4.3 SIMULATION OF A COMPLETE CARDIOVASCULAR LOOP

A complete cardiovascular loop will now be set up in an uncontrolled
form, that is, without the connections to the central nervous system
(CNS), which provides much of the control of this system, and without
consideration of the membrane connections to the body tissues that per-
mit diffusion of plasma and of substances carried by the blood to and
from such tissues. To do this we must devise a right heart model that will
be much the same as the left heart model developed in Section 4.2, except
that the peak systolic stiffness will need to be less by about a factor of
four because of the smaller total capillary bed resistance in the lungs
(about 170 CGS units) as compared to the systemic peripheral resistance
(about 1300 CGS units). Such a model may be used to study blood volume
shifts and other changes in response to parameter changes or defects
(e.g., in heart valves).

Figure 4.3.1 shows a simple model of the uncontrolled car-
diovascular system with right and left heart and associated arterial path-
ways much like the partial model of Fig. 4.2.5; the venous segments
added to complete the loop are simple resistive segments. This model,
which we will call pressure-flow zero (PF-0), is described by the equations
in the ACSL program PF-0 below. This model has the following important
characteristics:

1. Numerical values of parameters are entered in the equations
except for the VSD conductance, GD = 1/R,,, and the four ventricular
stiffnesses, LS, LD, RS, and RD. Thus it is not possible to change any-
thing except these five parameters at run time, unless they are intro-
duced into the equations algebraically before compiling, with constants
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Figure 4.3.1. A simple model of the complete cardiovascular loop shown in
lumped circuit form (model PF-0).

shown separately. (Note that the three-letter designation scheme used in
Section 4.2 is not used here, in order to be consistent with the first paper
in which this model, with parameter values, was described (Rideout-72)).

2. Units are in the CGS system except that pressures are in medical
units (mm Hg), requiring that a unit correction factor be included to
multiply any pressure appearing in any equation. Thus for the flow f; (in
ml/s) determined by the pressures across Ry

F3 = 1332.«(P2 — P3)/R3 = 8.9x(P2 — P3)

If we want to be able to change the pulmonary peripheral resistance R3 in

this equation at run time it may be left in algebraic form and the com-
mand CONSTANT R3 = 150. added before compiling.

. 3. Numerical values of equation parameters correspond approx-
Imately to an adult male human weighing 70 kg at rest. Some allometric
€quations are known that enable some of the parameters given here to be
roughly estimated for humans of other sizes or for dogs (see Section. 2.6).
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4. The heart period TH is constant and corresponds to the radian
frequency W of the sinusoid used in generating ventricular stiffness
variations:

TH = 2.#w/W = 2.x3.14159/7.854 = 0.8 sec (4.3.1)

5. This model may be used as given to study the effect of a VSD or of
changes in the contractility of the ventricles (a myocardial infarction can
be simulated by reducing SR and SL). As pointed out in item 2, other
parameters can be changed at run time if included wherever they appear
in algebraic form. In some cases (leaky or insufficient valves or atrial
septal defects) new equations and/or changes in existing equations may
be needed.

6. In this model no unstressed volumes need to appear, because no
interchange between stressed and unstressed volume is assumed to occur.
Thus stressed volumes are used throughout. Volume variables appear
only in the ventricle, and here the unstressed volumes are assumed to be
zero. (A more general approach to blood volume is used in the next model,

PF-1)

PROGRAM PF-0

DYNAMIC
CONSTANT TF = 4.0
TERMT(T .GE. TF)

DERIVATIVE
Algorithm IALG 4 $' 2nd order RK'
Maxterval MAXT .004
Cinterval CINT = .02
Nsteps NSTP=1
Constant RD=.044, RS=.30, W=7.854

FO=133.2+BOUND(0.,2000.,P10-P0) $'Right Heart'
QO=INTEG(FO-F1+F40,154.)
SO0=RS*BOUND(Q.,2.,SIN(W«T))+RD

PO=S0%Q0

Pl=.75«INTEG(F1-F2,23.) $'Pul. Art. 1'
F1=133.2+BOUND(0.,2000.,P0—-P1)

F2=1000.*INTEG(P1—-P2-F2/50.,.043) $'Pul. Art. 2'
P2=.25+INTEG(F2-F3,52.)
P3=.15+«INTEG(F3-F4,41.) $'Lung Capillaries'
F3=8.9«(P2-P3)
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Constant LD=.033, LS=1.5
Q4=INTEG(F4-F5-F40,158.)
S4=LS*BOUND(0.,2.,SIN(W«T))+LD
P4=5S4xQ4
F4=133.2+«BOUND(0.,2000.,P3-P4)

$'Left Heart'

Constant GD=0.0 $'vVsD'
F40=1332. «GD«(P4-P0O)

P5=1.5«INTEG(F5-F6,64.)
F5=100.«BOUND(0.,2000.,P4-P5)

$ 'Ascend. Aorta'

F6=1000.xINTEG(P5—P6—.005%F6.,016) $'Descend. Aorta'

P6=.75+INTEG(F6-F11-F7,129.)

F7=1000.«INTEG(P6—P7—.02xF7,.0024) $'Abdom. Aorta'
P7=.562+INTEG(F7-F8-F13,172.)

P8=.0903~INTEG(F8-F9,97.)
F8=.25«(P7-P8)

$'Leg Arteries'

P9=.075«INTEG(FO9-F10+F12+F13,113.) $'Veins’
F9=100. «(P8—-P9)

P10=.15+INTEG(F10—-F0,53.)

F10=100.«(P9-P10)
P11=.375«INTEG(F11-F12,6145.)

F11=P6-P11 $ 'Upper Body'
F12=P11-P9

F13=.25«(P7—-P9) $'Internal Organs'
CO= REALPL(TCO,F12+F13+F8,C0IC) $'Ave. Cardiac Output’
FP= REALPL(TFP,F2,FPIC) $'Ave. Pul. Flow'
FVSD=REALPL (TFVSD, F40, FVSDIC) $'Ave. VSD Flow'

Constant TCO=4.,TFP=4.,TFVSD=4., . . .
CO0IC=70.,FPIC=70.,FVSDIC=50.
END § ‘of Derivative'

End $ ‘of Dynamic’
End § 'of Program'

If this model is compiled and run, the first variables of interest are
the ventricular volumes, Q0 and Q4, shown in Fig. 4.3.2a. Note that the
volume pumped out of each ventricle per beat is approximately 90 ml,
which means that the cardiac output is 90/0.8 = 112 ml/s. Peak volumes
are about the same in each ventricle, approximately 160 ml, and thus the
ejection fraction for each ventricle is 90/160 = 0.56.
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The model goes into a repetitive steady state at about the second
beat. This occurs because the initial conditions are nearly right to start
the model at the end of diastole, in steady state. These initial conditions
were determined by first guessing at their values and then running the
model until it reached steady state and all starting transients had disap-
peared. The model was stopped at the end of diastole, and the outputs of
all variables obtained from integrators were obtained using the DISPLY
command. These values were then used as integrator initial conditions.

Figures 4.3.3a shows the right ventricular pressure PO, together
with the pulmonary artery pressure, P1; the corresponding pressures for
the left ventricle are shown in Fig. 4.3.3c. Figures 4.3.3b and 4.3.3d show
the important pressure-volume plots for the right and left ventricles.

Note that in Fig. 4.3.3c the amplitude of the left ventricular pres-
sure is close to an expected peak value of 120 mm Hg, whereas the right
ventricle peak in Fig. 4.3.3a is somewhat higher than the normal 18 mm
Hg. This might be somewhat corrected by lowering the systolic stiffness,
SR. Also, the aortic pressure has a high diastolic value; this might be
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Figure 4.3.2. (a) Ventricular volumes during normal steady-state operation of
model PF-0.

(b) Inflow, Fy4, and outflow, F5, for the left ventricle.

o ;
< [}
©
{
AN \
ES T ES ‘
o | . \
a
" L]
8 | i R I T I
(=] (o]
o o
4 e |
|
E :f\\. N A %’ \”\’\J\/\‘x./\/\'\
o L N iV Y &
= N NJ e
a a
o o
o o
0.0 0.8 1.6 2.4 0.0 08 1.6 24
T in sec T in sec
(a) (c)
e

o™ X
IR 2o
E £ 7
£ £
- £ ’
£ ] —
| /
| ol/ L

0.0 53. 107. 160. 00 53 to7 160.
QO in mf Q4 in mt
(b) @

Figure 4.3.3. (a) Right ventricular pressure PO and pulmonary artery pres-
sure P1.

(b) Pressure versus volume locus for the right ventricle.

(c) Left ventricular and aortic pressures, P4 and P5.

(d) P-V locus for the left ventricle.
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corrected by reducing the arterial compliances, C5, C6, and C7, so that
the smaller resultant time constants give a faster decay of P5 after the
aortic valve closes. Finally, the cardiac output is somewhat high, proba-
bly as a result of excess volume; choice of initial volumes will be consid-
ered later in model PF-1.

The ventricle pressure-flow loci (see Fig. 4.3.3b) are useful to the
modeler in several ways; the stroke volume is easily obtained, as shown,
as well as the peak pressure and ejection fraction. The ventricular stiff-
ness slopes have been drawn in for the case of the left ventricle.

If a ventricular septal defect (VSD) is introduced into model PF-0 by
setting the ventricle-to-ventricle conductance GD = 0.004, a number of
waveforms change, as shown in Fig. 4.3.4, and overall performance is
reduced as evidenced by a smaller cardiac output. The flows F5 (aorta)
and F40 (VSD) may be seen to be comparable in peak amplitude and more
nearly equal in the area under the flow pulses in the two cases. Thus it
appears that about half of the left ventricular output is returned to the
right ventricle through the defect in this case. (Note that there is a small
settling transient after startup in the variables in the VSD case, because
the initial conditions are still set for the normal case.)
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Figure 4.3.4. Waveforms in model PF-0 with VSD.

(a) Top: fs, aortic flow, and below: f4o, VSD flow.

(b) Top: right ventricular average volume Qq is increased and volume variation
reduced by the effect of the VSD. Below: left ventricular average volume Q, is
decreased and volume variation increased by the VSD.
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When a VSD is present, the cardiac output cannot be determined
from the volume variation in either ventricle, because we no longer have
a simple blood flow loop. However, it is possible to find the average car-
diac output (CO) by filtering F5, or better, by filtering the sum of less
pulsatile flows, using the command

CO = REALPL(TCO, F8 + Fl1ll1 + F13, COIC)

where TCO = 5.0, (a 5-sec time constant) and COIC = 70.0, (a first guess
at cardiac output, in ml/s). This will show that cardiac output is 78 ml/s.
It is also possible to filter F40 and show that the average VSD flow is 76
ml/s. If the filtered average pulmonary capillary flow F3 is determined, it
may be shown to be 154 ml/s, which is the sum of the other two averaged
flows, as would be expected.



