill, Thirumalai, Straub ...



ting Questions

Motiva

Structure

What interactions generated the PDB

structures? (Tanaka and Scheraga 1976)

How can one determine a transferable
Coarse-Grained (CG) potential that
accurately models structure for

what was the underlying potential?
multiple proteins?

Given a collection of structures,

1
2.
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Outline

* Motivating questions

 The many-body Potential of Mean Force:
The exact potential for structure-based coarse-graining

* The generalized-Yvon-Born-Green Theory:
A rigorous variational approach

S, | * Exactresults
7 AR = * Accurate approximations

H ," i: B . .
"l * Less accurate approximations
’i jogm =

l' '
‘4

 The many-body Potential of Mean Force:
 Thermodynamic properties
* Information loss

* Variational approach for transferable models
The derailment at Gare Montparnasse, Paris, 1895.

http://phys.columbia.edu/~tutorial/
* Conclusions



Coarse-grained (CG) Mapping

Atomistic

Mapping
Operator

The mapping operator transforms an atomistic configuration onto a CG configuration
by defining the coordinates of each site as a linear combination of the coordinates
defining each site.

Noid, Chu, ..., Voth, Andersen
J Chem Phys (2008)



The PMF: Structurally Consistent CG Models

Atomistic Configuration Space CG Configuration Space
r R

M

W
[
p (r) o< e_l/l(l')/kBT PR (R) o e_W(R)/kBT
r
irk d
Consistency PR (R) — pR (R) glcggzga and coworkers

Noid, Chu, ..., Voth, Andersen
J Chem Phys (2008)

e WRksT Jdl‘ p.(r) 5(M(I‘)—R)

Noid J Chem Phys (2013)

For a consistent CG model reproducing the distribution of structures generated by the
atomistic model, the appropriate CG potential is a many-body potential of mean force (PMF).



Mean Force Field

—0W(R)
F (R)=
/(R) JR,
= <f1 (l’) >R
Atomistic FF:
f,(r)=) f(r)

el

In a structurally consistent model, the CG force field is the conditioned average of the atomistic
force field. The mean force field is sufficient for a consistent CG model.




Variational Principle for Multiscale Coarse-graining

3N
= 1 [F]+[F - F|

=1

2 ’ 1 n ’ 2
21F)= 5 I 010)- 10}

>

f
’ Space of force fields of r
F F
x¥] Z[ ] (atomistic)
g F Space of force fields of R
(CG)
F'° [F-F|

The Multiscale Coarse-graining (MS-CG) variational principle
determines the many-body PMF through a geometric
optimization problem in the space of CG force fields.

F=-VW wmF
x[F]=|F-f]
x[F'|=|F 1]

Izvekov and Voth.
J Phys Chem B (2005)
J Chem Phys (2005)

Noid, Chu, Ayton, Voth

J Phys Chem B (2007)

Noid, Chu, ..., Voth, Andersen
J Chem Phys (2008)

See also
Ercolessi and Adams 1994
Chorin 2003, 2006



Molecular Mechanics Basis Set

Approx. CG Potential

pairs bonds angles dihedrals

WM—ZUUM+ZUMHZUWH§”WMHW

I1-J>4 [
Approx. CG Force field

pairs bonds angles

FR)= ) F Zﬂwy— Zﬁwy—+

I1-J>4

I

Basis expansion
Force function F(z) =—dU,(z)/dz

Fz;jdz Fg(Z)GCQ'— Basis vector Gg(z):( lgi;} )j5(l//§(R)—Z)

Interactions 4
Noid, ..., Andersen, Voth

J Chem Phys (2008)

An approximate CG potential determines a set of force field basis vectors



Linear Least Squares Problem

)

F“(R) cGFr

FOR) =Y [deF,(2) G,(R:2)
¢

S AN
x[F]—3N<Z

I=1

2. [z F(2) G (M:) - ,x)

F

Space of CG FF

Gg/ Fg Force functions

s FCG/Spa e of CG FF spanneC/ Gg(R) FF basis fens
, by {Gc

The MS-CG variational principle determines FC by projecting the PMF
onto the space of CG force fields spanned by the given basis.

G,



Geometric Projection

Basis expansion:

FO = [dz F;(2)G,(2)
¢

Projections: G,(2)

b:(2) =G, (2)-F MF

— GC (Z) . FCG Approx FF

Fx@) . F<°
=[G (2.2)F (2)
4 ¢
C/
Gram Matrix: . G.(2)
A . ’ = >
Ggg*(Z,Z )= GC(Z) G;'(Z ) F.(2) b,(2)
= <Z G, (M();2)- G, .. (M(r); Z’)> Mulliand Noid, | 1 hys Chem € (2010)
I Mullinax and Noid J Chem Phys (2010)

The PMF is approximated by projecting the MF onto each basis vector,
while treating the metric tensor resulting from many-body correlations.



Generalized Yvon-Born-Green Equation

integral Eq b, (2) = G,(2)- F =G, (2)- F = Ejdz’Gg,(z,z')Fg, (2)
z

f

bé“ (2) = Gg (z)-f MS-CG “Force-Matching”
— Gg (Z) -F MF
=G (2) V(=k;T In pz(R))
= k,T dg,(2)/dz

kBT dgg (Z)/dZ = ZJdZ,Gggf (Z,Z,)FC'(Z,)
Iz

Mullinax and Noid.

Phys Rev Lett 103 198104 (2009)
J Phys Chem C 1145661 (2010)

The generalized-YBG Equation determines the MS-CG potentials directly from structures!



Relative Entropy

®(R) Information content in configuration R for distinguishing atomistic and CG distributions

Atomistic
i R)=P,(R|U
(D(R|U):ln pR(R) 0 if PR( ) R( | )
PR(R|U) +oo if pR(R)/PR(R|U)%c>o or(
CG
Relative Entropy: _ S
(Kullback-Leibler divergence) SrailU] JdR Pr (R)(D(R| U)=0

8821 [U1/8U(2) = (p,(2) = P(2U)) [ksT

Considering variations w.r.t. CG potential Ug(Z)
1. The Relative Entropy is minimized when the conjugate distribution is reproduced
2. Minimizing the Relative entropy via Newton’s method leads to IMC equations

References: Kullback & Leibler Ann Math Stat (1951); Shell JCP (2008,2010); Murtola et al. JCP (2009)



Relation to the Relative Entropy

Inverse Monte Carlo/Molecular RG
(Relative Entropy) functional:

SpalU1=k; [ dR p (RYD(R|U)

0.75

Multiscale Coarse-graining 1
“force-matching” functional

~lul= L<i F;(M(r))— f,(r)| >

I=1
=x'[v’] |

(ksT)
3N

05

+

[dR p,®R)|VOR|U)[ | 5

Both the MS-CG/g-YBG “force-matching” and iterative structure-based

. . . . . Rudzinski and Noid JCP 2011
methods can be derived from the Kullback-Leibler information function. Noid Methods Mol Biol 2013



Honeycutt-Thirumalai (HT) Model

Green: hydrophobic (B)
White: hydrophilic (L)
Blue: neutral (N)

pairs
_ nb
UR)= Y UJ(R,)
I1-J>4
bonds angles dihedrals

+ 2 U d)+ 2 U] O)+ X, UY(w)

i

Honeycutt and Thirumalai Biopolymers (1992) 32, 695



HT Results 1

bé, (Z) = kBT dgé/ (Z)/dz -_— I\IEZ_L]?,’NL—_II\_II — Exact — — - Calculated

- Exact — — - Calculated

0.04 — — Forces =
— = Structures

0.02

-0.02

-0.04 r[a]

-180 ' -120 I -60 ] 0 I 60 I 120 I 180 Mullinax and Noid
V (deg)
Phys Rev Lett 131 198104 (2009)

First generalization of the YBG theory for proteins with many-body, e.g., torsional and
angle, interactions.



lonomer model

L5 T T T T T
1
=
% |
oh
05
0
12 T | . |
A — AA
I — CG |
8 -
E
o5
4+ |
L5 . | r : : | :
0 0.5 I1 ' 1!5 2
1= — 2 T T T T
I — AA -
i 1 — CG
L5 —
05— | 9 i
Z - N
i | Z Py
an ot ,l 4
0 05— ’I
0 2 3 4 i
Bond Length (nm) - 1
. . . . | | |
Lu, Rudzinski, Noid, Milner, Maranas. Soft Matter 2014 ’ 05 L5 2




Helical peptides

(()).4 0.5 0.6 0.

) r . (nm)
~15F I ' | "— AA (vacuum)
“ — MS-CG
o L
=
0 l L I_
0.6 0.7 0.8 0.
27 T T rl-s (?m) T
=
T F —
cg )
, N |
0 _—
0.8 1 1
r (nm)

Rudzinski and Noid JCTC 2015
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Realistic/Disordered Peptides

bg(z|F) =

G,(z2)-F

2

C/

[

dz'Gy (2,7

[

C/

Projection of MF (Atomistic structure)

F)F.(2")

d2/ G, (2,7 | F)F,(2)

Projection of approx F

Self-consistent F

1.0 ™
‘ s\

T T 0

Iter-gYBG

A self-consistent g-YBG approach accurately models
the free energy surface of a disordered peptide.

0.6 0.8 1.0 1.2

Cho and Chu JCP 2009
Dama, Lu, and Voth JCP 2013

Rudzinski and WGN JPCB 2014, JCTC 2015



Implications for CG mappings

(al) (b1)
CM
’ v
™) / D) b) 4-sit .
cT cT (b) 4-site mapping
(i)
(amZ) e 0. 0.09 —
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g 2, T sx%‘e‘:;\ ’%‘J” rrr™¢ Mme‘\w Rudzinski and Noid J Phys Chem B 2014
3 A
? @ s

Bad maps introduce complex cross-correlations and forbidden conformations, such that 1D
distributions are reproduced at the expense of distorting cross-correlations.



The PMF: Thermodynamic Content

Atomistic Configuration Space CG Configuration Space
r R

M
G/_\ T _ Q

exp [~ W (R)/kpT] = / dr exp [—u(r) /kpT] 6 (R — M(r))

W

‘/U

W(R) = UW (R) — TSW (R) Thermodynamic
Uw (R) = (u(r))g Energy

Entropy -Temp dependence
- Information loss
- Mapping



A simple analytic model
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Optimally efficient representations

—e 3KK4 e—e 1S4K

=—a 3E9V *—¢ 1YO7
+—a 2HS8E ¢ 4BLJ
v 3LYG

H(N)/H(n)
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1000

400

200

Pressure (bar)

-200

Dunn, Noid In progress 2015

“Pressure Matching”
Das, Andersen JCP 2010
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Volume dependence of the PMF

2[Fy] = (IPaa(x; V) = Poa(M(r); V) = Fy (V)[*)
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W(V) determines the effective force on the walls.



Precise Definition of Transferability

Model:
- atomistic CG

(1) Topology
- Particles and bonds used
to describe system

(2) Potential
- Interactions among
those particles

u,(r,) | Ur(Rp)

A potential is transferable if it can be used for describing multiple topologies.

Mullinax and Noid. J Chem Phys 20009.



Topology

Extended Ensemble

Configuration

An extended ensemble is a
collection of equilibrium
ensembles for different
topologies.

Distributions:

py topology

p,,w (ry ) configuration

Averages: <ay (I‘y )> = Zpy jdryprly (I‘y )ay (ry)
Y

Mullinax and Noid. J Chem Phys 20009.



Constructing a CG model requires two maps:
(1) Topology map - specifying site types and bonds

(2) Configuration map - specifying site coordinates

~
v
=
I
-
~~
=
~

H
~

v
=~

f
=
=

-
<

Then the remaining challenge is to determine UF (RF)



Consistency between extended ensembles

(}/ary) M?’z er er RF3
/\
] T~
I v e I
// 73
& r,
I§
er

Y r
/ r, I I, I,
Y

CG Extended Ensemble
y Atomistic Extended Ensemble

Consistency: Pr - <5F,u(y>>

Generalized PMF exp[—Ur(Rp)/ kyT] o< <6F,u(y)5(RF -M, (r'y))>

Mullinax and Noid. J Chem Phys 2009.



Variational Principle for the generalized PMF

X [F]= < Z F.,.(M,x))-f, ) 2 >

I=1

= 2 [F]+[F - F

where FFI (RF) — _VFIUF (RF) is a mean force field

Key approximation UF (RF) ~ ZUg (WC (RF))

Cef/

Determine optimal transferable approximation to the PMF



Model Protein Databank

Extended Ensemble

-T<T<T;

- Uniform topology distribution
- 5 sequences

- 10° structures / sequence

- modified HT potential

Honeycutt and Thirumalai
Biopolymers (1992) 32, 695



Validation

2+ B-B
:§ = 0 __ |
[ . | i
1 2
| ' | ' | '
04+ b NE B-X,X-X
= 02 4 =t 1
I | o- | : |
1 2
— Exact
-- Calculated

The generalized-YBG theory quantitatively determines the underlying
potentials for a model extended ensemble of folded protein structures.

Mullinax and Noid.

JCP 131104110 (2009)
PRL 103 198104 (2009)
PNAS 107 19867 (2010)



ethanol-Neopentane Test System

MINI1

neopentane methanol

Percent methanol

(%) Methanol Neopentane

100 968 0

80 S74 144 CG Potential

60 342 228

50 259 259 . (2)

40 189 284 UF (RF) _ 2 UC(I,J)(RIJ)
20 81 323 {I,J}el

0 0 353

Mullinax and Noid. J Chem Phys 2009.



neopentane

methanol

dg(r)

og(r)

04

-0.2

M-N: Results 1
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Mullinax and Noid. J Chem Phys 20009.

Extended ensemble potentials provide improved transferability.



M-N: Results 2
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, Mwuv“"‘r i 100% Me
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= _i,“‘ P | | _f\ M i )
O o it B [ —Vijeaitlastnuberiny
Bl ‘1:"'""? - e <
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Mullinax and Noid. J Chem Phys 20009.

The accuracy and transferability of the potentials are sensitive to the topology mapping.



Towards Transferable lonomer Models

— T=398K ¢=0.50
— T=423K ¢=0.50
— T=398K ¢=0.75

J. Rudzinski, K. Lu, S. Milner, J. Maranas, W.G. Noid In progress 2015



Conclusions

The generalized-YBG theory (g-YBG) determines variationally optimal approximations to the PMF directly (i.e.,

noniteratively) from structures. This theory also

A. Establishes surprising connections to information theory and liquid state theory.

B. Quantifies the role of many-body correlations in determining CG potentials.

C. Determines accurate models for complex polymers and biomolecules with well-defined structure
D. Iterative self-consistent framework

The PMF

A. Contains all structural and thermodynamic properties of the atomic model

B. Provides a framework for determining optimal representations

The extended ensemble framework systematically and quantitatively improves the transferability of CG potentials

for accurately modeling multiple chemically distinct systems.

A. Exact in complete basis limit
B. Systematically improves transferability of liquid mixtures
C. Progress towards a transferable ionomer model as a

function of temperature and composition
Challenges:

Optimized mappings and basis sets

Improved metrics

Representing thermodynamics and transferability

Propagating dynamics

Phase transitions and aggregation in complex mixtures

Lunch theorems — What can we get and how much does it cost?

mmooOw»

http://www.greendiary.com/entry/
futuristic-trains-change-face-public-
transportation/



