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2009).  This is is a critical problem, because the brain operates (and malfunctions) at multiple, interacting 
spatial scales (Churchland and Sejnowski 1988; Manning et al 2009).  Intuition suggests a straightforward 
approach: combine many models of individual neurons to simulate population activity.  Researchers have 
successfully employed this “brute force” approach in a variety of settings (Murakami et al 2002; Traub et al 
2005a; Markram 2006; Izhikevich and Edelman 2008) including as models of epilepsy (Traub et al 2005b; 
Dyhrfjeld-Johnsen et al 2007).  Although intuitively simple, the resulting models become extraordinarily 
complex.  For example, as the number of neurons increases, so does the number of unknown parameters.  In 
addition, the appropriate synaptic connectivity to employ in these models remains largely unknown.  Finally, 
how to transform the results of these models into observed macroscale activity (recorded clinically in the 
ECoG) is not clear.  Common procedures include computing average intracellular currents (Murakami et al 
2002), transmembrane ionic currents (Traub et al 2005a), or the mean network firing rate (Izhikevich and 
Edelman 2008).  An alternative approach to this issue, and the approach we employ here, is to combine 
multiscale models of seizure activity.  Briefly, we combine (in biophysically meaningful ways) microscale 
models of individual neurons with a macroscale model of neural population activity.  This combined approach 
allows us to concentrate on some specific biophysical aspects of the problem while abstracting others.

3.a.6. Beyond hand-tuning of computational models.  Computational models of neural activity often rely 
on researchers’ “expert judgment” to hand-tune model parameters and produce results qualitatively 
consistent with observed neural activity (Prinz et al 2003; Van Geit et al 2008). Recently, more sophisticated 
approaches have been employed to estimate model parameters directly from data (Huys et al 2006; Van Geit 
et al 2008; Schiff and Sauer 2008; Huys and Paninski 2009; Ullah and Schiff 2009).  We propose to 
implement and develop techniques for rigorous parameter estimation of multiscale models from 
corresponding multiscale data that will significantly improve the hand-tuning procedure in common use.

3.b  Overview of innovation.  We propose to pursue three primary innovations.  First, we will collect 
multiscale in vivo data from a population of human subjects.  Second, we will characterize these data - with 
particular focus on rhythmic activity and multiscale interactions - using sophisticated data analysis tools.  
Third, we will develop a biophysical, multiscale model constrained in rigorous ways by the in vivo data.  The 
culmination of these innovations will result in novel strategies to test seizure therapies in silico.

3.b.1  Innovation:  multiscale data collection.   We will collect brain voltage data from three spatial scales.  
The macroscale data consist of ECoG 
recordings from two-dimensional subdural 
electrode arrays, as well as linear arrays of 
electrodes penetrating the brain (grid/strips 
and depth electrodes respectively, Ad-tech 
Medical, Racine, WI).  These macroscale 
electrodes are placed, for purely clinical 
reasons, in order to confirm the hypothesized 

location of seizure onset and its relation to essential cortex, thus directing surgical treatment.  Synchronously 
recorded data have also been obtained from one of three different microelectrode array configurations 
including the Neuroport Array (Fig 1A), laminar microelectrode arrays (Fig 1B), or microwire bundles (Fig 1C). 
The design of these devices permits sampling of either micro/mesoscale neuronal activity in cortical grey 
matter under grids and strips, or insertion through the hollow core of depth macroelectrodes to sample deep 
brain structures.  The mesoscale data consist of local field potentials (LFP) acquired from low bandwidth 
sampling from the microelectrodes.  The microscale data consist of multi-unit neuronal action potential 
generation and single identifiable action potentials (described in more detail in 3.c.1).

3.b.2  Innovation:  multiscale data analysis.  To characterize the multiscale data, we will go beyond visual 
inspection of the time series - the typical clinical analysis of seizure voltage data.  Instead, we will develop 
sophisticated data analysis routines, focusing on the neural rhythms of seizure and multiscale interactions.  
For the latter, we will concentrate initially on coherence measures.  We will examine the “field-field” 
coherence between simultaneously recorded LFP and ECoG activity, thus connecting the “field” activity at the 
macro- and mesoscales.  To examine interactions between the microscale and meso/macroscale, we will 
employ the “spike-field” coherence measure (Jarvis and Mitra 2001).  We propose to address a confound in 
this measure (namely, that changes in neural firing rate appear as changes in interscale coupling) and 
thereby develop innovative mathematical tools to characterize multiscale neural interactions, of immediate 
use to the general neuroscience community.

Fig 1.  Microelectrode array systems
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critical transition occurs (Fig. 2d). This is true not only for simple
models22, but also for highly elaborate and relatively realistic models
of spatially complex systems23.

Increased variance in the pattern of fluctuations is another possible
consequence of critical slowing down as a critical transition is
approached24 (Fig. 1). Again, this can be formally shown25 (Box 3),
as well as intuitively understood: as the eigenvalue approaches zero,
the impacts of shocks do not decay, and their accumulating effect
increases the variance of the state variable. In principle, critical slow-
ing down could reduce the ability of the system to track the fluctua-
tions, and thereby produce an opposite effect on the variance26,27.
However, analyses of models show that an increase in the variance
usually arises and may be detected well before a critical transition
occurs24 (Fig. 2).

In summary, the phenomenon of critical slowing down leads to
three possible early-warning signals in the dynamics of a system
approaching a bifurcation: slower recovery from perturbations,
increased autocorrelation and increased variance.
Skewness and flickering before transitions. In addition to autocor-
relation and variance, the asymmetry of fluctuations may increase

before a catastrophic bifurcation28. This does not result from critical
slowing down. Instead, the explanation is that in catastrophic bifur-
cations such as fold bifurcations (Box 1), an unstable equilibrium
that marks the border of the basin of attraction approaches the
attractor from one side (Box 1). In the vicinity of this unstable point,
rates of change are lower (reflected in a less steep slope in the stability
landscapes). As a result, the system will tend to stay in the vicinity of
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Figure 1 | Some characteristic changes in non-equilibrium dynamics as a
system approaches a catastrophic bifurcation (such as F1 or F2, Box 1).
a, b, c, Far from the bifurcation point (a), resilience is large in two respects:
the basin of attraction is large and the rate of recovery from perturbations is
relatively high. If such a system is stochastically forced, the resulting
dynamics are characterized by low correlation between the states at
subsequent time intervals (b, c). d–f, When the system is closer to the
transition point (d), resilience decreases in two senses: the basin of attraction
shrinks and the rate of recovery from small perturbations is lower. As a
consequence of this slowing down, the system has a longer memory for
perturbations, and its dynamics in a stochastic environment are
characterized by a larger s.d. and a stronger correlation between subsequent
states (e, f). Plots produced from a stochastically forced differential
equation15 representing a harvested population:
dX/dt5X(12X/K)2 c(X2/(X21 1)), where X is population density, K is
the carrying capacity (set to 10) and c is the maximum harvest rate (set to 1
for high resilience and 2.6 for low resilience).

Box 1 jCritical transitions in the fold catastrophe model

The equilibrium state of a system can respond in different ways to
changes in conditions such as exploitation pressure or temperature
rise (Box 1 Figure a, b, c). If the equilibrium curve is folded backwards
(Box 1 Figure c, d), three equilibria can exist for a given condition. The
grey dotted arrows in the plots indicate the direction in which the
systemmoves if it is not in equilibrium (that is, not on the curve). It can
be seen from these arrows that all curves represent stable equilibria,
except for the dashedmiddle section in Box 1 Figure c, d. If the system is
driven slightly away from this part of the curve, it will move further
away instead of returning. Hence, equilibria on this part of the curve are
unstable and represent the border between the basins of attraction of
the two alternative stable states on the upper and lower branches. If
the system is very close to a fold bifurcation point (for example point F1
or point F2), a tiny change in the conditionmay cause a large shift in the
lower branch (Box 1 Figure c). Also, close to such a bifurcation a small
perturbation can drive the system across the boundary between the
attraction basins (Box 1 Figure d). Thus, those bifurcation points are
tipping points at which a tiny perturbation can produce a large
transition. Small perturbations can also cause large changes in the
absence of true bifurcations, provided that the system is very sensitive
in a certain range of conditions (Box 1 Figure b). Finally, a shift in system
state may simply be caused by a sudden large external force (Box 1
Figure a). Early-warning signals tend to arise as systems approach a
bifurcation point such as in Box 1 Figure c, d, and also if systems
approach a non-catastrophic threshold such as the one shown in Box 1
Figure b.
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... and failure of termination.



Macroscale Data: Invasive EEG or ECoG

Multivariate, high density
~ 100 electrodes (surface & depth)
Sampling 500 Hz

Standard analysis:  visual inspection.

Purpose:  localize seizure focus.
[Kirsch, UCSF EEG Telemetry Unit]

10 s



Resective surgery:
Before After

Q:  Can we develop quantitative tools to improve (avoid) surgery?

• Better localize sites of origin ...
• Alternatives to surgery ...



ECoG Data: visual inspection

10 s

Early Middle“Organized” “Disorganized” End “Organized”

Onset

Termination
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Temporal scales:  rhythms

Brain chirp
[Schiff et al, Clin Neurophys, 2000]

Quantify:  Time-frequency spectra

H:  Rhythms slow during seizure.

Fast ~ 20 Hz Slow ~ 2 Hz

Intermediate ~ 10 Hz

[Fisher et al, 1992;
Alarcon et al 1995;
Lee, Spencer, et all 2000;
Worrell et al, 2004; 
Weiss et al, 2013 ...]



0.5s

Spatial scales:  coupling

[Kirsch, UCSF EEG Telemetry Unit]

Coupled?

Multiple electrodes

Yes

Many options for
coupling measure
[Pereda et al, 2005;  Greenblatt et al. 2012]

Long history
[Brazier, 1972 & 1973; Gotman, 1981 & 1983; . . .] 

Repeat for all electrode pairs:

Functional network:
node
edge

We employ cross correlation
[M. A. Kramer, U. T. Eden, S. S. Cash, E. D. Kolaczyk, 
Network inference with confidence from multivariate 
time series, Phys Rev E, 2009.]

http://math.bu.edu/people/mak/Kramer_et_al_PRE_2009.pdf
http://math.bu.edu/people/mak/Kramer_et_al_PRE_2009.pdf
http://math.bu.edu/people/mak/Kramer_et_al_PRE_2009.pdf
http://math.bu.edu/people/mak/Kramer_et_al_PRE_2009.pdf
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Results

Data overload.  Succinct measures to characterize network evolution.

Networks evolving in time

Some examples . . . 

Node activities

Functional networks
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Density

10 s

Voltage

Density

The number of edges in a network

Density before seizure = Density during seizure

Dynamics before seizure = Dynamics during seizure

Onset Termination

High

Low

Med LowHigh

High

More correlated Less correlated



Population Results 11 subjects
48 seizures

H:  Seizure not a uniformly hypersynchronous event.

Density

Energy

Pre
Ictal

Post

Energy
     

Density 

Coupled
Coupled

[Guye et al 2006; Schindler et al 
2007, 2008, 2010] [Steriade & 
Amzica 1994; Topolnik et al 2004;  
Timofeev & Steriade 2004]

Decoupled

[Netoff & Schiff 2002;
Jerger et al 2005;
Schindler et al 2007]



Components
Groups of electrodes connected by edges
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,



Population Results
11 subjects, 48 seizures

# Components

Pre
Ictal

Post

Fractured

Reformed

H:  Networks fracture then reform during the seizure.
[M. A. Kramer, U. T. Eden, E. D. Kolaczyk, R. Zepeda, E. N. Eskandar, S. S. Cash, Coalescence and 
Fragmentation of Cortical Networks during Focal Seizures, J Neurosci, 30:10076-10085, 2010.]

http://math.bu.edu/people/mak/Kramer_Eden_J_Neuro_2010.pdf
http://math.bu.edu/people/mak/Kramer_Eden_J_Neuro_2010.pdf
http://math.bu.edu/people/mak/Kramer_Eden_J_Neuro_2010.pdf
http://math.bu.edu/people/mak/Kramer_Eden_J_Neuro_2010.pdf


Summary
• So far:
Rhythms slow during seizure (brain chirp)

coalesce

Macroscale data

“organized”
increased coupling

Early: Middle:
fast, low amplitude slower, high amplitude

fracturing

Late:
slower,  high amplitude

reduced coupling
 “disorganized” “organized”
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Consider the LFP data . . . 

Microscale Data: Local field potential, LFP

2009).  This is is a critical problem, because the brain operates (and malfunctions) at multiple, interacting 
spatial scales (Churchland and Sejnowski 1988; Manning et al 2009).  Intuition suggests a straightforward 
approach: combine many models of individual neurons to simulate population activity.  Researchers have 
successfully employed this “brute force” approach in a variety of settings (Murakami et al 2002; Traub et al 
2005a; Markram 2006; Izhikevich and Edelman 2008) including as models of epilepsy (Traub et al 2005b; 
Dyhrfjeld-Johnsen et al 2007).  Although intuitively simple, the resulting models become extraordinarily 
complex.  For example, as the number of neurons increases, so does the number of unknown parameters.  In 
addition, the appropriate synaptic connectivity to employ in these models remains largely unknown.  Finally, 
how to transform the results of these models into observed macroscale activity (recorded clinically in the 
ECoG) is not clear.  Common procedures include computing average intracellular currents (Murakami et al 
2002), transmembrane ionic currents (Traub et al 2005a), or the mean network firing rate (Izhikevich and 
Edelman 2008).  An alternative approach to this issue, and the approach we employ here, is to combine 
multiscale models of seizure activity.  Briefly, we combine (in biophysically meaningful ways) microscale 
models of individual neurons with a macroscale model of neural population activity.  This combined approach 
allows us to concentrate on some specific biophysical aspects of the problem while abstracting others.

3.a.6. Beyond hand-tuning of computational models.  Computational models of neural activity often rely 
on researchers’ “expert judgment” to hand-tune model parameters and produce results qualitatively 
consistent with observed neural activity (Prinz et al 2003; Van Geit et al 2008). Recently, more sophisticated 
approaches have been employed to estimate model parameters directly from data (Huys et al 2006; Van Geit 
et al 2008; Schiff and Sauer 2008; Huys and Paninski 2009; Ullah and Schiff 2009).  We propose to 
implement and develop techniques for rigorous parameter estimation of multiscale models from 
corresponding multiscale data that will significantly improve the hand-tuning procedure in common use.

3.b  Overview of innovation.  We propose to pursue three primary innovations.  First, we will collect 
multiscale in vivo data from a population of human subjects.  Second, we will characterize these data - with 
particular focus on rhythmic activity and multiscale interactions - using sophisticated data analysis tools.  
Third, we will develop a biophysical, multiscale model constrained in rigorous ways by the in vivo data.  The 
culmination of these innovations will result in novel strategies to test seizure therapies in silico.

3.b.1  Innovation:  multiscale data collection.   We will collect brain voltage data from three spatial scales.  
The macroscale data consist of ECoG 
recordings from two-dimensional subdural 
electrode arrays, as well as linear arrays of 
electrodes penetrating the brain (grid/strips 
and depth electrodes respectively, Ad-tech 
Medical, Racine, WI).  These macroscale 
electrodes are placed, for purely clinical 
reasons, in order to confirm the hypothesized 

location of seizure onset and its relation to essential cortex, thus directing surgical treatment.  Synchronously 
recorded data have also been obtained from one of three different microelectrode array configurations 
including the Neuroport Array (Fig 1A), laminar microelectrode arrays (Fig 1B), or microwire bundles (Fig 1C). 
The design of these devices permits sampling of either micro/mesoscale neuronal activity in cortical grey 
matter under grids and strips, or insertion through the hollow core of depth macroelectrodes to sample deep 
brain structures.  The mesoscale data consist of local field potentials (LFP) acquired from low bandwidth 
sampling from the microelectrodes.  The microscale data consist of multi-unit neuronal action potential 
generation and single identifiable action potentials (described in more detail in 3.c.1).

3.b.2  Innovation:  multiscale data analysis.  To characterize the multiscale data, we will go beyond visual 
inspection of the time series - the typical clinical analysis of seizure voltage data.  Instead, we will develop 
sophisticated data analysis routines, focusing on the neural rhythms of seizure and multiscale interactions.  
For the latter, we will concentrate initially on coherence measures.  We will examine the “field-field” 
coherence between simultaneously recorded LFP and ECoG activity, thus connecting the “field” activity at the 
macro- and mesoscales.  To examine interactions between the microscale and meso/macroscale, we will 
employ the “spike-field” coherence measure (Jarvis and Mitra 2001).  We propose to address a confound in 
this measure (namely, that changes in neural firing rate appear as changes in interscale coupling) and 
thereby develop innovative mathematical tools to characterize multiscale neural interactions, of immediate 
use to the general neuroscience community.

Fig 1.  Microelectrode array systemsMicroelectrode array
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Ex: dynamics across scales

What’s happening dynamically at the end of the seizure?

2009).  This is is a critical problem, because the brain operates (and malfunctions) at multiple, interacting 
spatial scales (Churchland and Sejnowski 1988; Manning et al 2009).  Intuition suggests a straightforward 
approach: combine many models of individual neurons to simulate population activity.  Researchers have 
successfully employed this “brute force” approach in a variety of settings (Murakami et al 2002; Traub et al 
2005a; Markram 2006; Izhikevich and Edelman 2008) including as models of epilepsy (Traub et al 2005b; 
Dyhrfjeld-Johnsen et al 2007).  Although intuitively simple, the resulting models become extraordinarily 
complex.  For example, as the number of neurons increases, so does the number of unknown parameters.  In 
addition, the appropriate synaptic connectivity to employ in these models remains largely unknown.  Finally, 
how to transform the results of these models into observed macroscale activity (recorded clinically in the 
ECoG) is not clear.  Common procedures include computing average intracellular currents (Murakami et al 
2002), transmembrane ionic currents (Traub et al 2005a), or the mean network firing rate (Izhikevich and 
Edelman 2008).  An alternative approach to this issue, and the approach we employ here, is to combine 
multiscale models of seizure activity.  Briefly, we combine (in biophysically meaningful ways) microscale 
models of individual neurons with a macroscale model of neural population activity.  This combined approach 
allows us to concentrate on some specific biophysical aspects of the problem while abstracting others.

3.a.6. Beyond hand-tuning of computational models.  Computational models of neural activity often rely 
on researchers’ “expert judgment” to hand-tune model parameters and produce results qualitatively 
consistent with observed neural activity (Prinz et al 2003; Van Geit et al 2008). Recently, more sophisticated 
approaches have been employed to estimate model parameters directly from data (Huys et al 2006; Van Geit 
et al 2008; Schiff and Sauer 2008; Huys and Paninski 2009; Ullah and Schiff 2009).  We propose to 
implement and develop techniques for rigorous parameter estimation of multiscale models from 
corresponding multiscale data that will significantly improve the hand-tuning procedure in common use.

3.b  Overview of innovation.  We propose to pursue three primary innovations.  First, we will collect 
multiscale in vivo data from a population of human subjects.  Second, we will characterize these data - with 
particular focus on rhythmic activity and multiscale interactions - using sophisticated data analysis tools.  
Third, we will develop a biophysical, multiscale model constrained in rigorous ways by the in vivo data.  The 
culmination of these innovations will result in novel strategies to test seizure therapies in silico.

3.b.1  Innovation:  multiscale data collection.   We will collect brain voltage data from three spatial scales.  
The macroscale data consist of ECoG 
recordings from two-dimensional subdural 
electrode arrays, as well as linear arrays of 
electrodes penetrating the brain (grid/strips 
and depth electrodes respectively, Ad-tech 
Medical, Racine, WI).  These macroscale 
electrodes are placed, for purely clinical 
reasons, in order to confirm the hypothesized 

location of seizure onset and its relation to essential cortex, thus directing surgical treatment.  Synchronously 
recorded data have also been obtained from one of three different microelectrode array configurations 
including the Neuroport Array (Fig 1A), laminar microelectrode arrays (Fig 1B), or microwire bundles (Fig 1C). 
The design of these devices permits sampling of either micro/mesoscale neuronal activity in cortical grey 
matter under grids and strips, or insertion through the hollow core of depth macroelectrodes to sample deep 
brain structures.  The mesoscale data consist of local field potentials (LFP) acquired from low bandwidth 
sampling from the microelectrodes.  The microscale data consist of multi-unit neuronal action potential 
generation and single identifiable action potentials (described in more detail in 3.c.1).

3.b.2  Innovation:  multiscale data analysis.  To characterize the multiscale data, we will go beyond visual 
inspection of the time series - the typical clinical analysis of seizure voltage data.  Instead, we will develop 
sophisticated data analysis routines, focusing on the neural rhythms of seizure and multiscale interactions.  
For the latter, we will concentrate initially on coherence measures.  We will examine the “field-field” 
coherence between simultaneously recorded LFP and ECoG activity, thus connecting the “field” activity at the 
macro- and mesoscales.  To examine interactions between the microscale and meso/macroscale, we will 
employ the “spike-field” coherence measure (Jarvis and Mitra 2001).  We propose to address a confound in 
this measure (namely, that changes in neural firing rate appear as changes in interscale coupling) and 
thereby develop innovative mathematical tools to characterize multiscale neural interactions, of immediate 
use to the general neuroscience community.

Fig 1.  Microelectrode array systems

An aside . . .



Critical transitions
• A tipping point at which the system shifts abruptly 

from one state to another.
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Inhibits

Critical transitions

response functions will in general be less than unity. Designating these values by
k, and k, the refractory terms must be modified, giving the final result:

dE
= -E + (ke-r.E)S.(c,E-C21 + P)1dt

dIr d-t--I + (ki- r,!)gi(c3 E - C4 I + Q). (12)

(The bars denoting coarse graining have been dropped for convenience.)
The equations may be analyzed qualitatively using the E, I phase plane. From the

mathematical properties of sigmoid functions, it is evident that S. and Si have unique
inverses. Denoting these inverses by se-' and ,-' it is possible to write the equations
for the isoclines corresponding to dE/dt = 0 and dI/dt = 0 as:

c2I = ciE - (_ _E + P for dE 0° ( 13
___- _E dt

c E = C4I + i-3' I - Q for dI O ( 14)ki-rI dt
Notice that c2 and c3 must always be nonvanishing for the isoclines to be non-
trivial, thus making negative feedback between the subpopulations an essential
feature of the model. A typical plot of these two equations for P = 0, Q = 0 is
shown in Fig. 4. In this case there are three steady-state solutions corresponding to
the three intersections of the two curves. Depending on the parameter values chosen
there may be either one or five steady states instead of three, a point to which we
shall return.

0.5- dl =0

d t

E 0.25 _

0~~~~~~~~~~
0 5 10 15 20 25 0 0-25 0.5

t in msec I
FiGuRE 3 FIGURE 4

FIGURE 3 Comparison of solution to equation 9 (lighter line) with solution with the
temporal coarse-grained equation 10 (heavier line). Duration of refractory period: r = 3
msec.
FIGURE 4 Phase plane and isoclines (equations 13 and 14). (+) denotes stability and (-),
instability of steady state. Parameters: cl = 12, c2 = 4, c3 = 13, C4 = 11, a, = 1.2, 0, = 2.8,
a; = 1, 0, = 4, r. = 1, r; = 1, P = 0, Q = 0.
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[Wilson and Cowan, Biophys J, 1972]

more than excite all of the elements in the population. Second, a number of experi-
mental studies have shown that single cell response curves are sigmoid functions of
excitation (Kernell, 1965 a, b) as well as population response curves (Rall, 1955 a,
b, c). Finally, it may be noted that the response function is essentially the event
density of renewal theory (Cox, 1962). The event density is known to be related to a
sum of convolutions of first-passage time densities for the single units of the popula-
tion. The relationship of the subpopulation response function to the first-passage
density has been explored more fully by Cowan (1971).

Before proceeding it should be mentioned that if D(O) or C(w) is multimodal,
S(x) will still be monotonic but will not be sigmoid as defined above. Rather than a
unique inflection point, there will be one inflection point for each mode of the dis-
tribution, as is shown in Fig. 2 for the bimodal case. For an n-modal distribution,
however, 8(x) can always be written as a weighted sum ofn sigmoid functions having
different inflection points. Physiologically, a multimodal distribution would be
expected to correspond to the presence of a number of distinct cell types within the
subpopulation. For the present we shall take 8(x) to be a single sigmoid function,
but we will return briefly to the more complex case later.
An expression for the average level of excitation generated in a cell of each sub-

population must now be obtained. If it is assumed that individual cells sum their
inputs and that the effect of stimulation decays with a time course a(t), then the
average level of excitation generated in an excitatory cell at time t will be:

L a(t - t')[cjE(t') - c2I(t') + P(t')] dt'. (2)

The connectivity coefficients cl and c2 (both positive) represent the average number

1.0 1.0

s3(x) (x
0.5 ;0.5

00 0 0
° 5 10 0 01 5 02 10

FIGURE FIGuRE 2
FIGURE 1 Plot of typical sigmoid subpopulation response function. X is average level
of excitation in threshold units. The particular function shown here is the logistic curve:
8(x) = 1/[1 + e()J witho = 5, a = 1.
FIGURE 2 Subpopulation response function resulting from bimodal distribution of thresh-
olds or afferent synapses. X is excitation in threshold units, while O and e2 are the two
local maxima of the underlying distribution. Note that this curve may be decomposed into
a weighted sum of two sigmoid functions.
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To illustrate, begin with this model . . . 
Visualization:  2-dimensional
Applicability:  Biophysical

More concrete example:  Wilson-Cowan equations
Mean-field model of neural population activity

Activates

Eexcitatory I inhibitory
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Ex.  Wilson-Cowan
Increase P (drive to excitatory population). . . what happens?
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Ex.  Wilson-Cowan
Q:  What happens at the bifurcation?

Plot the bifurcation diagram:

Fold of fixed points
P=0.2833

Plot the eigenvalues:
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P = 1

P = 0.1

P = 0.25

Far from bifurcation: 

E

Ex.  Wilson-Cowan
Add noise to model, and consider “E” approaching the bifurcation:

P = 1

P = 0.1

P = 0.25Near bifurcation: 

Fluctuate around rest state

Observation:  approaching bifurcation (yet preceding it), fluctuations change . . . 

Look for warning signs of impending transition . . . 
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• Critical slowing down
Near the transition, the system becomes increasingly slow in recovering 
from small perturbations (there’s an eigenvalue approaching zero).  

Critical transitions can be preceded by dynamical signatures:

Warning signs (1)

As bifurcation approached,  AC at nonzero lag increases
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• Critical slowing down
Near the transition, the system becomes increasingly slow in recovering 
from small perturbations (there’s an eigenvalue approaching zero).  

Warning signs (1)

As bifurcation approached, power at low frequencies increases.

Critical transitions can be preceded by dynamical signatures:

Manifests in power spectrum:
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• Flickering
The system moves back and forth between two alternative attractors before 
the critical transition.

Warning signs (2)

Idea:

start
+ noise

+ noise

“time”

Position:
active
rest

“Flicker” between 
two states



Ex:  ECoG data
Visual inspection:

1. Critical slowing down? 2. Flickering?

10s

Dynamical signatures of tipping point?

“Post-seizure state”“Seizure state”

Consider quantitative analysis . . .

Brain chirp
Autocorrelation?



Critical transition
• Signatures of a critical transitions in the approach 

to seizure termination.

Note:  Evidence exists, but can not prove the transitions is critical

ECoG (S) LFPEEG MUAECoG (D)
YES YES YES YESYES

-YES YES YES NOYES
YES YES YES NO
YES YES NOYES NO

Slowing rhythms
Increased temporal correlations
Increased spatial correlations
Flickering

[M. A. Kramer, W. Truccolo, U. T. Eden, K. Q. Lepage, L. R. Hochberg, E. N. Eskandar, J. R. Madsen, J. W. Lee,  A. 
Maheshwari, E. Halgren, C. J. Chu, S. S. Cash, Human seizures self-terminate across spatial scales via a critical 
transition, Proc Nat Acad Sci USA, 2012]

http://www.pnas.org/content/early/2012/12/03/1210047110
http://www.pnas.org/content/early/2012/12/03/1210047110
http://www.pnas.org/content/early/2012/12/03/1210047110
http://www.pnas.org/content/early/2012/12/03/1210047110
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Model A “simple” biophysical model of seizure termination

Analyze model dynamics:
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950 F. Frascoli et al. / Physica D 240 (2011) 949–962

band oscillations and its relationship to cognition [16–18] and

the onset and characteristics of epileptic seizures [19–22,10];

c.f. Ref. [23] for a recent review. We use here Liley’s MFM [3,

24], which is capable of reproducing the main spectral fea-

tures of spontaneous (i.e., not stimulus-locked) EEG, in particu-

lar the ubiquitous alpha rhythm [25]. Firstly, this model is bi-

ologically constituted: all state variables and parameters can

be constrained on the basis of existing anatomical and phys-

iological measurements in the literature. Secondly, it supports

a rich repertoire of behaviors both physiologically relevant and

dynamically interesting. For example, parametrically widespread,

robust chaotic activity of various origins has been found [26–28],

and multistability, i.e., the presence of various coexisting dyna-

mical regimes, has been demonstrated. Multistability has been

speculated to correspond neurobiologically to the formation of

memories [29].

In the spirit of the dynamical approach [30], in this paper we

link nonlinear electrical activity and neurobiologically significant

attributes of cortex. To this end, we consider a representative sam-

ple of parameter sets that have previously been found to gener-

ate physiologically plausible behavior [11]. This sample contains

73,454 sets and for each of these we computed the bifurcation

plots when varying two parameters related to inhibition, i.e., the

qualitative changes of recurrent activity patterns, when neuronal

inhibition is altered. It turns out that we can sort the sets into two

distinct ‘‘families’’ of dynamical behavior. These families are found

to correlate with EEG signal power and responses to anesthetics,

whereas family membership is determined by specific neurobio-

logical parameters.

The paper is divided into three main sections. First, we briefly

introduce Liley’s ordinary differential Equations (ODEs). We next

discuss the theoretical and numerical tools employed in some

detail, in particular how one arrives at a systematic bifurcation

analysis procedure to show the qualitative changes of the model

solutions when inhibition is varied. Then, we present the main

distinctive features of the families, such as their responses to

the simulated induction of anesthetics and their correlations with

model parameters of interest. We are also able to show how

exogenous agents, i.e., input from the thalamus to the cortex,

can induce dramatic changes in those patterns and stimulate

transitions from one type of family to the other. That, in particular,

provides a compelling example for the modulation thalamus is

thought to exert on the cortex [31]. All these relations cannot

be discovered with standard linear or nonlinear analyses of the

physiological parameter space, and represent the main result of

this work. A discussion of open problems concludes the paper.

2. Neuronal mean field equations

Liley’s MFM aims to provide a mathematically and physiolog-

ically parsimonious description of average neuronal activity in a

human cortex, with spatially coarse-grained but temporally pre-

cise dynamics. One excitatory and one inhibitory neuronal pop-

ulation, respectively, is considered per macrocolumn, which is a

barrel-shaped region of approximately 0.5–3 mm diameter com-

prising the whole thickness of cortex (thus ≈3–4 mm deep). Cor-

tical activity is locally described by the mean soma membrane

potentials of the excitatory (he) and inhibitory (hi) neuronal popu-
lations, alongwith fourmean synaptic inputs Iee, Iie, Iei, and Iii. These
inputs convey the reciprocal interaction between neuronal popu-

lations, where double subscripts indicate first source then target

(each either excitatory e or inhibitory i). The connection withmea-

surements is through he, which is linearly related to the EEG sig-

nal [32]. Lumped neuron populations are modeled as passive RC
compartments, into which all synaptically induced ionic currents

terminate. According to population types (j, k) = e, i, synaptic

activity drives the mean soma membrane potentials from their

Fig. 1. Architecture of Liley’s mean field model. Two separate model macro-

columns are shown, each containing one excitatory and one inhibitory neuronal

population. Note that long-range connections are exclusively excitatory and that

self-couplings correspond to connections of neurons of the same type within the

local populations.

resting values. The equations for he and hi are given by

τe
dhe

dt
= hr

e − he(t) + heq
ee − he(t)
|heq

ee − hr
e|

Iee(t) + heq
ie − he(t)
|heq

ie − hr
e|

Iie(t), (1)

τi
dhi

dt
= hr

i − hi(t) + heq
ei − hi(t)
|heq

ei − hr
i |

Iei(t) + heq
ii − hi(t)
|heq

ii − hr
i |

Iii(t), (2)

where hr
e and hr

i are mean resting potentials, and τe and τi
are the membrane time constants of the respective neuronal

populations. The reversal potentials of the transmembrane ionic

fluxes mediating excitation and inhibition are given by heq
ek and heq

ik ,
respectively. Note that the synaptic inputs are weighted with +1

(excitatory Iek) and−1 (inhibitory Iik) at the resting potential of the
respective excitatory or inhibitory neuronal population, and that

these weights then vary linearly with voltage.

The mean synaptic inputs describe the postsynaptic activation

of ionotropic neurotransmitter receptors by presynaptic action

potentials, arising from the collective activity of neurons both

nearby and distant. The time course of such activity, based on

well-established experimental data [33], is modeled by a critically

damped oscillator driven by the mean rate of incoming excitatory

or inhibitory axonal pulses. We thus have, for k = e, i:
�

d

dt
+ γek

�2

Iek(t) = Γekγeke{Nβ
ekSe[he(t)] + pek(t) + φek(t)}, (3)

�
d

dt
+ γik

�2

Iik(t) = Γikγike{Nβ
ikSi[hi(t)] + pik(t)}, (4)

where the terms in curly brackets correspond to sources of the

axonal pulses from three origins: local, i.e., in the same macro-

column of the cortex Nβ
lkSl, arriving through long-range, excitatory

cortico-cortical connections from other macrocolumns φek, and
extracortical, i.e., primarily of thalamic origin plk. For subsequent
simplicity we assume the absence of any extracortical inhibitory

input, i.e. pik ≡ 0. Nβ
lk quantifies the strength of anatomical pop-

ulation connectivity. The maximal postsynaptic potential (PSP)

amplitude Γlk occurs in the target population k = e, i at time 1/γlk
after the arrival of the presynaptic spike from the source popula-

tion l = e, i. A schematic illustration of the architecture of interac-

tions in the Liley model can be found in Fig. 1.

Local mean soma potentials hk are nonlinearly transformed to

mean neuronal population firing rates with a sigmoidal function

Sk[hk(t)] = Smax
k

�
1 + exp

�
−

√
2
hk(t) − µk

σk

��−1

, (5)

whereµk and σk indicate the firing thresholds and their associated

standard deviations for the respective neural population. The

Mean-field model of population activity, 
(not “spikes” of individual neurons).
[Liley et al, Network,  2002]
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Model (details)
Bifurcation diagram (single “cortical column”)
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So what?
Dynamical Principle Critical transition

Dynamical Mechanism Subcritical
Hopf

Fold

Biophysical Mechanism

Non-critical transition

Supercritical
Hopf

Subcritical
Pitchfork

Supercritical
Pitchfork
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Reduced pHIon concentration imbalances

Termination

Synaptic transmission
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?

Many proposed biophysical mechanisms of termination

Treat the dynamical mechanism . . . 

We propose a dynamical principle of termination
(consistent with multi-scale data).

X

Constrain biophysical mechanisms . . . 

Relate to biophysical mechanisms.

requires modeling
induce transition by whatever 
biophysical means convenient?



Model prediction
• Status epilepticus:  failure of a seizure 

to spontaneously self terminate.

• In the model:
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We expect dynamical signatures . . . 

failure to cross the bifurcation



Dynamical signatures
• Approaching the critical transition:

- Autocorrelation increase (lag 10 ms)

- Dominant frequency decrease

Ex:  Self-terminating seizures

10s

AC

f

Note:  two curves are anti-correlated . . . 

Ex:  Model of status

1min

Ex:  Status data



• Supports conjecture:  Status represents failure to 
cross a critical transition. 

• Population results:
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The two measures 
are anti-correlated.

Dynamical signatures

[M. A. Kramer, W. Truccolo, U. T. Eden, K. Q. Lepage, L. R. Hochberg, E. N. Eskandar, J. R. Madsen, J. W. Lee,  A. 
Maheshwari, E. Halgren, C. J. Chu, S. S. Cash, Human seizures self-terminate across spatial scales via a critical 
transition, Proc Nat Acad Sci USA, 2012]

http://www.pnas.org/content/early/2012/12/03/1210047110
http://www.pnas.org/content/early/2012/12/03/1210047110
http://www.pnas.org/content/early/2012/12/03/1210047110
http://www.pnas.org/content/early/2012/12/03/1210047110


Conclusions
• Seizures across spatial and temporal scales

2009).  This is is a critical problem, because the brain operates (and malfunctions) at multiple, interacting 
spatial scales (Churchland and Sejnowski 1988; Manning et al 2009).  Intuition suggests a straightforward 
approach: combine many models of individual neurons to simulate population activity.  Researchers have 
successfully employed this “brute force” approach in a variety of settings (Murakami et al 2002; Traub et al 
2005a; Markram 2006; Izhikevich and Edelman 2008) including as models of epilepsy (Traub et al 2005b; 
Dyhrfjeld-Johnsen et al 2007).  Although intuitively simple, the resulting models become extraordinarily 
complex.  For example, as the number of neurons increases, so does the number of unknown parameters.  In 
addition, the appropriate synaptic connectivity to employ in these models remains largely unknown.  Finally, 
how to transform the results of these models into observed macroscale activity (recorded clinically in the 
ECoG) is not clear.  Common procedures include computing average intracellular currents (Murakami et al 
2002), transmembrane ionic currents (Traub et al 2005a), or the mean network firing rate (Izhikevich and 
Edelman 2008).  An alternative approach to this issue, and the approach we employ here, is to combine 
multiscale models of seizure activity.  Briefly, we combine (in biophysically meaningful ways) microscale 
models of individual neurons with a macroscale model of neural population activity.  This combined approach 
allows us to concentrate on some specific biophysical aspects of the problem while abstracting others.

3.a.6. Beyond hand-tuning of computational models.  Computational models of neural activity often rely 
on researchers’ “expert judgment” to hand-tune model parameters and produce results qualitatively 
consistent with observed neural activity (Prinz et al 2003; Van Geit et al 2008). Recently, more sophisticated 
approaches have been employed to estimate model parameters directly from data (Huys et al 2006; Van Geit 
et al 2008; Schiff and Sauer 2008; Huys and Paninski 2009; Ullah and Schiff 2009).  We propose to 
implement and develop techniques for rigorous parameter estimation of multiscale models from 
corresponding multiscale data that will significantly improve the hand-tuning procedure in common use.

3.b  Overview of innovation.  We propose to pursue three primary innovations.  First, we will collect 
multiscale in vivo data from a population of human subjects.  Second, we will characterize these data - with 
particular focus on rhythmic activity and multiscale interactions - using sophisticated data analysis tools.  
Third, we will develop a biophysical, multiscale model constrained in rigorous ways by the in vivo data.  The 
culmination of these innovations will result in novel strategies to test seizure therapies in silico.

3.b.1  Innovation:  multiscale data collection.   We will collect brain voltage data from three spatial scales.  
The macroscale data consist of ECoG 
recordings from two-dimensional subdural 
electrode arrays, as well as linear arrays of 
electrodes penetrating the brain (grid/strips 
and depth electrodes respectively, Ad-tech 
Medical, Racine, WI).  These macroscale 
electrodes are placed, for purely clinical 
reasons, in order to confirm the hypothesized 

location of seizure onset and its relation to essential cortex, thus directing surgical treatment.  Synchronously 
recorded data have also been obtained from one of three different microelectrode array configurations 
including the Neuroport Array (Fig 1A), laminar microelectrode arrays (Fig 1B), or microwire bundles (Fig 1C). 
The design of these devices permits sampling of either micro/mesoscale neuronal activity in cortical grey 
matter under grids and strips, or insertion through the hollow core of depth macroelectrodes to sample deep 
brain structures.  The mesoscale data consist of local field potentials (LFP) acquired from low bandwidth 
sampling from the microelectrodes.  The microscale data consist of multi-unit neuronal action potential 
generation and single identifiable action potentials (described in more detail in 3.c.1).

3.b.2  Innovation:  multiscale data analysis.  To characterize the multiscale data, we will go beyond visual 
inspection of the time series - the typical clinical analysis of seizure voltage data.  Instead, we will develop 
sophisticated data analysis routines, focusing on the neural rhythms of seizure and multiscale interactions.  
For the latter, we will concentrate initially on coherence measures.  We will examine the “field-field” 
coherence between simultaneously recorded LFP and ECoG activity, thus connecting the “field” activity at the 
macro- and mesoscales.  To examine interactions between the microscale and meso/macroscale, we will 
employ the “spike-field” coherence measure (Jarvis and Mitra 2001).  We propose to address a confound in 
this measure (namely, that changes in neural firing rate appear as changes in interscale coupling) and 
thereby develop innovative mathematical tools to characterize multiscale neural interactions, of immediate 
use to the general neuroscience community.

Fig 1.  Microelectrode array systems

• Rhythms:  brain chirp

• Termination:  dynamical mechanisms.

• Functional networks:  fracturing & coalescence
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,



Thanks
The patient volunteers

Burroughs Wellcome Fund, NIH R01NS072023 

BU: Mark Kramer, Uri Eden, Grant Fiddyment, Eric 
Kolaczyk, Kyle Lepage, Louis-Emmanuel Martinet, Laura 
Gonzalez Ramirez, Emily Stephen, Gene Wayne

Brown:  Wilson Truccolo

MGH:  Sydney Cash, Catherine Chu, Emad Eskandar


