Distributed Blood Tissue Models Explained

Mathematically, a distributed model for capillary-tissue exchange is very similar to a
compartmental model. A distributed model has a spatial dependence, usually given as
the x-coordinate. Distributed models are partial differential equations (PDE's). They
model the same processes as compartmental models plus advection and diffusion.
Let V be the volume, assumed constant, and C be the time and spatially dependent
concentration of some material.
The governing equation is

d(V-C)ldt=Sources—Sinks+V - Diffusive Term.
The total derivative,

d(V-C)ldt=0(V-C)lot+U-0(V-C)lox.

The 0O(V-C)/ot isthe local rate of change. The rate of change given by the advection
of a gradientis U-0(V-C)/dx, where U is the velocity. (See any text on fluid
dynamics, e.g. G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge
University Press, 1970, page 74).

The advection term is subtracted from both sides yielding,
V-0(C)lot=—U-V-0Cldx+Sources—Sinks+V-0(Dp-0Cl0x)/0 x.
The velocity U is given by the flow divided by an area, and the volume, V, in the
advective term is given as an area multiplying a length, designated L:
—U-V=(—Flow/Area)-(Area-L)=—Flow-L.
This yields
V-0Clot=—Flow-L-0 C/8x+Sources—Sinks+V-8(Dp8C/6x)/6x.
Assuming D , 18 constant, and dividing both sides by V, yields
0Clot=—(Flow-LI/V)-0 C/@x+Sources/V—Sinks/V+Dp-82C/8xz.
The advection of the gradient is similar to the flow term in a compartmental model, i.e.,
)= —Flow-L (Cout_Cin)

dCldt=(FlowlV)-(C —C__
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The source and sink terms are the same for compartment and distributed models, e.g.,
consumption of material:
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and exchange between two compartments:
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Putting it all together in a two region distributed model for the plasma (p) and interstitial
fluid (isf) regions, yields
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Another difference between distributed models and compartmental models is the
introduction of boundary conditions.

For a model with an inflowing concentration on the left side, (flow is positive going to
the right), the total flux boundary condition is
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The rest of the boundary conditions are given as no flux conditions (gradient is zero at the
boundaries):
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Example: In JSim's mathematical modeling language (MML) the two region distributed
model for plasma and interstitial fluid regions is written as follows:



import nsrunit; unit conversion on;

math btex20 pde {

// INDEPENDENT VARIABLES

realDomain t sec ; t.min=0; t.max=30; t.delta=0.1;

realDomain x cm; real L=0.1 cm, Ngrid=61; x.min=0; x.max=L; x.ct=Ngrid;
private x.min, x.max, X.ct;

// PARAMETERS

real Fp =1 ml/(g*min), // Plasma flow
Vp = 0.05 ml/g, // Plasma volume
Visfp = 0.15 ml/g, // ISF virtual volume
PSg =1 ml/(g*min), // Plasma-isf exchange coefficient
Gp = 0 ml/(g*min), // plasma consumption coefficient
Gisf = 0 ml/(g*min), // ISF consumption coefficient
Dp = 1.0e-5 cm"2/sec, // Plasma axial diffusion coefficient
Disf = 1.0e-6 cm"2/sec; // ISF axial diffusion coefficient
extern real Cin(t) mM; // Plasma inflowing concentration
// VARIABLES
real Cp(t,x) mM, // Plasma concentration
Cisf(t,x) mM, // ISF concentration
Cout_pde(t) mM; // Plasma outflowing concentration

// BOUNDARY CONDITIONS (Note total flux BC for inflowing region.)
when (x=x.min) { (-Fp*L/Vp)*(Cp-Cin)+Dp*Cp:x = 0; Cisf:x = 0; }

when (x=x.max) { Cout_pde = Cp; Cp:x = 0; Cisf:x = 0; }
// ~ INITIAL CONDITIONS
when (t=t.min) { Cp = 0; Cisf = 0; }
// PARTIAL DIFFERENTIAL EQUATIONS
Cp:t = -Fp*L/Vp*Cp:xX -Gp/Vp*Cp+ Dp*Cp:X:X
- PSg/Vp*(Cp-Cisf);
Cisf:t = -Gisf/Visfp*Cisf + Disf*Cisf:x:x
- PSg/Visfp*(Cisf-Cp) ;
}
Comparison with two compartment ODE model:
import nsrunit; unit conversion on;
math comp2_ ode {
// INDEPENDENT VARIABLE
realDomain t sec ; t.min=0; t.max=30; t.delta=0.1;
// PARAMETERS
real Fp = 1 ml/(g*min), // Plasma flow
Vp = 0.05 ml/g, // Plasma volume
Visfp = 0.15 ml/g, // ISF virtual volume
PSg = 1 ml/(g*min), // Plasma-isf exchange coefficient
Gp = 0 ml/(g*min), // plasma consumption coefficient
Gisf = 0 ml/(g*min); // ISF consumption coefficient
extern real Cin(t) mM // Plasma inflowing concentration
// VARIABLES
real Cp(t) mM, // Plasma concentration
Cisf(t) mM, // ISF concentration
Cout ode(t) mM; // Plasma outflowing concentration
// INITIAL CONDITIONS
when (t=t.min) { Cp = 0; Cisf = 0; }
// ORDINARY DIFFERENTIAL EQUATIONS
Cp:t = (Fp/Vp)*(Cin-Cp) -Gp/Vp*Cp - PSg/Vp*(Cp-Cisf);
Cisf:t = -Gisf/vVisfp*Cisf -PSg/Visfp*(Cisf-Cp) ;

Cout_ode = Cp;
}






