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Figure 2: Dynamical accuracy of the kinetic theory in fluctuations-driven dynamics for
a network (1) of purely excitatory I&F neurons driven by the time-varying input rate
ν(t) = νa exp [ω sin(2πt/s + (2πt/s)2)]. (A) The firing rate m(t) (Thin solid line: simu-
lation result averaged over an ensemble of 104 identically structured networks. The upper
and lower boundaries of the gray area mark the values one-standard deviation away from
the mean. Thick solid line: Kinetic theory (19). Dashed line: Mean-driven limit (28a)); (B)
An instantaneous probability density function of the membrane potential. (The upper and
lower boundaries of the gray area mark the values one-standard deviation away from the
mean, measured from the ensemble of the 104 networks. Thick solid line: Kinetic theory
(19)).

for all the conditional conductance moments in Eq. (12a). In particular, we find that as-
suming µ1(v) = ḡ gives a special class of solutions of the kinetic equations (19) and their
boundary conditions (23) with σ2

g = 0. While the limiting Eq. (19b) and the boundary
condition (23b) are satisfied automatically by this replacement, Eq. (19a), condition (23a),
and time-independence yield the steady equation

ρ(v)(v) = −
τm(t)

(v − εr) + (v − εE) ḡ
, (26)

which holds for εr < v < VT .
For ḡ > ḡ0, with

ḡ0 =
VT − εr

εE − VT
, (27)

from the normalization condition
∫ VT

εr
ρ(v)(v)dv = 1 and the fact that the denominator in
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Fig. 2.2. Comparison between the predictions of the kinetic theory (2.37) and full numerical
simulations of the I&F network (2.1). Left: The average population firing rate per neuron, m,
as a function of the average external-input conductance fν for the full simulations (solid), kinetic
theory (dashed), Fokker-Plack equation (dash-dotted), and the mean-field theory (dotted). Right:
The membrane potential distribution ρ(v)(v). The solid curve represents the results of the I&F
network simulation and the circles the kinetic theory. [Reproduced with permission from Ref. [32],
(Copyright 2004, by National Academy of Sciences, USA).]

using the closure (2.36), we derive the expression

η(v) = JV (v, t)µ1 (v)− σ2
g

(

v − εE
τ

)

ρ(v)(v),

for which the boundary condition (2.6a) implies the periodic boundary condition

η (VT ) = η (εr) ,

i.e.,

JV (VT , t)µ1 (VT )− σ2
g

(

VT − εE
τ

)

ρ(v) (VT )

= JV (εr, t)µ1 (εr)− σ2
g

(

εr − εE
τ

)

ρ(v) (εr) .

Using Eq. (2.40), we hence derive the second boundary condition,

τm(t) [µ1 (VT )− µ1 (εr)] = σ2
g

[

(VT − εE) ρ
(v) (VT )− (εr − εE) ρ

(v) (εr)
]

(2.41b)

for the kinetic equations (2.37). We have thus found that Eqs. (2.41) constitute the
nonlinear boundary conditions for the kinetic equations (2.37).

As can be seen from Figs. 2.2 and 2.3, the kinetic equations (2.37), derived un-
der the closure (2.36), and their nonlinear boundary conditions (2.41), capture the
one-point statistical properties of the I&F neuronal network (2.1) dynamics very well
for both steady and time-dependent external-driving Poisson rates. Moreover, solv-
ing these equations is ∼ 104 to 105 times faster than using direct I&F dynamics
simulations to obtain the firing rates computationally [31, 32, 96].

to obtain, over realistically short observation times, accurate
statistical approximations to the probabilities of observing any
particular sequence of states. For example, if the total obser-
vation time of the system Tobs ! m!, then only !1 sequence of
m states is observed (of a possible 2Nm such sequences).
Therefore, this curse limits the ability of type analysis to
characterize a short observation of a system.

In contrast, our notion of an event tree invokes a different
projection of the system dynamics, namely, down to a set of event
chains, instead of state chains. To define event chains, we need the
following notation: let " t

j denote a firing event of the jth neuron at
time t (not discretized), and let " I

j denote any firing event of the jth
neuron that occurs during the time interval I. Now, given any time
scale #, an m-event chain, denoted by {" j1 3] " j2 3 . . . 3 " jm}
(spanning the neurons j1, . . . , jm, which need not be distinct), is
defined to be any event " t

jm conditioned on (i.e., preceded by) the
events " !t"#,t)

jm"1 , · · · ," #t"$m"1%#,t"$m"2%#&
j1 . Unlike type analysis, in

which both neuronal firing and nonfiring events affect the proba-
bility of observing each state chain (19), our event chain construc-
tion limits the relevant observables to firing events only, as moti-
vated by the physiological fact that neurons only directly respond to
spikes, with no response to the absence of spikes. Indeed, it seems
impossible for the brain itself to respond uniquely to each chain of
states consisting of both firing and nonfiring events (e.g., even for
a small system of N ' 15 neurons and a history dependence of m '
4 states, the number of possible state chains exceeds the number of
cells in a single animal).

Given an observation window Tobs of the system, one can
record every m-event chain for all m up to some mmax. Note
that the number of observed one-event chains {" j1} corre-
sponds to the total number of spikes of the j1th neuron during
Tobs; the number of observed two-event chains {" j1 3 " j2}
corresponds to the total number of spikes on the j2th neuron
that occur within # ms after a spike of the j1th neuron; and so
forth. We will refer to the full collection of all possible m
$mmax event chains with their occurrence counts as the
mmax-event tree over Tobs.‡

Fig. 1 provides a simple example of the event chains produced
by a network of coupled integrate-and-fire (I&F) neurons (20).
The system is driven by two slightly different stimuli I1 and I2.
The natural interaction time scale in this system is the synaptic
time scale # (4 ms, and we record all pairs of events in which
the second firing event occurs no later than # ms after the first.
Three such two-chains, {" 33 " 2}, {" 33 " 1}, and {" 23 " 1},
are highlighted (within Fig. 1G) by light, dark, and medium gray,
respectively. Note that the events " 1, " 2, " 3 each occurs two
times within both rasters in Fig. 1 A and B. Fig. 1 C and D shows
representations of the two-event tree corresponding to A and B,
respectively. Note that the event chain {" 3 3 " 1}occurs twice
within raster B but zero times within raster A, whereas the event
chain {"1 3 " 3}occurs zero times within raster B but twice
within raster A. Fig. 1 E and F shows representations of the
two-event trees associated with very long ‘‘Tobs ' )’’ observa-
tions of the dynamics under stimuli I1 and I2, respectively (where
the occurrence counts have been normalized by Tobs ** 1 and
displayed as rates).

The event tree as described above is a natural intermediate
projection of the system dynamics that is lower dimensional
than the set of all state chains [dim ' Nmmax in contrast to dim '

(2 N)mmax], but higher dimensional than, say, the firing rate.
Nevertheless, there is still a severe undersampling problem
associated with analyzing the set of event trees produced by the
network over multiple trials of a given Tobs. Namely, given
multiple Tobs trials, each trial will (in general) produce a
different event tree, and it is very difficult to estimate accu-
rately the full joint probability distribution (over multiple
trials) of the !Nmmax various event chains comprising the event
trees. However, we can circumvent this difficulty by consid-
ering first the probability distribution (over multiple trials of
Tobs ms) of the observation count of each event chain indi-
vidually and then considering the full collection of all of these
observation–distributions of event chains (which we will also
refer to as an event tree). It is this object that we will use below
to assess the discriminability of network dynamics, i.e., how to
classify the stimulus based on a Tobs sample of the dynamics.
In the remainder of the article, the discriminability function is
constructed based on standard classification theory (2), by
assuming the observation counts of event chains are indepen-
dent [for details see Methods or Fig. S1 in the supporting
information (SI) Appendix).

It is important to note that event chains are much more
appropriate than state chains for this particular method of

‡An event tree can be thought of as an approximation to the set of conditional probabilities
P#

j1, · · · jm % P$" t
jm!" #t"#,t%

jm"1 ," #t"2#,t"#%
jm"2 , · · · ," !t"$m"1%#,t"$m"2%#

j1 % over the window Tobs. Impor-
tantly, both Tobs and # should be dictated by the dynamics being studied. In many cases,
rich network properties can be revealed by choosing Tobs comparable to the system
memory and # comparable to the characteristic time scale over which one neuron can
directly affect the time course of another (# (2–20 ms). Note that the #-separation of
events within each event chain implies that the event tree contains more dynamic
information than does a record of event orderings within the network (21).
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Fig. 1. Illustration of the event chains produced by a network of N coupled
I&F neurons (20). For clarity, we choose N ' 3. The system is driven by two
slightly different stimuli, I1 and I2. The color scales stand, in general, for the
number of occurrences (over Tobs) or ‘‘occurrence count’’ of the event " t

jm

conditioned on " #t"#,t%
jm"1 ,"#t"2#,t"#%

jm"2 , · · · , " #t"$m"1%#,t"$m"2%#%
j1 . (A) A 128-ms raster

plot of the network under stimulus I1. (B) Raster plot under stimulus I2, with
the same initial conditions as A. (C and D) Representations of the two-event
tree corresponding to A and B, respectively. The singleton events {"j} of the
jth neuron are displayed (within the central triangle) at complex vector
location e2&i(j"0.5)/3 with their occurrence count indicated by color (scale
ranging from 0 to 2 recorded events). The occurrence count of event pairs
{"j3"k}are shown in the peripheral triangles [displayed at complex vector
location 3e2&i(j"0.5)/3 + e2&i(k"0.5)/3]. (E and F) Representations of the two-
event trees associated with very long Tobs ' ) observations of the dynamics
under stimuli I1 and I2, respectively. The color scale stands for the occur-
rence rate ranging from 0 per s to 16/s. (G) This panel zooms in on the
second single synchronous burst observed in raster B. Within G the three
black rectangles correspond to spikes, and the three two-chains, {"33 "2},
{"3 3 "1}, and {"2 3 "1}, are highlighted (within G) by light, dark, and
medium gray, respectively. These two-chains each correspond to a differ-
ent position within the graphic representation of D, and these positions are
indicated with arrows leading from G to D. Fig. S1 in the SI Appendix
further details this graphic representation of event trees, and Fig. S3 in the
SI Appendix illustrates the utility of this representation.
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