Creating New Compartmental Models

Lesson V: Creating a new model

Sour ce R LR TR +  Sinks
FlowAlin --> Al, B1, V1, A10, B10 --> Fl ow Al
| (Si nk) -GB1*B1 --> Fl owB1
| |
| Sink Sour ce Si nk Sour ce |
Fomm V m---- Nooa- V ----- N +

| | |
Psa*Al PSa*A2  PSb*Bl  PSb*B2

Fomm V m---- N oo V ----- N +
| Source Si nk Sour ce Si nk +
| |
| kf----> kf |
| A2 <-------- > B2 Kdiss= ---- |
| <----kb kb |
| V2, A20, B20 |
o m m e e e e e e e e e e e e e eae——oan +

We next construct a model for two species with inflow of species A, exchange of A between two
compartments, conversion of A to Bin non-flowing compartment, exchange of B with the flowing
compartment, consumption of B in the flowing compartment and outflow of A and B.
The governing equations are
Kdmzkf/kb.
kf - Kdiss * kb :
dA ldt=(Flow/V )*(Ain—A)—(PS |V )x(A —A,);
dA,ldt=(PS IV )*(A, —Az)—kf*A2+kb*Bz;
dB,|dt=(Flow!V )%(~B )—(PS,|V )*(B,—B,)~(G, |V )*B,;

a’BZ/dtz(PSB/V2)*(BI—BZ)+kf*A2—kb*BZ;
2. Write this model for JSim, using the previous models as examples. Don't forget to include the
initial conditions. A correct version of this model is included but do not use it unless all else fails.
Learning how to write and debug models is part of the exercise. With A10=A20=A30=A40=0, Ain
=1 mM (constant), Kdiss=2, kb = 4/sec, G1B=2 ml/sec, V1=1 ml, V2=2 ml, PSa=PSb=3 ml/sec,
and F= 1 ml/sec, what is the value of the outflow of B1 at 20 seconds? (Answer: B1lout(20 seconds)
=.209 mM. )

Question: Identify the sources and sinks in all four equations. It may be necessary to multiply the
terms out to separate sources and sinks. (Hint: Sources have plus signs, sinks have minus signs.)



Question: What are some parameter and initial condition combinations to make this model into the
(1) Synthesis model, (2) the Exchange model, (3) the Conversion Model and (4) the Flow Model.
Indicate what the output variables are for each.

i mport nsrunit; unit conversion on;

/*
Sour ce R R T T +  Sinks
Fl owsAlin --> Al, Bl1, V1, Al0, B1O --> Fl ow Al
| (Sink) -GBl/Vi*Bl --> Fl owB1
| |
| Sink Sour ce Si nk Sour ce |
oo WV - --- N oo V ----- N oo o +
| | |
Psa*Al PSa*A2  PSb*Bl1  PSb*B2
| | | |
F--- WV ----- A Vo----- A L +
| Source Si nk Sour ce Si nk +
| |
| kf----> kf |
| A2 <-------- > B2 Kdiss= ---- |
| <----kb kb |
| V2, A20, B20 |
) +
*/

math Al l ProcessesODE {real Domain t s; t.m n=0; t.nmax=20; t.delta=0.1;

/1 Dependent Variable and constants

real Al(t) mM A2(t) mM B1(t) mM B2(t) nmM Alout(t) mM Blout(t) nM
AlO=0mMM A20=0nmM B10 =0 mM B20 = 0 nM
vi =1 m, V2 =2 nl,

Flow =1 nl/s, // Flowrate

PSa =3 m/s, // Passive exchange rate for A

PSb =3 m/s, // Passive exchange rate for B

GB1 =2nm/s, // Consunption rate for B in flow ng conpartnent

Kdi ss = 3 di nensionl ess, //Dissociation constant
kb = 4 sec”(-1), // Backwards rate constant

kf sec™(-1); /1 Forward rate constant
kf = Kdi ss*kb; /1
extern real Alin(t) mM // Alin will be defined at run tinme using a

/1 function generator
/1 Initial Condition
when(t=t.mn) {Al=A10; A2=A20; B1=B10; B2=B20;}

/1 Ordinary Differential Equation

Al:t = (Flow V1) *(Alin-Al) + (PSa/V1l)*(A2-Al);

A2:t = (PSa/ V2) *(Al- A2) - kf * A2+kb* B2;
Alout = A1l;

Bl:t = (Flow V1)*( -Bl) + (PSb/ V1) *(B2-B1) - (GB1/ V1) *B1,;
B2:t = (PSb/ v2) *(B1- B2) +kf * A2- kb* B2;
Blout =B1;

/1 No analytic solutions are given for the general case. Conpare
/1 Analytic solutions for special cases where they exist



} // End of nodel

Model is in AllProcesses.proj.



Lesson VI: Equations for distributed regions
(Partial Differential Equations)

Consider a flow carrying a concentration of a metabolite through a tube. In a small region of the
tube, we write the equation for mass conservation in one dimension as:

d(V*C)ldt=0(V*C)Iot+Ux%0(V*C)l0x=4Sources—Sinks +V * Diffusion.

where V isthe volume, C isthe concentration, U is the velocity, ¢ isthetime and x is
the spatial dimension.

d(V«C)ldt=8(VC)lot+Ux8(V*C)lox

means that the total derivative (also called the material derivative) is equal to the local rate of
change plus the advection of a gradient. See any standard text of fluid dynamics for a fuller
explanation. To the observer positioned at a particular place along the tube, what is observed is the
local rate of change from sources and sinks and the advection of a gradient. The gradient term is
moved to the right hand side, and we customarily write,

0(VxC)lot=—Ux%0(V*C)/0x+Sources— Sinks +V * Diffusion.

Assuming the volume is constant, the volume can be placed outside the partial derivatives.
Vx0Cl0t=—Ux%V*0C/[0 x+Sources— Sinks+V * Diffusion.

Let U=#V the velocity multiplying the volume be rewritten as
—UxV =(—Flowl Area)*(Area*xL)=—FlowxL,

where Flow is the flow rate, commonly given in ml/unit time or (ml/gram of tissue)/unit time,
and Areax L=Volume of the capillary, and L is the length. This yields

V*0Cl0t=—Flow*L*0C/0 x4+ Sources—Sinks+V * Diffusion.
Dividing both sides by the capillary volume, we have

0Clot=—(Flow*L/V)*0C/0 x+ Sources!V — Sinks!V + Diffusion.
Note that if a region has no flow,



dCldt=0Clot,
and there is no advective term.
How does the partial differential equation compare with the ordinary differential equation for a
stirred tank? Consider the simple case with advection and no diffusion, sources or sinks. The
ordinary differential equation is given as
dCldt=Flow!V *(Cin—Cout).
With slight rearrangement, this is the same as
dCldt=—Flow*LI|V *(Cout—Cin)/(L).
But
(Cout—Cin)/L=(C(L)—C(0))/(L—-0)
which is approximately equalto d C/d x.

Axial diffusion is neither a source nor a sink. It redistributes the molecules in the region.
In a region with no flow, the diffusion equation is

0Clot=D*0°Cl0x*

where D is the diffusion coefficientin cm?’/sec .
When advection is included, we have the classic advection-diffusion equation,

0Cl0t=—(F*LIV)*x0Clox+D*0"Clox" .
Sources and Sinks:

We encounter the same sources and sinks in distributed models as in compartmental models:
synthesis and decay, exchange with other regions, conversion of one chemical species to another.

Recall the complex problem of Section V:



K, =k Ik,.

diss

kfzK *k

diss b’

dA ldt=(FlowlV )*(Ain—A )—(PS IV )*(A —A));
dAzldt:(PSA/VZ)*(Al—Az)—kf*A2+kh*Bz;
dB ldt=(Flow!V )*(—B,)—(PS IV )*(B,—B,)—(G, /V )*B,;

dB2/dt=(PSB/V2)*(BI—B2)+kf*A2—kb*Bz;

In a distributed model with axial diffusion, the last four equations are given by
0A l10t=—(Flow LIV )xdA 0x—(PS,IV )*(A —A)+D, *0A}0x";
0AJ0t=(PS IV )*(A ~A,)~k *A +k *B,+D, 0 A/0x";
0B,/0t=—(FlowxLIV )*0B,/0x—(PS, IV )x(B,—B,)—(G, |V )*B +D, *0B;/0x";
0B,/0t=(PS,IV,)*(B,~B,)+k *A,~k *B,+D *0B,/0x";

With compartment Models we had initial conditions and inflow and outflow were incorporated in
the ordinary differential equations. With partial differential equations, we have initial conditions,
and inflows, outflows, and regions with neither incorporate this information in boundary conditions
on the left and right hand side of the regions. It is customary to place the inflowing material at the
left boundary and outflowing material at the right boundary.

For an inflowing boundary (such as for species A, and B, in the above example) the total
flux boundary condition is given as
—(Flow-VI/L)-(Al—Ain1)+DA1-8A1/6x=O , and
—(Flow-V IL)-(B,—0)+D, 0B /0x=0 where Ain, is the inflowing concentration at
x=x.min. . A no flux boundary condition is used at the exit end of the flowing regions and all
ends of non-flowing regions. We have the follow,
6A1/6x=0, aBllaxZO, 8A2/6x=O, and 6B2/6x=O at x=x.max; and also
0A/0x=0 and 0B,/0x=0 at x=x.min.

The main differences in the code are highlighted in boldface. Code for the PDE version is given as



i mport nsrunit; unit conversion on;

/*
Sour ce e L E +  Sinks
FlowAlin --> A1, B1, Vi, A10, B10 --> Fl ow Al

| (Sink) -GlB/Vi*Bl --> Fl owB1
| |

| Sink Sour ce Si nk Sour ce |

+--- Vo ----- Noeeao - Vo----- A +

| | |
Psa*Al PSa*A2  PSb*Bl1  PSb*B2
| | | |

Fomm V m---- N oo V ----- N +

| Source Si nk Sour ce Si nk +

| |

| kf----> kf |

| A2 <-------- > B2 Kdiss= ---- |

| <----kb kb |

| V2, A20, B20 |

o e m e e e e e e e e e e e e e e e e e e o oo - +

I ) >|

x=0 x=L

*/

mat h Al | ProcessesPDE {

real L=0.1 cm Ngrid=31;

real Domain x cm x.mn=0; x.nmax=L; x.ct=Ngrid;
real Domain t s; t.mn=0; t.max=20; t.delta=0.1;

/1 Dependent Variable and constants
real Al(x,t) mM A2(x,t) mM Bl(x,t) mM B2(x,t) mM Alout(t) mM Blout(t) mM

Al0O =0nmMM A20=0nM B10 =0 nM B20 = 0 nM

Vi =1nm, V2 =2 nm,

Flow =1 nm/s, /1l Flowrate

PSa =3 nm/s, /1 Passive exchange rate for A

PSb =3 nm/s, /1 Passive exchange rate for B

GlB =2 nm/s, /1 Consunption rate for B in flow ng conpartnent
D1 = le-5 cm2/s, // Axial diffusion in V1

D2 = le-5 cm2/s, // Axial diffusion in V2

Kdi ss = 3 di nensionl ess, //Dissociation constant
kb = 4 sec”(-1), // Backwards rate constant

kf sec™(-1); /1 Forward rate constant
kf = Kdi ss*kb; /1
extern real Alin(t) mM // Alin will be defined at run tinme using a

/1 function generator
/1 Initial Condition
when(t=t.mn) {Al=A10; A2=A20; B1=B10; B2=B20;}
/1 Boundary conditions
when (x=x.mn) {-(Fl owL/V1)*(Al-Ali n) +D1* Al: x=0;
-(FlowL/V1)*(B1-0 ) +D2*B1: x=0;
A2: x=0; B2:x=0;}
when (x=x.max) {Al:x=0; Bl:x=0;
Alout =Al1; Blout =B1;
A2: x=0; B2:x=0; }
/1 Partial Differential Equation
Al:t = (-FlowL/V1)*Al: x +D1*Al: x:x + (PSa/V1l)*(A2-Al)



A2:t = +D2* A2: x: x + (PSal/V2)*(Al-A2) - kf * A2+kb* B2;
Bl:t = (-FlowL/V1)*Bl: x +D1*B1l: x: x + (PSh/V1)*(B2-Bl) -(GLlB/ V1) *B1
B2:t = +D2*B2: x: x + (PSh/V2)*(B1-B2) +kf * A2- kb* B2;

/1 No analytic solutions are given for the general case. Conpare

/1 Analytic solutions for special cases where they exist

/1 Making DL and D2 large ( 0.2 cm2/sec) will nake this nodel behave |ike
/1 the conpartnmental version

} // End of nodel

The ODE and PDE versions are in the same project AllProcessesPDE.proj



