Compartmental and Distributed Models
Session 1, July 15-19, 2009
Exercises

Supplementary Materials

Please note that all the models referenced here are contained in the Monday Files.
In order, they are

SynthesisModel.proj

ExchangeModel.proj

ConvertModel.proj

FlowModel.proj

AllProcesses.proj

AllProcessesPDE.proj



Compartmental Modeling:

Lesson I: Introduction to compartmental modeling and using JSim
1. A restricted compartmental definition which covers a few simple cases:

A compartment represents a physical volume, V. In the volume, there is an amount of
material, Q. The concentration, C, is given by

C=0QlV.

A compartment is assumed to be instantaneously well mixed. In physical terms, this means that the
diffusional process is infinitely fast.

Sources are processes which increase Q. Sinks are processes which decrease Q. The rate of
change of Q with respect to time, the change in the amount is given by

dQ/dt=+Sources— Sinks.

This is called an ordinary differential equation (ODE).
In the simpler models, the volume is usually constant, and the equation is written as either

V xdC|dt =+ Sources — Sinks
or
dCldt=Sources!V — Sinks/V.

The complete specification of an ODE requires an initial condition (IC). The initial condition
specifies the concentration at time equals 0. This is written as

2. Specifying units:

The units for the amount of material are usually moles (mole), millimoles (mmol),
micromoles (umol), nanomoles (nmol) or picomoles (pmol). The units for concentration are
usually molar (M), millimolar (mM), micromolar (#M), or nanomolar (nM), or picomolar (pM). The
units for volume include liter (both liter and L), milliliter (ml), and cubic centimeters ( cm’ ). The
units for time include seconds (both s and sec), millisecond (ms and msec), minute (min) and hour
(hr). A 1 molar concentration is 1 mole of substance per liter. Water has a concentration of 55



moles/liter or 55 Molar.
3. A compartmental model for Synthesis, Constant Value, or Decay
The ODE and IC are given by

dCldt=S=CIV,C(0)=C

0.

The analytic solution is
C(t)=C xexp(S*t/V).

If S§>0 ,the right hand side of the equation is a source and the solution is exponentially
growing. If S§=0 , the solution is a constant (see previous example). If §<O0 , the right hand
side of the equation is a sink and the solution is exponentially decaying.

4. Coding the model in JSim:

* Note: Once something has been explained in the model code, the
comment will be deleted from future models, e.g., a comment can be in
block form beginning with forward slash asterisk and terminated with
asterisk forward slash. Other comments can be in the form two forward
slashes followed by the comment. */

import nsrunit; // enables units in the model
unit conversion on; /* Checks equations for
dimensional compatibility. */

math SynConDecay {// 3 models in 1
// Independent Variable
realDomain t s; t.min=0; t.max=3; t.delta=0.1;

// Dependent Variable and constants
real C(t) mM,

CO =1 mM,
V =2 ml,
S =1ml/s; // Synthesis rate if S>0

// Initial Condition
when (t=t.min) C=CO;

// Ordinary Differential Equation
C:t=8*C/V;

// Analytic Solution
real analyticC(t) mM;



analyticC=CO*exp(S*t/V);
} // End of model

Model is in Synthesis.proj.
5. Standard instructions for running models (instructions when you start without a project)

a. Launch JSim. This will open a Project GUI and Message GUI.

b. Use the Add button to add a New Model. Name the new model
SynConDecModel.

c. Use the ConstantModel button to open the model source code GUI.

d. Type the model code in boldface (above) into the large blank window (left handside).

e. Use the Compile button to compile the model. When compilation is successful the
Run Time Gui will appear.

f. Use the Run button to run the model. Change the value of S from 1 to O to -1 and
run the model each time.

g. Use the plotpage_1 button to switch from the Message GUI to the plotpage_1

GUIL

h. There will be an area of the plot page which shows

Data [SynConDecModel] [ 11 ¥Y] Curve [1] show [].

Using the [ ¥] button will display available plotting choices. Select "C".
Selecting the [1] button will let you change it to Curve [2]. Note that the color
button changes from B ( black) to ®m (red). Select the [ ¥] button again and plot
"analyticC". Below the word Curve will be a button with a

horizontal line. Use that button to change the line texture to dashes. Use

the other buttons to add symbols, change line thickness, change colors, etc.

h. Label the plot by Clicking on [Title] and [axis label].

1. Reposition the legend and title using click and drag on them.

J- Explore what is under the rest of all of the buttons by selecting them.

k. Go back to the Project button. Use the File button to Save the project as
SynConDecModel.proj.

1. Use the File button again to Close or Exit the project.

With a project file (file ending in .proj, you can launch the project (varies in different operating
systems).



Lesson II. Multiple compartments

1. Compartmental Model with exchange:

This is a model with exchange between two compartments. The exchange process is
governed by an exchange coefficient. For reasons which will be explained in a later lesson, the
exchange coefficient is designated PS. The governing equations are

V *dC |dt=PS*C,—PS*C,
V *dC, |dt=PS*C —PS*C, ,
which emphasizes the mass balance. They are usually written in the form
dC,ldt=(PSIV )x(C,—C))
dC,ldt=—(PSIV, )x(C,—C))
Note that the right hand side (RHS) of the first equation is divided by V, and the RHS of the 2nd

equation is divided by V,. The two volumes are not necessarily equal.

2. Coding the model in JSim:
i mport nsrunit; /1 enables units in the nodel
unit conversion on; /* Checks equations for
di nensi onal conpatibility. */
/*

*/

mat h ExchangeModel {// Exchange nodel

/1 1 ndependent Variable

real Domain t s; t.mn=0; t.max=3; t.delta=0.1;

/1 Dependent Variable and constants
real C1(t) mM C2(t) nM

clo=1nmM C0 =0 nmV
Vi =2 nm, V2 =10 m,
PS =1 n/s; // Exchange rate

/1 Initial Conditions
when(t=t.mn) {Cl=Cl0; C2=C20;} // Note use of Brackets

/1 Ordinary Differential Equations
Cl:t= (PS/V1)*(C2-C1);
C2:t=-(PS/V2)*(C2-C1);

/* Anal ytic Solutions from Maple(TM */
real analyticCl(t) mM analyticC2(t) nmM



Exponenti al (t) di mensi onl ess;

Exponenti al =exp(- PS*(V1+V2)*t/ (V1*V2));
anal yticCl(t) = (1/(V1+V2)) * (C20*V2+C10*V1

+ V2*(Cl0- C20) *Exponenti al );
anal yticC2(t) = (1/(V1+V2)) * (C20*V2+C10*V1

- V1*(Cl0- C20) *Exponenti al );

} // End of nodel

Model is in ExchangeModel.proj.

To run this model see instructions under Lesson 1.5. Use the View tab to reset # rows to 2. Use the
[plot 1] button to change to [plot 2]. Instead of using the [ ¥] button, type

Cl-analyticClI in the blank box where the plot variable would be. You can display plot values with
the mouse by positioning in in the plot area and depressing the left hand button.

Question: Ordinary Differential Equations are solve dnumerically by many different methods.
Access the ODE solvers from the Run Time GUI by using the Pages

tab and selecting Solvers. Change the ODE method to Euler and set nstep to 1.

Estimate the maximum error as a function of t.delta by changing t.delta (Run Time GUI) from 0.1
to 0.01and 0.001. Do the same for RK2 and RK4. Interpret your results.



Lesson III. Multiple substances in a compartment

1. Compartmental Model with conversion:

kf----> kf

<----kb kb

This is a model where substance A can become substance B and substance B can become
substance A. The conversion is governed by a single rate constant and a dissociation constant,
The dissociation constant is the inverse of the equilibrium constant.

Kdiss:kf/kb'
kf = Kdixs * kh :

dA/dtz—kf*A+kh*B.
dB/dtzkf*A—kb*B.

diss”®

Note that the volumes are not used in this equation because the volumes would appear on both
sides of the equations.
2. Coding the model in JSim

import nsrunit;
unit conversion on;

/*

kf-—--—> kf

hd
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*/

math Convert { // Conversion model

// Independent Variable

realDomain t s; t.min=0; t.max=3; t.delta=0.1;

// Dependent Variable and constants

real A(t) mM, B(t) mM,
A0 = 1 mM, BO = 0 mM,
Kdiss = 3 dimensionless, kb = 1 sec”(-1), kf sec”(-1);
kf = Kdiss*kb;

// Initial Condition
when(t=t.min) {A=A0; B=B0;} // Note the use of brackets

// Ordinary Differential Equation
A:t = —-kf*A + kb*B;
B:t = kf*A - Kkb*B;

/* Analytic Solutions from Maple(TM) */



real analyticA(t) mM, analyticB(t) mM,
Exponential(t) dimensionless;
Exponential = exp(-(Kdiss+1)*kb*t);
analyticA = (1/(Kdiss+1l))*(B0+A0 + (Kdiss*A0-BO0)*Exponential);
analyticB (1/(Kdiss+1l))*(Kdiss* (B0+A0)-(Kdiss*A0-B0)*Exponential);

} /* End of Model*/

Model is in ConvertModel.proj.

To run this model see instructions under Lesson 1.5. Explore the model by changing values for the
various parameters and running solutions. You may have have noticed that the volume is missing
from this model. When everything happens in the same volume, and flow is not involved, the
volume is usually excluded from the model.



Lesson IV: Compartment Model with flow:
1. Inflow and Outflow

o e e a e +

FlowCn --> --> Flow*Cout (Note Cout=C.)
| C Co, V |
| |
- +

The next model is the inflow of a concentration and the outflow of a concentration in a single
compartment. Recall that in a compartmental model, mixing occurs instantaneously. The governing
ODE and IC are:

dCdt=Flow!/Volume*(Cin(t)—Cout(t)); where Cin(t) is the inflowing concentration and
Cout(t) is the outflowing concentration, and C(0)=0;
Since the compartment is instantaneously well mixed, Cout(t)=C(t)
and we can rewrite the ODE as

dCldt=Flow/Volumex(Cin(t)—C).
The analytic solution involves an integral. For a constant inflowing concentration,
Cin(t)=Cin, the analytic solution is given by C(t)=Cin—(Cin—C )*exp(—Flowx*t/Volume).
The time constant for the system is defined as v=Volume/ Flow.
2. Coding the model in JSim:

import nsrunit; unit conversion on;

/*
. +
Flow*Cin --> —--> Flow*Cout (Note Cout=C.)
| ¢, co, v |
R :
*/

math ExchangeModel {realDomain t s; t.min=0; t.max=10; t.delta=0.1;

// Dependent Variable and constants
real C(t) mM,

Cco = 0 mM,
Volume = 2 ml,
Flow = 1 ml/s; // Flow rate

extern real Cin(t) mM; // Cin will be defined at run time using a
// function generator

// Initial Condition

when(t=t.min) C=CO0;

// Ordinary Differential Equation
C:t= (Flow/Volume)*(Cin-C);

// Analytic Solution only works when Cin is a constant

real analyticC(t) mM;

real tau=Volume/Flow; //Note that the dimensionality of tau will be
// assumed from this equation.

analyticC=Cin-(Cin-C0)*exp(-t/tau);



} // End of model

Model is in FlowModel.proj.

To run this model see instructions under Lesson 1.5. In addition you will have to set the input
concentration. In the Run Time Gui, enter 0 for Cin(t), and run the model. Plot out C, analyticC,
and Cin. Vary C0 and Cin.

3. The function generator

The function generator for Cin(t) can be accessed by the small sine wave enclosed in a circle (~)
button to the right of Cin(t) . Selecting this button will bring up a menu for creating a function
generator. You can accept the default name fgen_1 or create a new function generator with a
different name. Select "Use existing fgen_1." Selecting the Pulse 1 button gives you access to all
of the predefined functions. Note that the analytic solution based on constant input will no longer
be valid as a comparison. You may wish to increase t.max to 30. Compartment flow models will be
revisited when flow compartment in series are considered.

Lesson V: Putting it all together:

1. Creating a new model

Sour ce i R + Si nks
FlowrAlin --> Al, Bl, V1, A10, B1lO --> Fl ow Al
| (Sink) -G1B*B1 --> Fl owB1
| |
| Sink Sour ce Si nk Sour ce |
R N A 7AW V ----- N +

| | |
Psa*Al PSa*A2  PSb*Bl  PSb*B2

R N A 7AW V ----- N +
| Source Si nk Sour ce Si nk +
| |
| kf----> kf |
| A2 <-------- > B2 Kdiss= ---- |
| <----kb kb |
| V2, A20, B20 |
T +

We next construct a model for two species with inflow of species A, exchange of A between two
compartments, conversion of A to Bin non-flowing compartment, exchange of B with the flowing
compartment, consumption of B in the flowing compartment and outflow of A and B.
The governing equations are

Kdm:kf/kb.

k=K *k

f diss b’



dA |dt=(Flow!V )x(Ain—A)—(PS IV )x(A —A,);
dAZ/dt:(PSA/VZ)*(AI—Az)—kf*Aerkb*Bz;
dB,/dt=(Flow!V )*(—B,)—(PS_ IV )*(B,—B,)—(G, /V )*B;

dBZ/dIZ(PSB/Vz)*(Bl—Bz)+kf*A2—kb*Bz;
2. Write this model for JSim, using the previous models as examples. Don't forget to include the
initial conditions. A correct version of this model is included but do not use it unless all else fails.
Learning how to write and debug models is part of the exercise. With A10=A20=A30=A40=0, Ain
=1 mM (constant), Kdiss=2, kb = 4/sec, G1B=2 ml/sec, V1=1 ml, V2=2 ml, PSa=PSb=3 ml/sec,
and F= 1 ml/sec, what is the value of the outflow of B1 at 20 seconds? (Answer: Blout(20 seconds)
=209 mM. )

Question: Identify the sources and sinks in all four equations. It may be necessary to multiply the
terms out to separate sources and sinks. (Hint: Sources have plus signs, sinks have minus signs.)

Question: What are some parameter and initial condition combinations to make this model into the
(1) Synthesis model, (2) the Exchange model, (3) the Conversion Model and (4) the Flow Model.
Indicate what the output variables are for each.

i mport nsrunit; unit conversion on;

/*
Sour ce L R E T +  Sinks
Fl ow-Alin --> Al, B1, V1, Al0, B1O --> Fl ow Al
| (Sink) -GlB/Vi*Bl --> Fl owB1
| |
| Sink Sour ce Si nk Sour ce |
Fomm V m---- N oo V ----- N +
| | |
Psa* Al PSa* A2 PSb* B1 PSb* B2
| | | |
SV A el Voeeene A eeeiaaas +
| Source Si nk Sour ce Si nk +
| |
| kf----> kf |
| A2 <-------- > B2 Kdiss= ---- |
| <----kb kb |
| V2, A20, B20 |
o m e e e e e e e e e e e e e e e e e e o +
*/

math Al l ProcessesODE {real Domain t s; t.mn=0; t.nmax=20; t.delta=0.1;

/1 Dependent Variable and constants
real Al(t) mM A2(t) mM B1(t) mM B2(t) nM Alout(t) mM Blout(t) nM
AlO=0mMM A20=0nmM B10 =0 mMM B20 = 0 nM



Vi =1m, V2 =2 m,

Flow =1 nm/s, // Flowrate

PSa =3 m/s, // Passive exchange rate for A

Psb =3 m/s, // Passive exchange rate for B

GlB =2 m/s, // Consunption rate for B in flow ng conpartnent

Kdi ss = 3 di nensionl ess, //Dissociation constant
kb = 4 sec”(-1), // Backwards rate constant

kf sec™(-1); /1 Forward rate constant
kf = Kdi ss*kb; /1
extern real Alin(t) mM // Alin will be defined at run tinme using a

/1 function generator
/1 Initial Condition
when(t=t.mn) {Al=A10; A2=A20; B1=B10; B2=B20;}

/1 Odinary Differential Equation

Al:t = (Flow V1) *(Alin-Al) + (PSa/Vl)*(A2-Al);

A2:t = (PSal/ V2) * (Al- A2) - kf * A2+kb* B2;
Alout = Al;

Bl:t = (Flow V1)*( -B1) + (PSb/ V1) *(B2-Bl) - (GLB/ V1) *B1;
B2:t = (PSb/ V2) * ( B1- B2) +kf * A2- kb* B2;
Blout =B1,

/1 No analytic solutions are given for the general case. Conpare
/1 Analytic solutions for special cases where they exist

} // End of nodel

Model is in AllProcesses.proj.



Lesson VI: Equations for distributed regions
(Partial Differential Equations)

Consider a flow carrying a concentration of a metabolite through a tube. In a small region of the
tube, we write the equation for mass conservation in one dimension as:

d(V*C)ldt=0(V*C)Iot+Ux%0(V*C)l0x=4Sources—Sinks +V * Diffusion.

where V isthe volume, C isthe concentration, U is the velocity, ¢ isthetime and x is
the spatial dimension.

d(V«C)ldt=8(VC)lot+Ux8(V*C)lox

means that the total derivative (also called the material derivative) is equal to the local rate of
change plus the advection of a gradient. See any standard text of fluid dynamics for a fuller
explanation. To the observer positioned at a particular place along the tube, what is observed is the
local rate of change from sources and sinks and the advection of a gradient. The gradient term is
moved to the right hand side, and we customarily write,

0(VxC)lot=—Ux%0(V*C)/0x+Sources— Sinks +V * Diffusion.

Assuming the volume is constant, the volume can be placed outside the partial derivatives.
Vx0Cl0t=—Ux%V*0C/[0 x+Sources— Sinks+V * Diffusion.

Let U=#V the velocity multiplying the volume be rewritten as
—UxV =(—Flowl Area)*(Area*xL)=—FlowxL,

where Flow is the flow rate, commonly given in ml/unit time or (ml/gram of tissue)/unit time,
and Areax L=Volume of the capillary, and L is the length. This yields

V*0Cl0t=—Flow*L*0C/0 x4+ Sources—Sinks+V * Diffusion.
Dividing both sides by the capillary volume, we have

0Clot=—(Flow*L/V)*0C/0 x+ Sources!V — Sinks!V + Diffusion.
Note that if a region has no flow,



dCldt=0Clot,
and there is no advective term.
How does the partial differential equation compare with the ordinary differential equation for a
stirred tank? Consider the simple case with advection and no diffusion, sources or sinks. The
ordinary differential equation is given as
dCldt=Flow!V *(Cin—Cout).
With slight rearrangement, this is the same as
dCldt=—Flow*LI|V *(Cout—Cin)/(L).
But
(Cout—Cin)/L=(C(L)—C(0))/(L—-0)
which is approximately equalto d C/d x.

Axial diffusion is neither a source nor a sink. It redistributes the molecules in the region.
In a region with no flow, the diffusion equation is

0Clot=D*0°Cl0x*

where D is the diffusion coefficientin cm?’/sec .
When advection is included, we have the classic advection-diffusion equation,

0Cl0t=—(F*LIV)*x0Clox+D*0"Clox" .
Sources and Sinks:

We encounter the same sources and sinks in distributed models as in compartmental models:
synthesis and decay, exchange with other regions, conversion of one chemical species to another.

Recall the complex problem of Section V:



K, =k Ik,.

diss

kf:Kdiss*kb'
dA ldt=(FlowlV )*(Ain—A )—(PS IV )*(A —A));
dAzldt:(PSA/VZ)*(Al—Az)—kf*A2+kh*Bz;
dB,/dt=(Flow!V )*(—B,)—(PS IV )x(B,—B,)—(G IV )*B ;

dB2/dt=(PSB/V2)*(BI—B2)+kf*A2—kb*Bz;

In a distributed model with axial diffusion, the last four equations are given by
0A l10t=—(Flow LIV )xdA 0x—(PS,IV )*(A —A)+D, *0A}0x";

— 2 2 .
8Azlat—(PSA/Vz)*(Al—Az)—kf*A2+kb*Bz+DA2*aAzlax ;
831/8t=—(Flow*L/V1)*8Bl/ax—(PSB/Vl)*(B]—B2)—(GIB/V1)*BI+DBI*GB?/6 x°;
0B,l01=(PS IV )*(B ~B,)+k *A,~k *B,+D *0B,/0x’;
With compartment Models we had initial conditions and inflow and outflow were incorporated in
the ordinary differential equations. With partial differential equations, we have initial conditions,
and inflows, outflows, and regions with neither incorporate this information in boundary conditions

on the left and right hand side of the regions. It is customary to place the inflowing material at the
left boundary and outflowing material at the right boundary.

The boundary conditions will be covered in detail in the next section.

The main differences in the code are highlighted in boldface. Code for the PDE version is given as

iinport nsrunit; unit conversion on;

/*
Sour ce L R L T +  Sinks
Fl ow-Alin --> Al, Bl1, V1, Al0, B1O --> Fl ow Al
| (Sink) -GlB/Vi*Bl --> Fl owB1
| |
| Sink Sour ce Si nk Sour ce |
o WV - --- NoLaao - V ----- N oo o +

| | |
Psa*Al PSa*A2  PSb*Bl  PSb*B2

| Source Si nk Sour ce Si nk +



| |
| kf----> kf |
| A2 <-------- > B2 Kdiss= ---- |
| <----kb kb |
| V2, A20, B20 |

*/

math Al | ProcessesPDE {

real L=0.1 cm Ngrid=31;

real Domai n x cnm Xx.mn=0; x.max=L; X.ct=Ngrid;
real Domain t s; t.nin=0; t.max=20; t.delta=0.1;

/1 Dependent Variable and constants

real Al(x,t) mM A2(x,t) mM Bl(x,t) mM B2(x,t) mM Alout(t) mM Blout(t) mM
AlLO=0nmM A20=0nM B10 =0 nM B20 = 0 nM
vi =1m, V2 =2,

Flow =1 nl/s, /1l Flow rate

PSa =3 m/s, /1 Passive exchange rate for A

PSh =3 m/s, /| Passive exchange rate for B

GlB =2 nm/s, /1 Consunption rate for B in flow ng conpartnent
D1 = le-5 cm2/s, // Axial diffusion in V1

D2 = le-5 cm2/s, // Axial diffusion in V2

Kdi ss = 3 di nensionl ess, //Dissociation constant
kb = 4 sec”(-1), // Backwards rate constant

kf sec™(-1); /1 Forward rate constant
kf = Kdi ss*kb; /1
extern real Alin(t) mM // Alin will be defined at run tinme using a

/1 function generator
/1 Initial Condition
when(t=t.mn) {Al=A10; A2=A20; B1=B10; B2=B20;}
/1 Boundary conditions
when (x=x.mn) {-(Fl ow L/V1l)*(Al-Alin)+Dl*Al: x=0;
-(FlowL/V1)*(B1-0 )+D2*B1: x=0;
D2* A2: x=0; D2*B2:x=0;}
when (x=x.max) {D1*Al:x=0; D1*Bl:x=0;
Alout =Al1; Blout =B1;
D2* A2: x=0; D2*B2:x=0; }
/1 Partial Differential Equation

Al:t = (-FlowL/V1)*Al: x +D1*Al: x:x + (PSa/V1l)*(A2-Al) ;

A2:t = +D2* A2: x: x + (PSal/V2)*(Al-A2) - kf * A2+kb* B2;
Bl:t = (-FlowlL/V1l)*Bl:x +D1*B1l:x:x + (PSb/V1)*(B2-B1) - (GLB/ V1) *B1;
B2:t = +D2*B2: x: x + (PSb/V2)*(Bl-B2) +kf * A2- kb* B2;

/1 No analytic solutions are given for the general case. Conpare

/1 Analytic solutions for special cases where they exist

/1 Making DL and D2 large ( 0.2 cm2/sec) will nake this nodel behave |ike
/1 the compartnental version

} // End of nodel

The ODE and PDE versions are in the same project AllProcessesPDE.proj



