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BASSINGTHWAIGHTE, J. B., F. P. CHINARD, C. CRONE, C. A. 
GORESKY, N. A. LASSEN, R. S. RENEMAN, AND K. L. ZIERLER. 
Terminology for mass transport and exchange. Am. J. Physiol. 
250 (Heart Circ. Physiol. 19): H539-H545, 1986.-Virtually all 
fields of physiological research now encompass various aspects 
of solute transport by convection, diffusion, and permeation 
across membranes. Accordingly, this set of terms, symbols, 
definitions, and units is proposed as a means of clear commu- 
nication among workers in the physiological, engineering, and 
physical sciences. The goal is to provide a setting for quanti- 
tative descriptions of physiological transport phenomena. 

circulatory transport; diffusion; capillary permeability; flow; 
irreversible thermodynamics; tracer washout; pharmacoki- 
netics 

of the required sets of symbols has enlarged to a point 
where the “standard” symbol for one group of users has 
a quite different “natural” meaning to another. This 
problem has necessitated some arbitrariness, but we have 
attempted to subscribe to the dominant usage so as to 
minimize changes in habits. 

Care has been taken to provide each term with 1) a 
name, 2) a definition in words (and sometimes equa- 
tions), 3) a unique symbol whenever possible, and 4) 
units mainly in centimeter-gram-second system but with 
some translation to approved International System of 
units (SI). Physical constants are listed separately. 

An important feature of this list is the provision of 
operational terminology for the general description of 

h(t), etc., follows from the work of Stephenson (lo), 

the behavior of linear stationary systems. The use of the 
time-domain impulse response or transport function, 

Meier and Zierler (6), and Zierler (12) and is reviewed 
by Bassingthwaighte and Goresky (2). 

THIS SET OF SYMBOLS is an extension of those proposed 

(1). The extensions provide a set of symbols common to 
studies of transcapillary and cellular exchange and indi- 

by Wood (11), Gonzalez-Fernandez (3), Zierler (12), 

cator-dilution studies. The rationale is to provide a self- 

Kedem and Katchalsky (5), and Bassingthwaighte et al. 
A system i .s diagramed in Figure 1. Most analysis is 

based on two fundamental assumptions, that the system 
is both linear and stationary. When both hold, superpo- 

consistent set of symbols covering broad aspects of cir- sition is applicable. In general, we also consider the 
culatory flows, hydrodynamics, transcapillary and mem- system to be mass conservative; that is, indicator and 
brane transport. As the various previously rather sepa- 
rate aspects of these fields become intermeshed, the size 

solvent are neither 
A linear system i 

formed 
.s one in 

nor consumed. 
which inputs and outputs are 
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Gout(t) = Ci,(t) m h(t) = lotCin(T) l h(t-T)dX 

FIG. 1. Block diagram of a linear stationary system. Response to 
ideal impulse input 6(t) at the entrance is h(t), the transport function. 
When input is of another form, Cin( t), then outflow response C,,(t) is 
the convolution of Cin( t) and h(t). 

additive. Defining Cin( t) 7 as concentration-time curve at 
the input to a segment of the circulation and Cout( t) as 
the concentration-time curve occurring in response to it 
at the outlet, the relationship is denoted by 

Given a second pair with the same relationship, Cil,( t) 
+ C&J t), then in a linear system, these can be summed 
or multiplied by a scalar 

Cin( t) + CiLt t) -+ cxdt) + Gut(t) or 

kCin(t) + scout linearity 

A stationary system is one in which the distribution 
of transit times through the system is constant from 
moment to moment; that is, flows and volumes are 
constant everywhere in the system. Stationarity implies 
that the response to a given input is independent of a 
shift in the timing of the input by an arbitrary time, to. 

If Gin(t) + COuttt) 

then Cin( to + t) + Coutt to + t) stationarity 

When the input system is an ideal unit impulse, the 
Dirac delta function, 6(t), then the output is the trans- 
port function, h(t). When the input is of general form, 
Cin( t), and h(t) is known, then the form of the output, 
Cout( t), can be calculated using the convolution integral 
given in Fig. 1. 

A probability density function /Z(X) or w(x) is a weight- 
ing function or a frequency function that gives the prob- 
ability of occurrence of an observation or measure as a 
linear function of the quantitative measure, X. The sum 
of probabilities of all the observations is unity; therefore 
the units of the density function are fraction per unit of 
the measure [e.g., the transport function h( t)]. A typical 
form of h(t) for transport through an organ is given in 
Fig. 2, accompanied by closely related general functions. 

Subscripts 

A Arterial 
B Blood 
C or cap Capillary, or the region of blood-tissue ex- 

cell 
D 
ECF 
F 
i,j 

in or i 

change 
Cell 
Diffusive, or indicating a permeant tracer 
Extracellular fluid 
Flow or filtration 
Indices in series or summations or elements 

of arrays 
Into or inside or inflow 

R(t) 0.5 oi * ;I 

OS3 I 
7y(t) O** 
se? 0.1 

0’ I I I I 1 I 
0 I 2 3 

t/T, time /mean transit time 

FIG. 2. Relationships between h(t), H(t), R(t), and q(t). Curve of 
h(t) is in this instance given by a unimodal density function having a 
relative dispersion of 0.33 and a skewness of 1.5. However, the theory 
is general and applies to h(t)s of all shapes. Tail of this h(t) curve 
becomes monoexponential and hence v(t) becomes constant. 

ISF or I Interstitial fluid space, the extravascular, 
extracellular fluid 

m Membrane 
out or o Out of or outside or outflow 
P Plasma 
RBC Red blood cell 
R Reference, nonpermeant tracer 
S Solute 
T Total 
v Venous 
W Water 

Principal Symbols 

a 

A 

C 

Activity, molar; a = PC, an activity coefficient 
times a concentration 

Area of indicator concentration-time curve 
excluding recirculation = JF C( t)d t, mol. 
sol-l 

Concentration, mol/l; Cc( x, t) concentration 
in the capillary plasma at position x at time 
t (mol l 1-l). Also [ Na’] = sodium concentra- 
tion. The relationship between an outflow 
concentration-time curve Cout( t) and the 
inflow curve Cin( t) in a stationary system is 
given by the convolution integral: Cout( t) = 
$6 h(t 0 7)Cin(T)d7 = Cin( t) * h(t) where 7 

is a variable used in the integration. The 
asterisk denotes convolution 
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e S 

cv 

D 

E 

E(t) 

ECF 
f 

f excl 

f i 

F 
F B 

Fs, F, 

Concentration of solute, the average of the 
concentrations on the two sides of a mem- 
brane, molal, used in irreversible thermo- 
dynamic equations. Note that this average 
does not represent the mean concentration 
within the membrane when both convection 
and diffusion occur through a channel of 
finite length 

Coefficient of variation, dimensionless. See 
also RD; both are the standard deviation 
divided by the mean of a density function 

Diffusion coefficient, cm2. s-l; D, in free 
(aqueous) solution; Db for observed bulk 
diffusion coefficient through tissue; Dcell for 
intracellular; DI for interstitial 

Electrical potential, volts; E,, membrane po- 
tential; EN, “Nernst” potential, occurring 
with a difference in concentration of an 
ion on the two sides of a membrane, EN = 
(RT/zF)loge(Ci,/C,,t) 

Extraction, dimensionless, is the fraction of a 
specific substance removed during transit 
through an organ. The calculation may be 
made relative to a reference substance that 
remains in the blood or relative to the inflow 
concentration. E(t) = [hR( t) - ho( t)]/hR( t) 
and is the instantaneous apparent frac- 
tional extraction of a permeating species, 
subscripted D, relative to a nonpermeating 
reference substance, subscripted R, at each 
time t, calculated from paired outflow dilu- 
tion curves. This differs from a steady-state 
extraction, E, calculated from the arterio- 
venous difference, E = (CA - &)/CA, for a 
substance that is consumed during transor- 
gan passage. E( tpeak) is the value of E(t) 
obtained at the time of the peak of the curve 
for the nonpermeating reference tracer, 
hR( t). &ax is the maximum value of the 
instantaneous extraction, E(t). Enet( t) is an 
integral extraction, $6 (hR - hDb/ 

S:, hRd7 = (RD - RR)/(l - RR); when the 
reference tracer has all emerged, then 
Enet( t) = RD( t), the retained fraction of a 
permeant solute 

Extracellular fluid, interstitial fluid + plasma 
Frictional coefficient, go cm equals (g l cm2 l 

s-l)/(cm . s-l), following Spiegler (9) 
Excluded volume fraction, the fraction of sol- 

vent in a defined space that is not available 
to a particular solute, dimensionless 

Relative regional flow in the jth region of an 
organ divided by the mean flow for the 
organ per gram of tissue, dimensionless 

Flow, cm3= s-l or cm3* min-’ 
Blood flow to an organ, cm3* g-l l rein-’ 

(= F/W, where W = organ weight) 
Flow of solute-containing mother fluid, cm3* 

g -l. min-l. When solute is excluded from 
red blood cells, Fs = FB(1 - Hct) = F,, the 
plasma flow. (In modeling analysis, this is 
the flow of fluid containing solute available 
for exchange.) 

FER( t) Fractional escape rate at time t for indicator 

h(t) 

Hct 

ISF 

J 

contained in a system regardless of time of 
entry, s-l. With an impulse input, 6(t), then 
FER(t) = v(t), the emergence function. In 
general, FER = (dq/dt)/q = d logeq/dt, 
where q is the system’s content of a sub- 
stance and dq/dt = F[Ci,( t) - Cout( t)] 

Transport function, fraction/unit time (s-l), 
is the fraction of indicator injected at the 
inflow at t = 0, arriving at the outflow at 
time t. It is the unit impulse response, the 
frequency function of transit times, or the 
probability density function of transit 
times. The transport function, h(t), has the 
shape of the concentration-time curve that 
would be obtained by flow-proportional 
sampling at the output if indicator were 
injected in ideal fashion into the inflow, i.e., 
across a cross section with indicator amount 
at each point in proportion to local flow, as 
defined by Gonzalez-Fernandez (3), and re- 
circulation absent. Under such conditions 
h(t) = F*W)lqo, where q. is the mass 
injected at t = 0. Subscripting denotes re- 
gion (e.g., A, V, or cap) or solute character- 
istic (R for intravascular or D for permeant) 

Cumulative residence time distribution func- 
tion (dimensionless) of a system; it repre- 
sents the fraction of an ideally injected 
tracer that has exited from the system since 
t = 0. It is also the response to a step input. 
Formally, H(t) = $6 h(7)d7 = 1 - R(t), 
where R(t) is the residue function 

Hematocrit, the fraction of the blood volume 
that is erythrocytes, dimensionless 

Interstitial fluid, the extravascular extracel- 
lular fluid 

Flux, usually moles per unit surface area 
of membrane per second, mol l s-l. cmm2. 
Jnet 1-2 is net flux from side 1 to side 2. In 
the notation of irreversible thermody- 
namics the equations of Kedem and Katch- 
alsky (5) and Katchalsky and Curran (4) 
for water and solute transport across an 
ideal membrane composed of infinitely thin 
impermeant material pierced by aqueous 
channels (the K and K membrane) are 

J V = LPAp + LPDAr 

JD = LnPAp + LDAr 

where JD is a solute velocity relative to the 
solvent velocity, Jv, which is in turn relative 
to the membrane. [Although these expres- 
sions are incomplete in that the forces on 
the membrane, in effect a second solute, 
should also be considered (8), they provide 
an elementary conceptual approach to an 
idealized system.] Jv and JD may be 
properly regarded as flows rather than mass 
fluxes 



H542 

JV 

J D 

J w  

JS 

k 

kF 

K m  

IL J 
L 

b 

L PD 

L DP 

L D 

M 
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Solvent velocity or volume flux per unit mem- 
brane surface 
ems- ’ or cm3 

area relative to a 
s-l per cm2 area 

membrane, 

Jv = J,& + J& = J&, 

Solute movement relative to solvent, cm3X1 
per cm2 surface area or cm&. For the 
Kedem-Katchalsky (K-K) ideal membrane 
JD = s J /c s - OWJW. See Js 

Water flux across a membrane, mol l s-l. cmi2. 
For the K-K membrane Jw = -$J&w 

Solute flux across a membrane, mol. s-l. cmw2. 
For the K-K membrane Js = Fs(l - a)Jv. 
Also 

J /e s s = (L, + Lop)& + t&D + LDh, or 

Js = s - a)Jv + uAn F (1 

Rate constant for an exchange process, usu- 
ally s-l; k(C) is concentration-dependent 
rate 

Filtration coefficient, cm3 l s-l. cmm2 (mmHg)-l; 
kF = Lp. See I;p and also P;l 

Michaelis constant, molar. For a reaction 

E+S+E&E+P 
-1 

then Km = (k+ + k2)/kl, which in the limit 
where k2 << k-1 becomes the original appar- 
ent dissociation constant, kml/kl, which at 
equilibrium = [E] l [S]/[ES]. (E, enzyme; S, 
substrate; P, product) 

Length, cm 
Conductance (general) per unit area as in J = 

LX; flux = conductance times driving force 
Pressure filtration coefficient or hydraulic 

conductance; the flow of pure solvent across 
a membrane per unit area per unit pressure 
difference, e.g., cm l s-‘(mmHg)-‘; also, Lp = 
QP~/RT = kF 

Osmotic coefficient; the flow of solution across 
a membrane per unit area per unit osmotic 
pressure difference. Same units as Itp; also, 
L PD =(TLp 

Ultrafiltration coefficient; the conductance 
for the hydrostatically driven flow of solute 
relative to that of solvent, per unit area per 
unit hydrostatic pressure difference. Same 
units as &,. By Onsager reciprocity, LDp = 
&D. (For an ideal semipermeable mem- 
brane, CT = 1, o = 0, and -&) = Lp = Lo = 
-LDp) 

Coefficient for diffusional mobility per unit 
osmotic pressure.’ Same units as Lp. See 0 
and P 

Molarity, moles of solute per liter of solution. 
Also mM, low3 M and PM, low6 M. (Molality 
is moles of solute per kilogram of solvent. 
The use of molal units gives consistency in 
transient states; for example, the mol .a1 con- 
centration of solute 1 is not changed by the 
removal of solute 2, but the molar 
tration may be raised or lowered) 

concen- 

Mean 

ni 

N 

P 

P 

Pe 

PF 

PS 

q 

r, R 

RD 

S 

SD 

X, the mean of 
calculated by 

a density function, uI (x), is 

s 

co co 

2= x*w(x)dx w(x)dx or 
0 

- - z xi*W(Xi)Axi/C w(Xi)Axi 
i i 

Same as cyl 
Moles of substance i in a solution. See mole 

fraction Xi 

Number of observations or number 
ments in a series, i = 1 to N 

of ele- 

pressure, mmHg or Pa (1 Torr = 1 mmHg). 
See osmotic pressure, 7r 

Permeability coefficient for a solute traversing 
a membrane, cm0 s-l; equivalent to a diffu- 
sion coefficient for a solute in a membrane 
divided by the thickness. P = oRT. PO, PL, 
permeabilities at the arterial and venous 
end of a capillary of length L, respectively. 
P(x) for 0 < x < L for permeability at 
position x. (Usually observed as a product, 
PS, with the membrane surface area, S) 

Peclet number, ratio of a convective to a dif- 
fusive velocity, dimensionless 

Filtration permeability, Lp RT&, cm. s-l. 
[The conversion factor RT& at 2O”C, from 
the experimental units for 

4 
or kF, is (18.36 

mmHg l cm3. mol-‘)/( 18 cm . mol-‘) equals 
1.02 mmHg] 

Permeability-surface area product of a barrier, 
cm3. 8-l. s-l or cm3 l 8-l. min? PScap for 
capillary (the same as capillary diffusion 
capacity) 9 PS cell for parenchymal cell 

Mass, g or mol. q(t) is mass (or content 
tracer) in region or organ (at time t). 
mass of indicator injected at t = 0 

of 
cl09 

Radius or 
radius 

radial distance, cm. Rc, capillary 

Relative dispersion (dimensionless) = SD/ 
mean = m. S ame as coefficient of var- 
iation 

Residue function (dimensionless) is the com- 
plement of H(t), i.e., R(t) = 1 - H(t). It 
represents the fraction of injectate in the 
system at time t after an impulse input at 
time zero, i.e., the probability of a tracer 
residing in the system for time t or greater 

Surface area. Sc and Scell for capillary and cell 
surface areas, cm2 l g tissue-l 

Standard deviation = square root of the vari- 
ance of a density function, &12. Also SD = 
J a2 - LYE (units are those of the independ- 
ent variable) 

Standard error of the mean = SD/&V, where 
N = number of observations 

Time, s; At is a finite time interval 
Mean transit time, s. f = S;P t l h( t)dt = 

$; R(t)dt 

SEM 

t, At 
t 
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ta 

t0 

t peak 

v 

v region 

V region 

VF 

V I 

N 
V i 

W 

w(x) 

Wi or 
wi(f) 

X 

x 

X 
Xi 

Appearance (a) time; the time at which the 2 Valence of an ionic solute, number of unpaired 
first detectable indicator (or a concentra- electrons (or missing electrons) per mole- 
tion of, for example, 1% of the peak) passed cule 
through the system 

Zero time; midpoint of pulse injection for in- 
dicator-dilution studies or beginning of con- 

Greek symbols 

stant-rate injection ao, al, wz Moments about zero for a probability density 
Time from injection to peak of indicator-di- 

lution curve (modal time) 
Volume, cm3 or ml; in a solution, V = ZZniVi, 

the sum of the products of the mole fraction 
times the partial molar volume for each 
contained species 

Anatomic volumes within regions of an organ, 
i.e., Vc, capillary; Vi, interstitial fluid; Vcell, 
parenchymal cells, cm3. (g tissue of the 
organ)-l 

Fractional 
available 

regional volumes of distribution 
to a particular solute, i.e., vc, 

within the capillary; vi, interstitial fluid 
space; and vcell, parenchymal cells. At equi- 
librium, for a substance passively exchang- 
ing between plasma and ISF, vi is the ratio 
of-the concentration in Vi to that in the 
plasma and is equal to the partition co- 
efficient X = Ci/C,. For steady-state proc- 
esses producing transmembrane fluxes, 
the effective volume of distribution is not 
the same as the equilibrium ratio, i.e., 
v*I # x 

Velocity of fluid flow, cm= s-l 
Volumes of distribution, cm3* g-l. Vc, in cap- 

illary; V,l, in ISF; and V&11, in parenchymal 
cell. These are the anatomic volumes times 
the fractional volume of distribution, e.g., 
vi = vi&. Commonly used ratios are y = 
Vf/V,l and 0 =: V&ll/Vc 

Partial molar volume of solute i, cm3/mol; the 
increment in the volume of ,a solution per 
mole of added solute, e.g., Vw = 18 cm3. 
mol-l 

Mass, g (“weight,” mass times gravitational 
acceleration) 

Weighting function or probability density 
function of variable 3~: 

Weighting or fraction of total in the ith group. 
Units are fraction per unit of f. Given a 
density function of regional flows, w  ( f ), in 
its finite histogram representation WiAfi, is 
the fraction of the mass of the organ having 
a flow fi, the average of the flows grouped 
as the ith class. The fraction of the total 
flow going to the regions falling into the ith 
class is WifiAfi 

Distance, cm; e.g., distance along the capillary 
from inflow, x = 0, to outflow, x = L 

Mean of a density function, w(x); see mean 
and moments, a! 

Generalized driving force 
Mole fraction of component i; i.e., moles of 

the ith component divided by the total moles 
in the system, = ni/n, where n is the total 

P n-2 

Y 

A 
w 

8 

x, x ij 

function. (Units are t” when t is the inde- 
pendent variable.) [a0 = area; cyl = mean; 
for the density function h(t), an = 
JO+” tnh( t)dt]. See central moments, p 

Dimensionless parameters of shape of density 
function calculated from the central mo- 
ments, = pn/SD” = p&&2. “PI)’ is skewness 
(or asymmetry); p1 is zero for all symmet- 
rical functions, positive for right skewness. 
u p2” is kurtosis (or flatness). ,& = 3.0 for 
normal density function; ,& > 3 for lepto- 
kurtosis (highpeakedness), and <3 for 
platykurtosis 

Ratio of interstitial volume of distribution 
to intracapillary volume of distribution, 
Vi /Vdap 

Difference 
Unit impulse function, or Dirac delta func- 

tion, has unity area, an infinite amplitude 
at t = 0, and is zero at all other times. It is 
the limit of any symmetrical unimodal den- 
sity function of unity area as its width ap- 
proaches zero. For delta function occurring 
at a nonzero time to, it is written 6( t - to) 

Epsilon, vanishingly small difference 
Tortuosity of diffusion pathway. < is ratio of 

apparent path length to measured length of 
diffusion pathway, dimensionless; thus the 
effective diffusion coefficient, D = Do/p 
where D is the free aqueous diffusion coef- 
ficient 

Viscosity, poise (P) = dyn/cm2 = go s-l l cm-‘. 
Water viscosity = 0.01002 P at 20°C. 
Plasma viscosity = 0.011 

Equals h( t)/R( t) (fraction/s); the emergence 
function, the specific fractional escape rate 
following an impulse input. Of the particles 
residing in the system for t seconds after 
entering, v(t) is the fraction that will depart 
or escape in the tth second. In chemical 
engineering it is known as the intensity 
function (7), and in population statistics as 
the risk function, the death rate of those 
living at age t. Also, q(t) = (dR/dt)/R( t) = 
-d log,R( t)/dt. See FER( t) 

Ratio of intracellular volume of distribution 
to intracapillary volume of distribution, 
Vdell/VLap, dimensionless 

Partition coefficient, a dimensionless ratio 
of Bunsen solubility coefficients in two 
phases. Xii is the ratio of solubility in region 
or solvent i to the solubility in region j. The 
reference region j is usually the plasma. At 
equilibrium, Xij is the ratio of concentra- 
tions 



H544 TERMINOLOGY FOR MASS TRANSPORT AND EXCHANGE 

Chemical potential for a solute in a solution, 
N.mB2; p = p” + RT In a, where the activity 
a is a concentration times an activity coef- 

Physical Units, Constants P 

A Ampere, unit of electrical current, coulomb 
per second (Co s-l) 

Angstrom, 10-l’ m or O.‘l nm 
Charge, coulomb, ampere. second (A. s) 
Degrees of temperature, Kelvin (absolute); “C 

for degrees Celsius = 273.15 + “K 
Dyne, force, gem. sm2 = 10e5 N (newton) 
Equivalent weight = molecular weight/va- 

lence. One equivalent carries 9.65 X lo4 C 
of charge 

Elementary charge, 1.6021892 X 10-l’ C 
Energy, dyncm = gcm2* sm2 = 10m7 J 
Faraday constant, 9.648456 X lo4 elementary 

charge. eq-’ = 96,484.6 C l rnol-l = NAe 
Acceleration due to gravity = 980.665 cm. sm2 
Planck’s constant (energy quantum) = 

6.626176 X 1O-27 ergs = 6.626 X 1O-34 Js 
Viscosity; 1 poise (P) = 1 cm-l. go s-l = 0.1 

Pascal. second (Pa. s) 
Current, amperes 
Joule = Watt l second (W . s) = ampere. volt. 

second (AV s) = lo7 erg = lo7 cm2ggs-2 
Boltzmann constant, 1.380662 X 1O-23 J. “K-l 

= R/N*, the gas constant over Avogadro’s 
number = 1.37900 x lo-l6 cm2.gs-200K-1 

Liter = 1 dm3 = 1,000 cm3. Also milliliter (ml) 
and microliter (~1) 

Mel/l (molarity) 
Mol solute/kg solvent (molality) 
Newton = lo5 dyn = lo5 crn*g*~-~ 
Avogadro’s number, 6.022045 x 1O23 mol-l, 

the number of molecules contained in 1 mol 
Number of moles of solute and water 
Pressure (= force per unit area), N. rnB2 or Pa 

(Pascal). (1 Pa = 1 Noma = 10 gcm-10s-2 
= 10e2 mbar = 0.10197 mmH20 = 7.5 x 

10m3 mmHg = 9.869 X 10e6 atm; or 1 atm = 
101325 Pa = 760 Torr; 1 cmH20 (at density 
1 go cme3) = 98.0665 Pa = 981 gem-’ . sB2; 
1 mmHg = 1.00000014 Torr = 133.322 Pa 
= 1,333 gem-’ . sm2 

Density, g l cmm3. Water (3.98”C, 1 atm) = 
0.999972 go cma3. Mercury (OOC, 1 atm) = 
13.59508 gocmB3 

Resistance, electrical (Q), or electrophysiolog- 
ical (Q/cm”) or vascular (a pressure divided 
by a flow) 

Universal gas constant = 8.31441 J.mol-’ l 

0 -  K ’ = 8.3144 X lo7 cm2 l ge sm2* mol-lo “K-l 
= 0.082 1 l atm l mol-lo “K-l = 0.0623 mmHg l 

mmolml. “K-l = 8.31441 X 10m7 ergomol-lo 
0 K -1 

Energy/mol, gas constant x absolute temper- 
ature; e.g., at 37°C or 310.16”K, RT = 19.34 
x lo6 mmHg l cm3. mol-1 

24.84 mV at 15”C, 26.62 mV at 37°C. Values 
of log,10 RT/F at 15, 20, 25, 30, and 37°C 
are 57.2, 58.2, 59.2, 60.2, and 61.3 mV 

ficient and p” is the potential at a 
state of temperature and pressure 

reference 
0 

A 
C 
0 K 

n th central moment of a density function, 
h(t), a moment around the mean, f. p, = 
J5 (t - f)n h( t)dt. Units are those of t to 
the nth power 

Pn 

dyn 
p2 is variance, the second moment of a density 

function around the mean, = cy2 - a;. Also 
P3 = ck!3 - 3a1a2 + 2& and p4 = cy4 - 4culcu3 
+ 6&~~2 - 3& See also Pn 

Osmotic pressure, Pa or Nornm2 or mmHg, is 

P29 P39 P4 eq 

e 
erg 
F 

7t- 

the p ressure that would h .ave to be exerted 
on a solution to preven .t pure water from 
entering it from across an ideal semiperme- 
able membrane, i.e., a membrane permeable 
to solvent only. r = CRT is Van’t Hoff’s 
law for ideal dilute solutions, and across a 
membrane impermeable to solute. r = 
WRT is preferred to account for activity 
coefficients less than unity. When the sol- 
ute can permeate the membrane, the effec- 
tive r = &CRT. Osmotic pressure, a colli- 
gative property of solutions, is related to 
actual pressure rn the same fashion as a 
freezing point is to actual temperature. On- 
cotic pressure is a term, now obsolete al- 
though historically usefu 1, for the osmotic 
pressure associated with the presence of 
large, relati vely impermeant molecul .es such 
as plasma proteins. It should now be re- 
placed by more exact terms, e.g., across 
some specific membrane the effective AK 
equals RT (PizN iZl a&A& where the effects of 
concentration differences for a set of N 
solutes are summed. 

Density, g l cmm3. (Specific gravity is density 
relative to density of water) 

g 
h 

r7 

I 
J 

k 

1, liter 

M 
mol/kg 
N 
NA 

ns, %v 
P 

P 

Reflection coefficient, in notation of irrevers- 
ible thermodynamics, dimensionless; c = 
-L&L+ or, experimentally, 0 = -JDIJv for 
AC 8 = 0. The effective osmotic pressure 
across a membrane is CAT, mmHg; i.e., G = 
(observed osmotic pressure)/CRT 

Capillary mean transit time, fc, used in Krogh 
cylinder capillary-tissue models with plug 
flow velocity profiles 

Activity coefficient, the ratio of apparent 
chemically effective concentration to the 
actual concentration in a solution, in the 
absence of chemical binding, dimensionless. 
The osmotic activity coefficient cb = r/CRT 

Electrical potential, V 
Solute permeability coefficient, w  = P/RT, 

mol. crnD2. s-l . (mmHg)? In the notation of 
irreversible thermodynamics o = (Lo - 
a”&$?,, where F, is the average solute con- 
centration across the membrane 

P 

R 7C 

R 

RT 

RT/F 
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STP 

T 

V 
V i 

Watt 
Work 

Standard temperature and pressure (ice point 
of water, 0°C = 273.16”K; 760 mmHg = 1 
atm = 1.01325 x lo6 dyncm-2 = 1.013 x 
lo5 No mm2) 

Temperature, absolute, in degrees Kelvin 
(OK); 0°C = 273.16 “K 

Volts; millivolt, mV; microvolt, PV 
Partial molar volume, ml/m01 = 

(av/ani) T,p,njj#i = change of volume of total 
system per mole additional solute i, at T, p, 
and constant presence of other components 
j, and at the particular concentration rti/V. 
(VW is the partial molar volume of *water; 
close to 18 ml/mol for physiological solu- 
tions) 

Unit of power, joules per second, Jo s-l 
Work is energy x time or force x distance x 

time, ergs or J s or cm2g& 
Ohm, unit of electrical resistance; V/I 

The authors greatly appreciate the 
the preparation of this terminology. 

efforts of Geraldine Crooker in 

Received 4 March 1984: accented in final form 30 Julv 1985. 
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