Long Tailed functions

Long tail functions are desirable for fitting many physiological data sets. A general example is
fitting the response of a system to an impulse input. Most passive systems have uni-modal right-skewed
response functions. In multiple indicator dilution studies, the input is a brief solute injection pulse into
the arterial inflow to the organ and the output is the concentration curve vs. time in the outflowing
blood. The complexity of intraorgan handling of the solute gives rise to a large variety of outflow curve
forms. Those for untransformed solutes tend to be uni-modal but the tails are prolonged, often being
multiexponential or even fractal with power law scaling.

The particular long tail functions modeled here are composed of two parts: an initial uni-modal
probability density function (PDF), F(t), and a tail function, T(t), either the sum of decaying
exponentials or the sum of decaying power law functions. The tail functions are joined to the
downslope side of the PDFs. The functions F(t) and T(t) have matching values and slopes where they
are joined so there is no apparent discontinuity.

A graphical user interface (GUI) for LTFs allows changing many parameters (Figure 1). The
selections made with the GUI are: (1) the type of PDF (“PDF”), (2) the type of tail function,
exponential or power law, (“expORpow”, and (3) the place on the PDF where the tail is attached
(“tORfr”), specified as either a specific time, tJoin, or as a fraction of the peak height, frJoin.
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Figure 1: Graphical User Interface for the long tailed functions showing default parameters.

PDF parameters:

Click on “PDF” to choose the leading part of a long tailed function. The choices are (1) Lagged
Normal Density, (2) Gaussian, (3) Poisson, (4) Random Walk and (5) Gamma Variate. PDFs are
described in detail at http://www.physiome.org/jsim/docs/User Fgen.html where limitations on the



http://www.physiome.org/jsim/docs/User_Fgen.html

parameters are given. The default choice for PDF is the Lagged Normal density function, a Gaussian
distribution lagged by a single exponential. The parameters used for the various PDFs and their default
values are summarized in Table 1. The “area” is the integrated area for the leading part of the curve

before joining the long tail to it. Eventually “area” will used to normalize the entire curve including the

tail. The mean transit time of the curve, “tMean” is usually slightly later than where the peak occurs,

except when the Gaussian PDF is chosen. “RD”, the relative dispersion, is the square root of the

variance of the curve, normalized by the mean transit time. The skewness of the curve is given by
“skewn”. The fractional of the peak height, “frPeak”, is the cutoff for calculating the PDF. The
“upslope” parameter is only used for the Lagged Normal Density curve to replace the beginning of the

curve with a linear upslope for this particular PDF.

Table 1: Default parameters for the PDFs.

PDF Lag Normal Gaussian Poisson Random Walk Gamma
parameters Density Variate
area 1 1 1 1 1
tMean 5 5 5 5 5
RD 0.3 0.3 0.3 0.3 0.3
skewn 1.3 Not used Not used 1 1.3
frPeak 1E-6 1E-6 1E-6 1E-6 1E-6
upslope Regular Not used Not used Not used Not used
Area under the LTF:

The user defines the “area” that is used to normalize the entire curve. The LTF is brought to an
end when T(t) is less than frPeak, the fraction of the peak height of F(t), the PDF. The normalization
accounts exactly for the incompleteness of T(t) going to zero, and the area is exactly what the user has
chosen. The parameter frPeak is usually set to less than .010.

Continuity at the joining point:

A key condition for smoothness at the joining point is that the functions match and their

derivatives match.

F(t=tJoin)=T (t=tJoin) and

dF (t=tJoin)

dt

=dT (t=tJoin)/ dt.

To enforce the continuity conditions, the weights ( W,'s ) and the decay rates ( k,'s ) for the sum

of exponentials are scaled. For the power functions, the weights ( wpow,'s ) are scaled and the

arguments to the power function are time-shifted as described below. The user has the option of



specifying at what time (tJoin) or at what fraction of the peak height (frJoin) the long tailed function
will join the chosen PDF. This choice is labeled tORfr. The default choice is frJoin which is set at 25%
of the peak height.

Multiexponential and power law tail functions:

The user can choose either exponential or power law functions for the extended tail. This choice
is labeled expORpow and the default setting is exponential. The exponential choice allows sums of up
to four exponentials. The power law choice allows sums of up to four power law curves of the form

w(t — tJoin+ shift) " .

Single or multiexponential functions for T(t):

The user can specify from 1 to 4 exponential functions all of which are positive functions
decaying with time. The exponential functions have amplitudes (wi, i=1 to nExp) and decay rates (ki, i
= [ to nExp). The actual function joined to the PDF at either tJoin or frJoin is given by

T(t)=a-), w.-exp(—b-k(t—tJoin))
i=1

where tJoin is either the specified time, or the time where frJoin occurs and nExp = n, is the number of
exponentials wanted. Designating F(tJoin)=F and dF (t)/dt=S at t=tJoin, the constants a
and b are chosen so that at the joining point, the value of the PDF and its derivative are matched.
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i=1 i=1
from which we derive
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For simplicity, the k,"s should be ordered in descending magnitude. It is important to remember the
the weights and the decay rates are relative to each other, not absolute. All the chosen rate constants are

modified by b, and b does not change the weighting scheme, the w,’s. If adhering to specific rate



constants is important, then b can be set equal to 1 by adjusting the weights so that

Zwi-kiz—S/F and ZWZ.:l.

i=1 1
For n=2, this requires that k > —SI/F> k2 in order that both w, and w, are positive.

Single or multiple power law functions for T(t):

If the expORpow choice is set to PowerLaw, a sum of power law functions are used for the long
tail extension. The parameter nPow =n is the number of power law functions used and can range from
1 to 4. We willuse w. for convenience here to represent Wpow. set by the user in the GUI (Figure
1).

We use the previous definitions of F, the value of F(tJoin), and S, the derivative dF(t)/dt at
t=tJoin and derive
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The coefficient a can be expanded as
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with each tsf‘ being canceled by tsl._B‘ in the numerator of the i'th term. The sum of the terms in the

numerator when divided by the denominator equals F.



The derivative at r=tJoin is given by
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Examples of the LTFs using default parameters from Figure 1 are displayed in Figure2. ExpORpow has
been switched from Exponential to PowerLaw to produce the curves.
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Figure 2: LTFs using default parameters. The number of exponentials, nEXp, and the number of power
law functions, nPow are varied from 1 to 4 and indicated by the numbers adjacent to the curves.



Caveats about optimization:

Do not attempt to optimize with frJoin. The routine for finding the fraction of a peak returns the index
of the point, not the time when this occurs. Hence small perturbations around the value of frJoin will
return the same point and there will be no model sensitivity to perturbing frJoin. Optimize with tJoin
instead.

If using exponential functions with nExp=1, it is pointless to attempt to optimize w/ and kI because
they get normalized out of the equation.

S-t

T(t,nExp=1)=F-exp(—).

F
If optimizing with two exponential functions, it is best to optimize only one weight and one decay rate.
As the exponentials have high covariance with each other and the resultant confidence limits will be
unacceptably large.

Similarly, if using one power law function, it is pointless to optimize wpow! because it is
normalized out of the equation. Normalizing on betal is useful.

T(t,nPow=1 )=tsf‘-(t—t]0in+tsl,)ﬁ‘
Optimizing excessive numbers of exponentials or power functions manifests itself in overly large
confidence limits with the covariance matrix returning Infs and NaNs. Don't use more than you need.



