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Modelling is an essential and inseparable part of all scientific, and indeed all intellectual,
activity. How then can we treat it as a separate discipline? The answer is that the
professional modeller brings special skills and techniques to bear in order to produce
results that are insightful, reliable, and useful. Many of these techniques can be taught
formally, such as sophisticated statistical methods, computer simulation, systems identi-
fication, and sensitivity analysis. These are valuable tools, but they are not as important
as the ability to understand the underlying dynamics of a complex system well enough to
assess whether the assumptions of a model are correct and complete. Above all, the
successful modeller must be able to recognise whether a model reflects reality, and to
identify and deal with divergences between theory and data. Theories can be wrong or
merely incomplete, and even “raw” data are just the outputs of experimental interpreta-
tions, i.e., models. These points are illustrated with examples from the scientific liter-
ature, accompanied by horror stories of modelling projects gone awry.
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INTRODUCTION

This paper was originally developed as a talk to a group of young
scientists in the fields of marine biology and oceanography. It has been
expanded and modified for a broader audience, and although the
examples are drawn from the ocean sciences, I hope that it will prove
of interest to a much broader readership.

* E-mail: wsilvert@ipimar.pt.
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WHAT IS MODELLING?

Modelling is one of the most universal activities. We can learn about
the modelling process by studying its development in small children. A
baby sees a pretty red disk on top of a stove and touches it. He learns
that cherry red objects are painful. Later he sees a red coal that falls
out of the fireplace and either applies the model, thereby saving
himself from another painful burn, or tests the model, and thus val-
idates it. Then his parents are going to a party and his mother comes in
wearing a cherry red dress. She is baffled at his screams of panic—the
model, validated or not, does not apply.

If modelling is so universal, what is special about modellers? Mod-
elling is like breathing. Singers, other musicians, actors, etc., learn
special breathing techniques, and modelling is much the same—every-
one else does it, but we do it better.

One of the main roles of the professional modeller is to apply
quantitative reasoning to observations about the world, in hopes of
seeing aspects that may have escaped the notice of others. This, after
all, is an extension of what all scientists do, namely looking at things in
new ways in hopes of seeing what no one has noticed before. Galileo
used new technology, namely the telescope, to discover spots on the
sun and the phases of Venus. Kepler on the other hand used his
mathematical skills to discover that the motions of the planets were
best described not by cycles and epicycles based on circular orbits, but
by ellipses.

An example of how even skilled scientists can overlook quantitative
information arose when I first started working in marine ecology and
was working on the dynamics of plankton blooms. A colleague of
mine was explaining his data on the spring bloom, and gave me the
standard picture—during the stormy and dark winter season nutrients
accumulate in the upper part of the water column, but when spring
comes there is enough sunlight to initiate the explosive growth of
phytoplankton, referred to as a bloom. After a while the phytoplank-
ton consume all of the nutrients, and the bloom collapses from
nutrient depletion. The only problem with this classical picture was that
when I actually started working with his data I found that the nutrient
levels at the end of the spring bloom were still an order of magnitude
higher than those required for algal growth. The standard theory was
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so firmly implanted in his mind that he hadn’t thought it necessary to
look at the numbers, even at his own data!

SKILLS AND TECHNIQUES

There are many specific techniques that modellers use, which enable us
to discover aspects of reality that may not be obvious to everyone. One is
the use of sophisticated statistical methods that go well beyond the
standard textbook procedures that most scientists learn. Unfortunately,
they often do not go far enough. One of the most common failings of
statistical models is that they are based on linear assumptions which
often do not apply in the real world. For some strange reason it is
considered reasonable to use linear methods for no other reason than
that they appear more sophisticated than the cruder methods that exist
for non-linear problems, but there is great reluctance to explore chaos or
catastrophe theory, which are considered “controversial”. Unfortu-
nately, the use of sophisticated statistical techniques without fully under-
standing them can lead to ludicrous, and sometimes disastrous, results.

A simple example will suffice to show this point. I once went to a
talk where data similar to those in Fig. 1 were displayed. To my great
astonishment, the speaker referred to the linear relationship between x
and y. When I protested that the data were most certainly not linear, I
was condescendingly informed that the statistical test for significance
of a linear regression clearly showed that there was a significant linear
correlation. Of course this is a misunderstanding—the test shows only
that there is a relation between x and y, it does not establish that the
relationship is linear. This illustrates the fact that a little statistical
knowledge can be very dangerous!

Another area where modellers tend to have esoteric specialised know-
ledge is in computer simulation. In fact, many people seem to think that
all modellers do is write computer simulations! The essential point to
remember about computers is GIGO, Garbage In, Garbage Out. As Lee
(1973) once pointed out, “bigger computers simply permit bigger mis-
takes”. This is not to say that computer simulation is wrong—I do lots
of it myself in fact. The problem is that too much effort goes into the
programming, and not enough into thinking about the assumptions
and understanding the equations that are being programmed.
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FIGURE 1 Hypothetical scatter plot of two variables. A figure like this was once
described as a linear relationship because it met the test for significance of linear
regression!

One of the biggest problems with computer simulation is proving to
be its popularity. This has led to a rash of new simulation packages
designed to make simulation easier, and more accessible to non-program-
mers. While it is hard to criticise the democratisation of one’s profession,
the fact is that most users of these programs are unfamiliar with their
limitations and the assumptions implicit in their use. For example, the
first of the programs that might be labelled as “simulation for the rest of
us” was Stella. Stella was very popular, but at least in the earlier versions
it imposed very strict limitations on the processes that could be repres-
ented. Time series inputs and non-linear feedback were difficult to
incorporate, and required appreciable amounts of programming expert-
ise. The current rage in marine ecology is ECOPATH, which is really
just a set of protocols for putting together static nutrient budgets and
cannot be used to resolve the kinds of questions about dynamic system
responses that people are constantly throwing at it (a successor program
called ECOSIM claims to address these concerns, but this has yet to be
demonstrated). Certainly these programs are valuable tools and have
been used for many good studies, but in the hands of people who do not
understand them they can lead to nonsense.
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The dangers of using scientific tools that one does not fully under-
stand is not limited to theoretical simulation programs. The micro-
scope provides a good analogy; in the hands of an expert it is one of
the most valuable tools in science, but when used by someone who
does not fully understand the importance of proper sterilisation tech-
niques it can lead to totally meaningless results.

Nor should one think that these problems only arise in connection
with specialised and sophisticated methods. Back in the early days of
the personal computer revolution, with 8-bit machines that ran only
BASIC, population biologists discovered that these were ideal tools for
simulating Leslie matrix models for age-structured populations. The
central idea of the Leslie matrix is that if the number of individuals of
age a is represented by N,, then the number of individuals of age a +1
at the next time step is given by N, 1=S5,, 1N, The matrix §; ; is
called the Leslie matrix, and the elements are zero unless j=i+1 (I
ignore the reproduction terms, which are not relevant to this discus-
sion). Clearly a discrete matrix model like this is ideally suited to
computer simulation, since the age structure can be stored in a vector
(Ng, N1, N>, ...) and the incrementation of the population vector from
one time step to another can be carried out by a loop like

DO 100, I=0TO IMAX -1
N(I+1)=S(I, IT+1)«N(I)
NEXT I

with some additional code to calculate the number newborns, N(0).
The problem is that this code generates nonsense! The reason is clear if
one actually traces through the code; on the first iteration of the loop,
the old value of N(0) is used to calculate the new value of N(1). The
next iteration uses N(1) to calculate the new value of N(2), but since
the value of N(1) has already been updated, the calculation of N(2) is
incorrect, and the error gets worse with succeeding iterations. The
solution is of course simply to reverse the order of computation by
changing the first line to read

DO 100, I=IMAX-1TOO

but I have to confess that I have lost track of the number of times I
have had to explain this simple fact to colleagues who reluctantly
sought help with their computer simulations.
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Lest I seem overly critical about the tools in the modeller’s kit, let
me praise the systems identification approach, which I have written
about in the past using the term “top—down modelling” (Silvert, 1981a;
1981b), but which might better be called “data-driven modelling”.
Both terms refer to the process of developing models that fit the data,
rather than making a set of assumptions about the system and creating
models on the basis of these assumptions, without regard to whether
they fit the model or not.

No discussion of quantitative modelling techniques would be com-
plete without reference to sensitivity analysis. Sensitivity analysis can
be used not only to test the performance of models, but can also be a
valuable guide to the development of models and can help identify
what can safely be omitted. In some cases sensitivity analysis can even
show the impossibility of developing a model that does what we want
it to; Miller ef al. (1973) found that a mosquito control model that they
were working on was so sensitive to weather conditions during the
larval stage that it was impossible to use it for practical predictions.
Models are always a simplification of reality, and by carrying out
sensitivity analysis at an early stage of the planning process it may
be possible to avoid getting caught in a quagmire of detail that
ultimately will not affect model performance. This can be as much a
political as a scientific issue, since modellers are under constant pres-
sure to include detailed information that is not really useful. After all,
someone who has spent his career studying the reproductive behaviour
of some organism is not likely to be happy to discover that it does not
play a large role in the aspects of the ecosystem that are being mod-
elled. It therefore falls on the shoulders of the modeller to maintain a
clear vision of just how complex the model should be (see Silvert, 1996
for some ideas on how to do this), and to fight the inclusion of
material that will make the development of the model harder without
making its performance any better.

MODEL ASSUMPTIONS

More than anything else that a modeller learns, it is essential to under-
stand the role that assumptions play in development of a model. Every
equation, including those used for statistical analysis, is based on
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certain underlying assumptions, and the primary role of the modeller
should be to identify and understand these assumptions, and to keep
them constantly in mind in order to see whether they are valid.

An interesting example of the role of assumptions in modelling is the
book The Limits to Growth (Meadows et al., 1972) which brought
simulation modelling to public attention and inspired the present
interest in modelling. The book deals with many different scenarios
describing how mankind will deal with the issues of population
growth, resource depletion, pollution, and so on, but there seems to
be a curious assumption about how we will deal with this increasing
stress and suffering—no matter how bad things get, we won’t go to
war about them. As the authors explain, “we have also ignored dis-
continuous events such as wars or epidemics” (Meadows et al., 1972,
p. 132), but this drastic assumption received little attention in the
reviews of their study. A look at history shows that wars and epidemics
are among the more continuous phenomena governing human exist-
ence, and under the extreme pressures described in The Limits to
Growth they would be almost inevitable, and thus predictable. To
be sure, the authors acknowledge that their models are optimistic
estimates because they ignore these factors, but this sounds a bit like
modelling the time it takes to drive across Russia non-stop, based on
the assumption that one doesn’t run out of gas!

The responsibility of a modeller to understand and criticise the
assumptions of a model arise not only from a sense of professional
obligation, but also from the circumstance that the modeller is usually
the most mathematically sophisticated member of a research team and
thus can bring quantitative judgement to bear even on problems where
the other team members understand the workings of the system better.
For example, I once reviewed a study of primary production in an
estuary where one of the critical factors was the turbidity of the
water—the more turbid the water, the less light reaches the phyto-
plankton, and thus the lower the primary production. The paper
was based on a model in which primary production was inversely
proportional to the average turbidity. However, this line of reasoning
is misleading, since what matters most to the phytoplankton is the
volume of water with sufficient light to grow, and thus the key variable
is not turbidity, but the depth of the euphotic zone (the zone with
sufficient light), and that is inversely related to turbidity. Consequently
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the model should have used the average inverse turbidity, rather than
the inverse of the average turbidity. Of course this sounds like a play
on words, unless we consider the following extreme case; suppose that
a dump truck empties a huge load of sand at one end of a clear lake.
During the time that it takes the sand to settle, the average turbidity of
the water is very high, since it is proportional to the total sediment
load. However, since the sand is concentrated in only a small area, the
volume of the euphotic zone, which depends on the average inverse
turbidity, is decreased only slightly. In an actual estuary the situation
is not this extreme, but since there can be localised areas where the
sediment load is high (such as channels or regions which receive
sewage wastes), the difference between average inverse turbidity and
the inverse of the average turbidity can be considerable. These subtle
points, which often occur only to those who are used to dealing with
mathematical systems, can make the difference between a sloppy
model and one which describes the system correctly.

These considerations do not only apply to complex scientific models,
since, as pointed out above, modelling is a universal (if sometimes
unconscious) human activity. The ongoing debate about intelligence
and race offers a depressing example of the dangers of neglecting the
assumptions behind a model. Numerous studies (which I will not
dignify by citing) claim to show that the average intelligence of blacks
is lower than that of whites, and these results are taken to mean that
blacks are not qualified to be doctors, engineers, or football quarter-
backs. The inference is made using an implicit model, and the “data”
on intelligence are inputs to this model. But the model, although based
on the perfectly reasonable assumption that intelligence is necessary to
be a doctor, engineer, or football quarterback, it is clearly wrong, as
can be seen by replacing the concept of intelligence with that of height.
It is entirely possible that the average height of blacks is lower than
that of whites, so an analogous model would say that blacks are not
qualified for positions requiring height. Would this mean that the
owners of major basketball teams would have to fire all of their black
stars? Obviously not, and clearly this is only one example of the
tragically common error of ascribing mean properties of groups to
individuals—unfortunately this is one of the most common modelling
errors encountered in the real world, as illustrated by many newspaper
reports about how police forces treat minority groups.
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DATA-DRIVEN MODELLING, OR SYSTEMS
IDENTIFICATION

The usual approach to model development is to characterise the
system, make some assumptions about how it works, translate these
assumptions into equations, and start programming. This does not
always work. If the model does not fit the data, it may well be that the
assumptions are wrong. If so, what does one do next?

One approach is to ask what kinds of models could fit the data, and
see whether any of these provide plausible alternatives. This approach,
where one bases the model structure directly on the data, has been
called “top—down modelling”, but since this can lead to confusion with
top—down control, I will use the terms “data-driven modelling”, or
“system identification” which is widely used in time-series analysis.

Path Analysis

To illustrate how analysis of the data can overthrow some of our
assumptions in surprising ways, I'll begin with a problem that I
worked on during the 1970s when I was involved with fisheries man-
agement issues. I was trying to understand how fish landings were
affected by both water temperature and fishing effort, and I decided to
use path analysis to interpret the data (Silvert, 1981b; Silvert and
Dickie, 1982). Path analysis is a quasi-statistical method for inferring
causal relationships, and it is widely used in the social sciences
(Li, 1975). It seemed reasonable to assume that both temperature
and effort would influence landings (temperature as an environmental
variable affecting recruitment and growth), but consistently I found
that the landings affected the effort and not the other way around.
This was baffling until I spoke to one of the scientists who collected the
data, who laughed at my dilemma and explained that they never did
collect any effort data, even though they were supposed to. Instead
they simply looked at the landings and inferred effort from these
data—if over half the fish in the hold was flounder, they listed it as a
flounder trip. In other words, the effort “data” really did depend on
the landings.

Although this was frustrating news at the time—I really wanted
those effort datal—in retrospect this was very pleasing. It showed me
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that path analysis was a useful tool for system identification, and
it taught me that if a model doesn’t make any sense, it may help to
look at the experimental data with a critical eye and review the
assumptions on which both the model and the interpretation of the
data are based.

Sedimentation Problem

As an example of how modelling can serve as a tool to reveal aspects
of nature that may not be directly evident in the data I would like to
describe a frustrating experience in the analysis of sedimentological
data (Silvert, 1981b). The experiment was in principle simple—a
beaker of sediment was stirred and then allowed to settle out. Samples
taken with a pipette at fixed depth over time showed a decreasing
concentration of particulate matter, especially in the larger size range,
due to the more rapid sinking of larger particles. Straightforward
application of Stokes Law should explain the decrease in concentra-
tion over time. However, the concentration did not fall off as rapidly
as it should, and there was a tail of fine particles that persisted for
much longer than Stokes Law settling predicted. The only explana-
tions that I could come up involved reintroduction of fine particles
into the water column through microbial contamination, dust set-
tling on the surface, or inadvertent mixing during the pipetting opera-
tion. The experimentalist with whom I was working angrily rejected
these possibilities, which were seen as an attack on his laboratory
technique, and said that if I couldn’t model these data he would
find someone else who could (a common response!). Some time later
I asked whatever happened to that experiment, and he told me that
the data had to be discarded because there proved to be microbes
growing in the beakers. When I rashly pointed out that I had sug-
gested this two years earlier, he got even angrier than he had the first
time.

There are two morals to this unhappy story. The first is that a good
model can reveal information that cannot easily be seen in the data
(I might add that some really sophisticated scaling arguments went
into this theoretical analysis). The second is that experimentalists don’t
always appreciate it when a modeller discovers something that they
missed.



|//SYS23/E:/IPD3B2/JOURN/IGS/3B2/E001010S.3D - 11 - [1-22] (22) 13.9.2000 6:37PM (STYLE BB)

MODELLING AS A DISCIPLINE 11

Toxicology Model

I once tried to model the toxicology of a motile alga (Vandermeulen
et al., 1983), and started off with the perfectly plausible assumption
that this was a dose-response situation. In other words, the longer the
algae were exposed to a contaminant, the greater the probability that
they would exhibit a toxic response. No matter how I adjusted the
parameters of the model, it produced unacceptable results. I finally
decided to follow my own advice and use a data-driven approach. As
soon as I did this, it became apparent that the toxic response was
independent of dose—in other words, the probability that an alga
would exhibit a toxic response during the next unit of time was
completely independent of how long it had been exposed. The resulting
model fit the data perfectly, although we still don’t know why!

VALIDATION: CAN WE TRUST DATA?

It is widely believed that a model should fit the data, and if a model
does not fit the data, the model is wrong. There are in fact two
possibilities: the model may be wrong, or the data may be wrong (or
both). Data are not reality, no matter what experimentalists may
think. They are the outputs of experiments, and experiments are based
on models. There is no reason to believe that a model devised by an
experimentalist is better than one developed by a theorist. In any case,
if one discards a model, it is essential to determine what went wrong—
were the underlying assumptions of the model, which are usually
specified by the experimentalists, wrong, or was the model incorrectly
constructed? If the former, then both the model and the experiments
need to be re-evaluated, and if the latter is true, then it should not be
hard to fix.

Aliasing

Some of the most common problems in the design and analysis of
experiments involve aliasing, which occurs when discrete sampling is
used to measure continuous processes. Typically the measurements are
interpolated with straight lines or higher order splines (de Boor, 1978;
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a straight line can be thought of as a first-order spline), but if the
system varies on scales small compared to the interval between meas-
urements, serious errors can arise.

This is exemplified by studies of shellfish toxicity, where we use
models to relate the presence of toxic algae in the water column to
toxins in shellfish. The algae are usually sampled with relatively small
bottles, and because of resource constraints it is difficult to maintain a
high sampling frequency. This means that algae, which are very patchy
and occur at varying depths in the water column, are sampled at a few
discrete locations one or two times a week.

In a study of Paralytic Shellfish Poisoning (PSP) toxins in mussels
(Silvert and Cembella, 1995), there were several apparent discrepancies
between the model and the data, indicated by the arrows in Fig. 2.
In some cases there was a high value of measured algal toxicity but no
significant increase in shellfish toxicity, while in others the shellfish
reached high toxin levels even though no toxicity was measured in the
water column. If the model is fundamentally wrong, then the under-
lying assumption that mussels accumulate toxins from the algae they
consume must be questioned.

1000

800 -

600 -

400

200 -

0 o
Jun Jul Aug Sep Oct
FIGURE 2 Data and simulated toxicity for PSP toxins in mussels, adapted from

Silvert and Cembella (1995). The points represent experimental data, the line is the result
of a simulation model.
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This is clearly an issue that arises at the end of June in the simulation
shown in Fig. 2, since the mussels already contain toxin levels over
200 pg STX equivalent (100 g)~" while the simulation predicts much
lower levels (these complicated units refer to the toxicity as compared
to the “standard” STX toxin equivalent, measured in pg per 100 g of
tissue). It is easy to see why the simulation model does not predict the
observed toxicity—no toxic algae had yet been detected! Presumably
toxic algae were present and had been consumed by the mussels, but
they had been missed in the sampling procedure.

The opposite happens in August, when the spike in simulated tox-
icity is due to a single sample, but it was probably just a small patch of
toxic algae that happened to be at the sampling location at the right
time, and was not representative of the water column. In both cases it
makes much more sense to ascribe the discrepancies to problems with
the sampling procedure than to errors in the model, which is based on
very simple and fundamental assumptions about how shellfish become
toxic. It is however worth noting that problems like this, which are
very common, usually prompt experimentalists to criticise the model,
although I have never had any problem showing them that the errors
are inherent in the model assumptions and have nothingto do with bad
modelling procedures.

Replication

A major problem with validation in oceanography is that we seldom
have an adequate set of replicate data to work with, and consequently
there are often special situations which cause unexpected discrepan-
cies. For example, none of the fisheries models in use at the time
correctly predicted the dramatic decline in fish landings in the North
Atlantic during the late 1930s and early 1940s. The explanation was of
course the decrease in effort when fishing fleets were driven off the
water by German U-boats or converted to military vessels. Surely no
one would fault fisheries modellers for failing to take these factors into
account!

I recently had an assuming experience trying to test a fisheries model
that I helped develop in the mid-1980s (Silvert and Crawford, 1988).
The model predicted that catches of small pelagic fishes in the coastal
waters of Japan were at an unsustainable peak and would soon start to
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fall. However, although the total catch has fallen to a third of its value
ten years earlier, and the catch of the dominant species in this
category, Sardinops melanosticta (sardine), has been falling, the com-
bined catch of Engraulis japonicus (anchovy) and Trachurus japonicus
(horse mackerel) suddenly started to climb and has been going in just
the opposite direction from what the model predicts. Clearly this
proves the model false—unless one looks more carefully at the data
and considers an alternate hypothesis. This analysis is based on data
from the Fisheries and Agriculture Organisation (FAQO), obtained from
statistics provided by national fisheries agencies, and the data “show”
that before 1990 the People’s Republic of China was not catching
any fish! During the past 10 years their catches of Sardinops and
Engraulis have been increasing at a remarkable rate (Silvert, 1997),
and by 1997 the Chinese were catching more fish in this area than all
other countries combined, as illustrated by Fig. 3 which shows catches
over time (the Chinese still do not report any catches of Trachurus).

It may be that the Chinese were catching fish before 1990 and simply
not reporting their landings data to FAO, in which case the data cannot
be used to falsify my model. Given the many wonderful ways in which
the Chinese prepare fish it is hard to believe that they really were not
catching any, at least in this area, before 1990, but this is not a question
that can easily be resolved by simply looking at “scientific” data.

Similarly, the Silvert and Crawford (1988) paper fails to predict a
recent surge in catches of Trachurus symmetricus off the coast of Peru
and Chile, but this increase is associated with a huge expansion in the
area fished, which now extends almost as far as New Zealand, and it is
also hard to use this discrepancy to falsify the model. These are not
special cases—it is rare for a model to be tested with data that are fully
consistent with those on which the model is based.

False Implicit Assumptions

One of the most common experiments in our field is to measure the
abundance of organisms by dragging a net through the water. Think of
all the assumptions and modelling that this involves! Aside from the
mathematical issue of calculating the volume of water filtered, there
are more serious issues of net avoidance, extrusion of soft-bodied
organisms through the net, and diversion of organisms pushed aside
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B China
Others

FIGURE 3 Fish catches in the coastal waters near Japan, showing reported landings
by China and by other countries.

by the bow wave. Also, how does one deal with patchiness? At a more
fundamental level, was the sampling carried out in the right part of the
water column? Midwater trawls don’t catch many crabs and flounder.
Perhaps the most common experimental mistake is to assume that any
effect that isn’t measured can be ignored, even when this flies in the
face of every rational argument. For example, since there is little
quantitative data on net avoidance, it is commonly assumed that it
can be ignored. This can lead to huge underestimates.

During the 1970s I carried out an informal project to see how much
of the data I used was wrong. The criterion was not that I thought it
was wrong, but that I could convince the people who collected the data
that they were wrong. In numerically tabulated data the error rate
consistently ran around 2% —perhaps now that data are logged auto-
matically this has improved, but it shows that outliers are to be
expected. More serious are gross errors due to carelessness in the cal-
culations. I once received tables of plankton concentrations that were
outrageously high. It turned out that the data were processed by
someone who confused mm with ¢m and thus produced estimated
displacement volumes that were too highby a factor of 1000. Perhaps
the most disturbing aspect of this experience was the discovery that
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most of my colleagues, as well as the financial officers whom I asked to
suspend payment to the contractor until the data were corrected, felt
that I was unreasonable to make a fuss about such a small mistake!

Consistently Wrong Data

There are some areas where I believe that the data are consistently
wrong. I have been working for many years on the toxicology of
shellfish, and consistently find myself unable to get correct results
(e.g., Silvert and Subba Rao, 1992). This could of course reflect my
own inadequacies as a modeller, but the situation is so simple that I
think there must be more to it than that.

Models of shellfish kinetics are pretty simple, although like most
models they can be elaborated without limit. If the concentration of
toxins in the water column is X, then the concentration C in the
shellfish is given by the uptake-clearance equation

dC/dt = aX — bC,

where a represents uptake and assimilation, and 4 is a loss term. The
problem I repeatedly find is that a can be obtained from experimental
values, and it is almost always too low to generate correct curves of C
over time. Even when b is set to zero, so that there is no detoxification
at all, observed concentrations of toxins in shellfish can reach levels
much higher than the model can generate. Since the main purpose of
this kind of model is to warn us when toxin levels can reach dangerous
levels, this is a serious problem.

My personal opinion is that shellfish can feed at much higher rates
than have been observed in the laboratory, and can therefore ingest
large quantities of toxin when the conditions are right. The experi-
mentalists whose data I question do not agree with me, but I propose
this example to illustrate the type of question that modellers have to be
prepared to deal with.

HORROR STORIES

Although some of my own experiences have been frustrating, these
problems are minor compared with some of more dramatic case his-
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tories of modelling gone astray. Here are a few tales that should prove
as instructive as they are terrifying.

Starved Amphipods

I’ll start with a story that is funny in retrospect, although it was a
disaster for scientist involved. We had a post-doctoral student in our
laboratory who was studying the growth rates and feeding efficiency of
amphipods (small marine invertebrates). This was a subject of con-
siderable interest to me, so I asked if we could collaborate, but he
informed me that this was a purely experimental study that did not
require any modelling or other theoretical nonsense.

He continued for several months, feeding the bugs various quant-
ities of food and measuring their growth rates. Finally, to wrap up the
study, he decided to try starving them. No food. They continued to
grow! Obviously the results of the experiment were suspect, to say the
least.

He wasn’t the first experimentalist to assume that the things he
couldn’t see (in this case diatoms growing on the sides of the Petri
dishes) didn’t exist, and he certainly wasn’t the first to discover that
there are some theoretical concepts that one cannot avoid, like con-
servation of energy. Unfortunately, he certainly will not be the last to
make these mistakes.

Port Hacking Estuary

This may be the most expensive example of bad modelling that exists
in marine ecology. The Port Hacking Estuary Project was a huge
multi-year and multi-million dollar study carried out in Australia.
The project was intended to produce an ecosystem model that would
tie all the results together. They hired a young mathematician with
what seemed to be a good background in biological modelling. But as
time went by, the results of his model seemed to be getting more and
more ridiculous, to the point where they decided that they should look
over his shoulder.

It turns out that before being hired for this project he had been
working on pharmacological models, which are linear donor—acceptor
structures. He approached ecological modelling the same way. But
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ecological models are not linear (not even the well-known Lotka—
Volterra model), and their mathematical structure is totally different.
The modelling aspect of the work could not be salvaged in the time
frame remaining, and the entire project suffered as a result. As one of
the participants put it, with admirable restraint and understatement, “It
seemed that we may have erred in opting for linear, donor-dependent
functions, thereby promoting disbelief and discontent among the
participants; thepublished models generally contained complex non-
linear functions...” (Cuff, 1983).

The Case of the Missing Menhaden

Models with spatial structure are particularly dangerous. A well-
known theoretical ecologist landed a nice contract to study the poten-
tial impacts of a project in the Gulf of Mexico that would increase
salinity over a small area, about two square kilometres. I was present
when he spoke on his results, and was surprised to see that one of the
major effects would be a severe reduction in the menhaden population.
When I asked the mechanism for this, he explained that the increased
salinity would cause a reduction in plankton, and the menhaden would
starve. I protested that since menhaden are pelagic fish that move
around a lot, depletion of their food resources over such a small area
certainly could not cause starvation. Clearly the ability of fish to swim
was left out of this model!

Foxes and Hares

This model is another example of many that founder on the ability
of animals to move around. Several years ago I refereed a very sophist-
icated paper that used cellular automata to model the spatial distribu-
tion of animals, and a worked example was included that described
the spatial distribution of foxes and hares. The model showed that
if the distribution of hares was patchy, the foxes would starve. The
way that this occurred was that the hares might end up in some cells of
the grid, and foxes in the other parts of the grid would not find
them. The grid spacing was about 100 m, and frankly I think that if
you put a fox 100 m away from food, he will find it before he starves
to death!
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I don’t mean to suggest by these two examples that migration and
foraging are easy to model—far from it. But they are present in most
ecosystems, and if you either ignore these effects or model them
incorrectly, you will get nonsensical results.

Patchiness

Most organisms are distributed in patches. We don’t always understand
why this happens, although some theorists have suggested that uniform
distributions of predators and prey are unstable and automatically
form patches. But whether your models can predict patchiness or not,
you have to recognise it as a reality that must be included in models.

About twenty years ago I was trying to put together large-scale
ecosystem models of continental shelf ecosystems, and consulted a
number of zooplanktologists and fisheries biologists about grazing
rates (Silvert, 1988). The values were so low that I couldn’t make
any sense out of them—by my calculations, there wasn’t enough energy
flow to produce fish, even on the Grand Banks of Newfoundland.
Then I remembered a lovely paper by some of my colleagues on how
whales feed, in which they showed that if baleen whales consumed krill
in the southern ocean by swimming at random, rather than exploiting
patches, they would have to move at the speed of sound with their
mouths wide open, 24 hours per day (Brodie ef al., 1978). So I went
back to the experts to see what role patchiness played in their esti-
mates, and I was informed that no one had ever measured this effect,
so the values they had given me were based on laboratory experiments,
typically ones where zooplankton were fed on uniform concentrations
of algae in stirred tanks. Clearly this kind of experiment is not a good
model for what happens in the wild!

The Complexity—Stability Debate

One of the most elaborate areas of investigation in theoretical ecology
has been the debate about whether ecosystem complexity produces
greater or lesser stability. Hundreds of papers have been written on this
topic, and the most common approach has been to carry out numerical
simulations of randomly connected ecosystem models. Much of the
interest in the issue is driven by the surprising discovery that complex
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systems prove to be less stable than simple ones in most cases, which is
just the opposite of what many ecologists had long believed.

The models used were more sophisticated than the linear ones of the
Port Hacking project, and consisted of generalised versions of the well-
known Lotka—Volterra model, with terms of the form

dxi/dt:~~~+a(,~xix_,'+~~,

where the x; are the different populations and the a; are random
interaction coefficients.

One interesting aspect of these simulation studies was the discovery
that omnivory is destabilising. Almost any biologist will tell you that
the opposite should be the case. If you ask him why he believes that, he
will explain that since omnivores have a wider choice of prey, they will
switch to the more abundant prey and ignore prey that are scarce,
thereby giving endangered species a chance to recover.

Aha! This mechanism is not present in any of the computer simula-
tions. Careful examination of the Lotka—Volterra interactions shown
above shows that the amount of time that predators spend feeding on
their prey isindependent of the prey’s abundance. Thisis why omnivoryis
destabilising—the omnivores relentlessly pursue even the scarcest prey,
and they gain enough energy from the more abundant prey to keep going
until the scarcer species have been driven extinct. In real systems pre-
dators can switch from one prey to another, and this is the crucial dif-
ference between theoretical instability and real stability (Silvert, 1983).

Of course it is not easy to model the response of an omnivore to
changes in relative prey abundance. Most data on how animals choose
their food (electivity indices) are based on time-averaged feeding
rates, and are not very reliable. But once again, the dynamics of the
ecosystem very often depend on something that is difficult to measure,
but if we ignore the effect, the results of our models will probably turn
out to be nonsense.

SUMMARY

Modelling is not an easy profession, and it is certainly not one that
inspires much respect. There is a tendency to retreat into abstruse
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mathematical formalism and focus on complex statistical techniques
and computer programming, areas in which the properly trained mod-
eller can excel without fear of criticism. Unfortunately, this does not
automatically lead to good models.

Modellers have to meet their experimental colleagues on the ground.
They have to understand what happens in the field, how experiments
are conducted, and what the data mean. They have to put the priority
on science, not on mathematics. Above all, models have to be based on
correct assumptions about how reality works. Getting the mathematics
right is important, definitely, but good mathematics will never salvage
a model that is conceptually incorrect.
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