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Compartmental Modeling:

The following five short lessons will teach you about compartmental modeling. At the end of the
first four lessons you should be able to do the following:

(1) Identify the sources and sinks for each substance in a complex reaction.

(2) Write correct mass balance equations governing the system.

(3) Code these equations in JSim's Mathematical Modeling Language (MML) along with

other necessary information.

(4) Compile them into a JSim model, run the model, and save it.

To test your skill, Lesson five asks you to write a new model which combines everything you learn
in the previous four lessons.

Lesson I: Introduction to compartmental modeling and using JSim
1. A restricted compartmental definition which covers a few simple cases:

A compartment represents a physical volume, V. In the volume, there is an amount of
material, Q. The concentration, C, is given by

c=90lV.
A compartment is assumed to be instantaneously well mixed. In physical terms, this means that the
diffusional process is infinitely fast.

Sources are processes which increase Q. Sinks are processes which decrease Q. The rate of
change of Q with respect to time, the change in the amount is given by

dQ/dt =+ Sources — Sinks.

This is called an ordinary differential equation (ODE).
In the simpler models, the volume is usually constant, and the equation is written as either

V*dC|dt =+ Sources — Sinks
or
dCldt=Sources!V — Sinks/V.

The complete specification of an ODE requires an initial condition (IC). The initial condition
specifies the concentration at time equals 0. This is written as



2. Specifying units:

The units for the amount of material are usually moles (mole), millimoles (mmol),
micromoles (umol), nanomoles (nmol) or picomoles (pmol). The units for concentration are
usually molar (M), millimolar (mM), micromolar (uM), or nanomolar (nM), or picomolar (pM). The
units for volume include liter (both /iter and L), milliliter (ml), and cubic centimeters ( ¢m’ ). The
units for time include seconds (both s and sec), millisecond (ms and msec), minute (min) and hour
(hr). A 1 molar concentration is 1 mole of substance per liter. Water has a concentration of 55
moles/liter or 55 Molar.

3. A compartmental model for Synthesis, Constant Value, or Decay
The ODE and IC are given by

dCldt=S=CIV,C(0)=C

0.

The analytic solution is
C(t)=C xexp(S*t/V).

If S§>0 , the right hand side of the equation is a source and the solution is exponentially
growing. If S§=0 , the solution is a constant (see previous example). If §<O0 , the right hand
side of the equation is a sink and the solution is exponentially decaying.

4. Coding the model in JSim:

/* Note: Once something has been explained in the model code, the

comment will be deleted from future models, e.g., a comment can be in

block form beginning with forward slash asterisk and terminated with

asterisk forward slash. Other comments can be in the form two forward

slashes followed by the comment. Please note that the demonstration projects
have added detail and comments which are not necessary for the model to run. */

import nsrunit; // enables units in the model

unit conversion on; /* Checks equations for
dimensional compatibility. */

math SynthesisModel {// Constant model

// INDEPENDENT VARIABLE

realDomain t s; t.min=0; t.max=3; t.delta=0.1;

// PARAMETERS

real CO = 1 mM, // Initial Concentration
V =2 ml, // Volume
S =1 ml/s; // Synthesis rate



// DEPENDENT VARIABLES
real C(t) mM, // Numeric Solution concentration
analyticC(t); // Analytic Solution concentration

// INITIAL CONDITION
when(t=t.min) C=CO0;

// ORDINARY DIFFERENTIAL EQUATION
C:t=S*C/V;

// ANALYTIC SOLUTION
analyticC=CO0*exp(S*t/V);

}

Model is in SynthesisModel.proj.

This model is accessible from
http://nsr.bioeng.washington.edu/jsim/models/webmodel/NSR/SynthesisModel/

You can run this model as an applet. If you have downloaded JSim to your own computer, you can
download the code. This model has a "visual" interface. You can go to the regular interface by
clicking on the Input/Output button on the visual interface.

Save your projects by going to the Project tab and use the File tab.

Read model Notes (tab at bottom of run time page).

Also note that the title of the plot mentions "Run LOOPS".



Lesson II. Multiple substances in a compartment

1. Compartmental Model with conversion:

kf----> kf

<----kb kb

This is a model where substance A can become substance B and substance B can become
substance A. The conversion is governed by a single rate constant and a dissociation constant,
K . - The dissociation constant is the inverse of the equilibrium constant.
Kdixs:kf/kb'
kf:Kdl,”*kh.
dA/dtZ—kf*A+kb*B.
dB/dIZkf*A—kb*B.

Note that the volumes are not used in this equation because the volumes would appear on
both sides of the equations!!! The three exclamation points indicate that you need to really
pay attention to what you have just read--it will be important later. In each ODE equation
identify the sources and sinks.

2. Coding the model in JSim

import nsrunit;
unit conversion on;

math ConversionModel ({
// INDEPENDENT VARIABLE

realDomain t s; t.min=0; t.max=3; t.delta=0.1;

// PARAMETERS

real A0 = 1 mM, // Initial concentration of A
BO 0 mM, // Initial concentration of B
Kdiss = 3 dimensionless, // Dissociation constant
kb = 1 sec”(-1), // Backward rate constant B->A
kf sec” (-1); // Forward rate constant A->B
kf = Kdiss*kb; // Calculate forward rate constant
// VARIABLES
real A(t) mM, // Concentration of A
B(t) mM; // Concentration of B

// INITIAL CONDITIONS
when(t=t.min) {A=A0; B=BO0;} // Note the use of brackets



// ORDINARY DIFFERENTIAL EQUATIONS
A:t = -kf*A + kb*B;
B:t = kf*A - kb*B;

/* ANALYTIC SOLUTIONS from Maple(TM) */

real analyticA(t) mM, analyticB(t) mM;

private real Exponential(t) dimensionless;

Exponential = exp(-(Kdiss+1l)*kb*t);

analyticA = (1/(Kdiss+1))*(B0+A0 + (Kdiss*A0-B0)*Exponential);
analyticB (1/(Kdiss+1))*(Kdiss* (BO+A0)-(Kdiss*A0-B0)*Exponential);

} /* End of Model*/

This model is accessible from
http://nsr.bioeng.washington.edu/jsim/models/webmodel/NSR/ConversionModel/

Explore the model by changing values for the various parameters and running solutions. You may
have have noticed that the volume is missing from this model. When everything happens in the
same volume, and flow is not involved, the volume is usually excluded from the model.

Locate the ODE solvers page (Pages Tab pull down menu on Run Time Page.) Try the various
solvers and also vary t.delta with them. How does the error in Euler-1 step change with changes in
time step? What about RK4 (Runge-Kutta fourth order)?



Lesson III: Compartment Model with flow:
1. Inflow and Outflow

o e e a e +

FlowCn --> --> Flow*Cout (Note Cout=C.)
| C Co, V |
| |
- +

The next model is the inflow of a concentration and the outflow of a concentration in a single
compartment. Recall that in a compartmental model, mixing occurs instantaneously. The governing
ODE and IC are:

dC | dt=Flow/Volume=(Cin(t)— Cout (t));

where Cin(?) 1s the inflowing concentration and Cout(t) is the outflowing concentration, and
C(0)=0,; What are the source? What is the sink?

Since the compartment is instantaneously well mixed, Cout(t)=C(t)

and we can rewrite the ODE as

dC|dt=Flow!Volumex(Cin(t)—C).

The analytic solution involves an integral. For a constant inflowing concentration,
Cin(t)=Cin, the analytic solution is given by

C(t)=Cin—(Cin—C )*exp(—Flowxt/Volume).

The time constant for the system is defined as T=Volume/ Flow.
2. Coding the model in JSim:

import nsrunit;
import nsrunit; unit conversion on;

math FlowModel {

// INDEPENDENT VARIABLE
realDomain t sec; t.min=0; t.max=10; t.delta=0.1;

// PARAMETERS

real CO = 1 mM, // Initial Concentration
Volume = 0.05 ml/g, // Volume of compartment per gram of tissue
Flow = 1 ml/(g*min) ; // Flow rate (volume per gram of tissue per
minute)
extern real Cin(t) mM; // Inflowing concentration (defined with
// function generator)

// VARIABLES



real C(t) mM, // Concentration in compartment
Cout(t) mM; // Outflowing concentration NOTE that Cout=C
because
// the compartment is instantaneously well
mixed.
// INITIAL CONDITION
when(t = t.min) C=CO;

// ORDINARY DIFFERENTIAL EQUATION
C:t (Flow/Volume)* (Cin-Cout);
Cout C;

// ANALYTIC SOLUTION only works when Cin is a constant
real analyticC(t) mM;

real tau sec;

tau = Volume/Flow;

analyticC=Cin-(Cin-C0)*exp(-t/tau);

} // END OF MODEL

This model is accessible from

http://nsr.bioeng.washington.edu/jsim/models/webmodel/NSR/FlowModel/

Vary C0 and Cin.
Follow the instructions in the JSim Notes (tab at bottom of Run Time Page).

3. The function generator

The function generator for Cin(t) can be accessed by the small sine wave enclosed in a circle (~)
button to the right of Cin(t) . Selecting this button will bring up a menu for creating a function
generator. You can accept the default name fgen_1 or create a new function generator with a
different name. Select "Use existing fgen_1." Selecting the Pulse 1 button gives you access to all
of the predefined functions. Note that the analytic solution based on constant input will no longer
be valid as a comparison. You may wish to increase t.max to 30. Compartment flow models will be
revisited when flow compartment in series are considered.



Lesson IV. Multiple compartments

1. Compartmental Model with exchange:

This is a model with exchange between two compartments. The exchange process is
governed by an exchange coefficient. For reasons which will be explained in a later lesson, the
exchange coefficient is designated PS. The governing equations are

Vl*dcl/dt:PS*C2—PS>|<C1
V *%dC,/dt=PS*C —PS*C,

which emphasizes the mass balance. They are usually written in the form
dC ldt=(PSIV )*(C,~C)

dC,/dt=—(PSIV )x(C,~C))

Note that the right hand side (RHS) of the first equation is divided by V, and the RHS of the 2nd
equation is divided by V,. The two volumes are not necessarily equal. Identify all sources and

sinks.

2. Coding the model in JSim:

import nsrunit; unit conversion on;

mat h ExchangeModel {

/1 1 NDEPENDENT VARI ABLE

realDonain t s; t.mn=0; t.nmax=4; t.delta=0.1;

/'l PARAMETERS

real C10 =1 mM /1 Initial concentration in first conpartment
cC20 =0nmv /1 Initial concentration in second conpart ment
Vl = 0.05 n/g, /1 Vol une of first conpartnent
/1 units are mlliliters per gram of tissue
V2 =0.15 nm/qg, /1 Vol une of second conpart nent
PS =5 nm/(g*mn); /1l Exchange rate
/1 VARI ABLES
real CL(t) nmM /1 Time dependent concentration in first conpartnent
C2(t) nmu /1 Time dependent concentration in second conpart nent

/1 I NITI AL CONDI TI ONS
when(t=t.mn) {Cl C10;
C2 = C20;}



/1 ORDI NARY DI FFERENTI AL EQUATI ONS
Cl:it= (PS/V1)*(C2-Cl);
C2: t=-(PS/ V2) *(C2-Cl);

/* ANALYTI C SCLUTIONS from Mapl e(TM */
real analyticCl(t) mV

anal yticC2(t) nmM

Exponential (t) dinensionl ess;

Exponenti al
anal yticC1(t)

exp(-PS*(V1+V2)*t/ (V1*V2));
(17 (V1i+Vv2)) * (C20*V2+Cl0*V1

+ V2*( Cl0- C20) *Exponenti al ) ;
(1/(V1i+Vv2)) * (C20*V2+Cl0*V1

- V1*(Cl0- C20) *Exponenti al ) ;

anal yticC2(t)

} /1 END OF MODEL

This model is accessible from
http://nsr.bioeng.washington.edu/jsim/models/webmodel/NSR/ExchangeModel/

Model is in ExchangeModel.proj.

Question: Ordinary Differential Equations are solved numerically by many different methods.
Access the ODE solvers from the Run Time GUI by using the Pages
tab and selecting Solvers. Change the ODE method to Euler and set nstep to 1.

Estimate the maximum error as a function of t.delta by changing t.delta (Run Time GUI) from 0.1
to 0.01and 0.001. Do the same for RK2 and RK4. Interpret your results.



Lesson V: Putting it all together:

1. Creating a new model

Sour ce R LR TR +  Sinks
FlowAlin --> Al, B1, V1, A10, B10 --> Fl ow Al
| (Si nk) -GlB*B1 --> Fl owB1
| |
| Sink Sour ce Si nk Sour ce |
Fomm V m---- Nooa- V ----- N +

| | |
Psa*Al PSa*A2  PSb*Bl  PSb*B2

Fomm V m---- N oo V ----- N +
| Source Si nk Sour ce Si nk +
| |
| kf----> kf |
| A2 <-------- > B2 Kdiss= ---- |
| <----kb kb |
| V2, A20, B20 |
o m m e e e e e e e e e e e e e eae——oan +

We next construct a model for two species with inflow of species A, exchange of A between two
compartments, conversion of A to Bin non-flowing compartment, exchange of B with the flowing
compartment, consumption of B in the flowing compartment and outflow of A and B.

Assignment: Write the governing equations. You will need to use everything you have already
learned. Code the Mathematical Model Language version in JSim, compile and run it. Send project
file to garyr@u.washington.edu for feedback.

How many species will you need? The exchange coefficients for A and B are different. You should
be able to use the units from the previous problem.



