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Motivation
• (Part 1.) Improve the efficacy of inhalational drug delivery in asthmatics
• (Part 2.) Improve management and reduce costs for development of new 

therapeutics in COPD patients
• Strategies 
Inter-subject variability 
Inter-cluster variability 
Cluster: homogeneous sub-groups with distinct structural and functional features

Why imaging-based variables instead of clinical variables?
• CT imaging-based variables could sensitively capture structural and functional 

alternations at both local and global scales during disease progression.
• Approach

(1) Identify imaging-based clusters using imaging-based metrics
(2) Establish their associations with clinical and biological characteristics



A Predictive Framework
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SARP: Severe Asthma Research Program
COPDGene: Genetic Epidemiology of COPD
SPIROMICS: SubPopulations and InteRmediate Outcome Measures In COPD Study

Multicenter 
Big Data

National Institutes of Health (NIH) funded 
SARP, COPDGene and SPIROMICS

PFT, demography, 
biomarkers

CT image data at TLC and  
FRC (or RV)

Airway structural metrics at TLC
Density-based functional metrics at TLC and FRC/RV

Registration-based functional metrics of TLC vs. FRC/RV
Machine/deep learning to identify clusters

Build predictive models for functional decline & exacerbations

CFD model-based variables: 
shear stress, pressure drop, 

and particle deposition

Population 
Scale

Individual 
Scale

Refining

Longitudinal human 
subject studies with CT 

and/or SPECT

Association

Linking

TLC: Total Lung Capacity
at full inspiration

FRC: Functional Residual   
Capacity at end of 
passive expiration

RV:  Residual Volume at end 
of maximum exhalation

PFT: Pulmonary function tests
CFD: Computational Fluid 

Dynamics
CT:   Computed Tomography
SPECT: Single-Photon  

Emission CT



MESA Lung

SPIROMICS

COPDGene

Year       Baseline   1         2        3                   5                                                    10    

Non-smokers: airway subtypes due to genetic risk factor [1] 

Longitudinal CT and Clinical Data

[1] Smith BM, et al. Human airway branch variation and chronic obstructive pulmonary 
disease. Proc Nat Acad Sci 2108



Machine Learning of Quantitative CT (QCT) Variables

• Choi et al., "Quantitative computed tomography imaging-based 
clustering differentiates asthmatic subgroups with distinctive clinical 
phenotypes." Journal of Allergy and Clinical Immunology, 140(3), 2017.

Airway structural metrics at TLC
Density-based functional metrics at 
TLC vs RV, e.g. Emph% and Air%

75 QCT hands-engineered imaging-based variables, including structural variables via segmentation
of TLC images and functional variables via image-registration of TLC and FRC (or RV) images.

Normalized airway wall thickness, WT* 
Wall thickening is a phenotype for inflammation

Normalized luminal diameter, Dh*
Luminal narrowing is a phenotype for hyper-responsiveness

• Choi S, JAP 117:593-603, 2014

Inter-site variability due to CT scanners & breath-hold coaches 

Inter-subject variability due to due to sex, age & height  

• Choi S, JAP 118(10):1286-98, 2015

• Principal Component Analysis (PCA) for 
dimensional reduction

• K-means (machine learning) for clustering



(Part 1.) Major Features of 4 Asthma Clusters
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248 
asthmatics

Choi S et al. J Allergy Clin Immunol (JACI) 2017;140(3):690-700.



Drug Aerosol Inhalation in Asthma 

• Aerosol inhalation is a major way to deliver medication for treatment.
 Aerosolized bronchodilators relax airway smooth muscle,
 Corticosteroids reduce airway wall inflammation.

• However, the efficiency of delivery to the peripheral lung is limited due to:
 structural and functional variability, 
 aerosol size, 
 inspiratory breathing patterns, and 
 device design and misuse. 

https://foundation.chestnet.org/patient-education-resources/asthma/



Cluster-guided Computational Fluid Dynamics 
(CFD) analysis for particle deposition in asthma

• We sought to identify particle deposition patterns in cluster representative 
subjects using CFD

• Cluster 2: non-severe/severe asthmatics had constricted airways in the left 
lower lobe (LLL).

• Cluster 3: female, obese & severe asthmatics had non-constricted airways
• Cluster 4: male, older & severe asthmatics had constricted airways in LLL.

[1] Choi J et al. J Aerosol Med Pulm Drug Deliv (JAMPDD) 2019



CT-based Subject-specific CFD Lung Model

Inspiration

Expiration

CT Imaging & 
Reconstruction

Gas flow and particle transport

Regional 
ventilation

1D airway 
tree

Image Processing & 
Analysis

Segmentation

Geometric Modeling, Boundary Conditions, CFD Air Flow and Particle Transport 

Image
registration

• Anatomically accurate airway structure geometry
• Physiologically consistent regional lung function

Multiscale subject-specific air 
flow and particle transport

1D 
network 
model



Subject Specific Multiscale CFD Simulations

10

Large eddy simulations on a MPI-based finite 
element framework (160-320 CPU cores) 

Fine mesh for 
multiscale 
structure and 
airflow

Entire conducting airway 
in 6 regional paths

200,000 
particles
1, 2, 4, & 8 μm

Lin et al. 2013 WIREs Syst Biol Med 5:643–655

Slow and deep inhalation with synthetic eddy 
model (SEM)

3D-1D 
coupling

Speed (m/s)Turbulent 
laryngeal 
jet

~10M tetrahedral elements



Cluster-representative Subjects

10 subjects were selected for CFD 
simulations of air flow and particle 
transport.

• 1 healthy male subject
• 1 healthy female subject
• 1 cluster-1 subject
• 1 cluster-2 subject
• 3 cluster-3 subjects
• 3 cluster-4 subjects

Projection of the four color-coded cluster subjects and their respective 
cluster means (“x”) on principal component (PC) 1 and PC 2 coordinates

Choi et al. JAMPDD 2019



Lobar Deposition Fractions (DF)

Cluster 2 and cluster 4 showed large DF in the lower left lobe (LLL). 

𝐷𝐷𝐷𝐷 =
𝑁𝑁𝑝𝑝,𝑑𝑑𝑑𝑑𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑁𝑁𝑝𝑝,𝑑𝑑𝑒𝑒𝑜𝑜𝑑𝑑𝑒𝑒

LUL, left upper lobe
LLL, left lower lobe
RUL, right upper lobe
RML, right middle lobe
RLL, right lower lobe



Mean DFs of Severe Asthmatics in Clusters 3 & 4 

• DFs of 1, 2, 4, and 8 μm particles are compared in (a) LLL and (b) all the lobes for 
the three cluster 3 (blank) and cluster 4 (filled) subjects, respectively. 

• DF is greater in cluster 4 than cluster 3. The difference increases with size.
Choi et al. JAMPDD 2019
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Airway Constriction in the Left Lower Lobe (LLL)

14

8 μm

Cluster 4

High speed 
air flow



(Part 2.) COPD Former-Smoker Clustering
• COPD is a heterogeneous disease characterized by diversity of progressive

respiratory symptoms and rates of functional decline. 
• 528 former-smokers were analyzed.
• CT scans at two volumes TLC & RV and at baseline and one-year follow up
• Major improvements over our recent work on cross-sectional clustering in 

former smokers by B. Haghighi et al. Respiratory Research, 2019.
• PART 2.a. PCA & K-means (traditional ML) vs. Variational Deep Embedding (VaDE):            

(a) linear vs non-linear, (b) VaDE trains embeddings and clustering simultaneously.
• PART 2.b. Autoencoder (AE) region of interest (ROIs) deep learning algorithm to 

identity tissue-pattern clusters which can be used in conjunction with QCT hands-
engineered imaging-based variables for analysis.



(a) VaDE architecture based on variation autoencoder VAE

(b) VaDE learned embedding space using 5000 MNIST data. 

• x and �𝑥𝑥 are input and 
generated data, 
respectively.

• z is the latent vector of 
means μ and variances 𝜎𝜎𝑜𝑜2. 

• g and f are an encoder and 
a decoder. C is clustering.

(Part 2.a.) Variational Deep Embedding VaDE



K-means VaDE
fSAD% vs. 
Emph%

FEV1 vs. 
FEV1/FVC

Longitudinal Clusters : K-means vs. VaDE
with QCT Hands-engineered Variables
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(Part 2.b.) Convolutional Autoencoder (CAE) 
• The hands-engineered imaging-based variable may not be enough to describe all 

the features of the COPD lungs.
• The purpose is to identify undiscovered diseased patterns in the lungs using deep 

learning directly from CT images.
• A total of 10,000 three-dimensional ROIs were randomly extracted from 738 CT 

images at TLC of 369 former smokers.
• CAE is trained to learn 1D representations/embeddings of the ROIs.



Identifying Tissue Patterns In The Lung 

t-SNE Visualization of the distribution of the ROIs in 2D 
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Group 1D representations/embeddings of the ROIs into 10 pattern-
clusters using unsupervised learning.
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Potential Applications

3D Pattern map

Quantifying

Pattern histogram

Sliding 
Window 

classification

• Quantify pattern-clusters in the whole lung to create a pattern histogram.
• Use pattern histograms to build a predictive model via supervised learning to predict 

lung function decline and exacerbation over time.



Summary
• We demonstrated the effects of cluster-specific imaging-based features on 

particle deposition in asthmatic subjects. 
• The ability to differentiate severe asthmatics into clusters by imaging-based 

features may help devise strategies for improved inhalational drug delivery. 
• Longitudinal (progression) clusters identified by non-linear deep-learning may be 

different from those of linear traditional machine-learning k-means.
• Convolutional autoencoder can identify tissue pattern clusters from CT images, 

enabling development of predictive models for precision medicine.
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