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4.6 NONPULSATILE CARDIOVASCULAR MODELS

The frequencies in human cardiovascular pulsations tend to be harmon-
ics of a fundamental heart rate of approximately 1.2 beats per second;
healthy adults at rest may have rates ranging from about 0.8 to 1.5 beats
per second, and harmonics up to the tenth are important if waveforms
near the ventricular outputs are of interest. Exercise or illness may in-
crease the heart rate significantly, and sometimes modelers may have to
consider bandwidths of 40 or 50 Hz. These frequencies are much higher
than those of concern in the kinetics of most pharmaceutical substances.
Thus, for example, most anesthetic agents and muscle relaxants function
in the body with their fastest time constants in minutes. Since the
pulsatility seems to be added to the slower changes in blood flow, schemes
for nonpulsatile cardiovascular modeling have been developed
(Rideout-83b, Méller-83, Peskin-79). These methods appear to be particu-
larly useful in multiple models for pharmacokinetic studies, especialiy in
anesthesiology. The dynamic model described here is based on a fourth-
order nonpulsatile model (Rideout-83b, pp. 156-157).

Figure 4.6.1a shows the ventricular compliance curves of maximum
(systolic) slope and minimum (diastolic) slope; a typical pressure-flow
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locus is also shown. This diagram is of key importance in setting up a
nonpulsatile cardiovascular model, because it shows that the stroke vol-
ume for a ventricle is

Qsv = Ppp*Cp — PygrCy (4.6.1)

where C, and Cg are the diastolic and maximum systolic compliance of
the myocardium and Pgyp, is the end-diastolic and Pgg the end-systolic
pressure, ignoring some nonlinearities which will be given some consid-
eration later (Sunagawa-81, Tham-88). This equation, if multiplied by
heart rate H, gives the average outflow of either ventricle:

F = (Cy+H)*Pyp, — (CgtH)*Ppg (4.6.2)

Factors Ky and K, may be introduced, which are such that average
atrial pressure is related to end-diastolic pressure by

Py = Pgp/Ky (4.6.3)

and average arterial pressure is similarly related to end-systolic pressure
by

P, = Pes/K, (4.6.4)
The ventricular outflow, from (4.6.2), (4.6.3), and (4.6.4), is
F = Gpe*Poy — Gager™Part (4.6.5)

where the preload and afterload conductances are given by
Gpre = CD*H*K:I

Ganer = Cg*H*K, (4.6.6)
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Figure 4.6.1. (a) Ventricular pressure-volume locus, related to minimum and
maximum ventricular stiffness (or reciprocal compliance).
(b) Venous and arterial pressure-volume relationships.

4.6 Nonpulsatile Cardiovascular Models 119

Figure 4.6.1b shows that the arterial or venous segmental com-
pliance C, together with unstressed volume Qy;, gives total average vol-
ume in a segment as

q =gy + pC (4.6.7)

where P is the average pressure. Here ¢ may vary as a result of changes
in any of the quantities gy, p, and/or C. Note that a nonlinear rela-
tionship may be used in place of (4.6.7).

If the preload and afterload conductances for the left ventricle are
called G; and G, and those for the right ventricle G; and G, then the
ventricular nonpulsatile flow equations may be written as

Gyp, — Gotpg = fo

(4.6.8)
Gy*pr — Gypp = fr

where lowercase letters (p and f) indicate the variables, and uppercase
letters the quantities that are ordinarily constant. Also, subscripts L and
R have been chosen to indicate the left and right atria, and S and P the
systemic and pulmonary arteries.

The systemic and pulmonary equations expressing the pressure
drops (principally in capillary beds) are

Ps — Pr = Rg¥fs

pp — pL = Rp¥fp
where Ry is the pulmonary peripheral resistance and fp the total pulmo-
nary flow; Rg and f are the corresponding systemic quantities, but may
need to be modified if a number of parallel paths are to be considered, as
will be shown below.

The volumes gg, g, ¢p, and gy, associated with each compliance are
given by the integrals of inflow and outflow as shown in (4.6.10). Also,
the compliances Cg (total arterial), Cy, (total systemic venous), and corre-
sponding pulmonary compliances Cp and C;, may be used with the four
volumes (see (4.6.7)) to obtain pressures, as shown below:

(4.6.9)

t
as = [ h ~ foar Ps = (@5 ~ Qsu)/Cs
L
g = fo(fs - fr t fodt Pr = (gr — Qgru)/Cr
(4.6.10)
t
qp = fo(fR ~ fpdt pe = (gp — Qpy)/Cp

t
qQL = J-O(fP - fudt P = (g — Quv)/Cp
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where an infusion flow of blood or plasma, f;, into the systemic veins is
assumed. The 12 equations—(4.6.8), (4.6.9), and (4.6.10)—serve to define
a nonpulsatile model, shown in Fig. 4.6.2.

Several parallel systemic paths may need to be included in Fig.
4.6.2, corresponding to capillary beds that run through different kinds of
tissue (Tham-90). If there are three such paths, for example, with flow
resistances Rg;, Rgy, and Rgg, then the total peripheral systemic re-
sistance used in the first equation of (4.6.9) will be

Rg = 1/(1/Rg; + 1/Rg, + 1/Rg,) (4.6.11)
The individual flows are given by equations of the form
fs1 = fs * Rg/Rg, (4.6.12)

It should also be noted that if the total volume g of the system in
Fig. 4.6.2,

qr =4qs t qr T gp + q, (4.6.13)

is fixed, with no flow paths to “ground” or to some other system, then
there is an “excess integration” in the equations of (4.6.10). This extra
integration can be shown to be present because only three integrator
commands are needed (to find, for example, gg, gp, and q;), with the
remaining blood volume determined from (4.6.13), using

9s = 9r —9qr —qp — qL (4.6.14)
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Figure 4.6.2. Basic non-pulsatile model, with two parallel systemic paths
shown.
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If four integrations are used, a drift problem may result, with Q.
gradually increasing or decreasing, because of slight inaccuracies in the
integrations. However, note that in the following program an excess inte-
gration was used without errors appearing; this will usually be possible
when digital computation is used. Also, in real physiological systems,
blood volume or fluid balance is maintained by the thirst reflex, which
governs water intake, and the kidneys, which tend to remove more water
when increased volume causes increased system pressure. If such fluid
balance equations are included in this model, then they will control Q,
and four integrations must then be used or the four volumes associated
with the four compliances.

The system described by (4.6.8), (4.6.9), and (4.6.10) may be set up in
the ACSL program PF-NP. This program includes a means for changing
the left ventricular stiffness; here an increase of a factor of two (obtained
by decreasing G,) is shown, and may be moved into the time range of the
program by changing TCH to a value such as TCH = 1.

An infusion flow f; is provided here, in the form of a pulse of ampli-
tude A = 25.0 ml, starting at TSTT = 1.0 sec, and lasting for WID = 2.0
sec; it is not set to repeat within the time range of the problem, but could
be by reducing PER.

PROGRAM PF-NP
DYNAMIC
Cinterval CINT= 0.1
Constant TF=10.
DERIVATIVE
Algorithm IALG = 4 $ 'Runge Kutta 2°'
Maxterval MAXT =.05
Nsteps NSTP = 1

‘Generate LV afterload stiffness G2'
Constant G2IC=.821, G2NEW=.4105,TCH=1.E6
Z= T — TCH

G2= FCNSW(Z,GR2IC,G2IC, GRNEW)

'Flow equations'

Constant Gl1=24.,G3=40.,G4=3.889
FL= G1#PL-G2xPS
FR= G3*PR—G4xPP

Constant RS=1.0111,RP=.12222
FS= (PS—PR)/RS
FR= (PP-PL)/RP

‘Generate infusion flow FI at STT with period . . .
PER, width WID, and amplitude A’
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Constant A=25.,TSTT=1., PER=1.E6, WID=2.
FI=A«PULSE(TSTT, PER, WID)

‘Differential Equations'

Constant QSIC=1000.,QRIC=5400., . . .
QPIC=500.,QLIC=1800.

QS= INTEG (FL-FS, QSIC)

QR= INTEG (FS—-FR+FI,QRIC)

QP= INTEG (FR —FP, QPIC)

QL= INTEG (FP-FL, QLIC)

‘Check total volume'
QT= QS + QR + QP + QL

'Find Pressures'
Constant CS=2.6316,CR=225.0,CP=6.9444,CL=42.857
Constant QSU=750.,QRU=4500.,QPU=375.,QLU=1500.
PS= (QS—QSU)/CS
PR= (QR—QRU)/CR
PP= (QP-QPU)/CP
PL= (QL-QLU)/CL
END $ ‘'of Deriv.'
TERMT (T .GE. TF)
END $ '0f Dynamic'
END § 'Of Program’'

The units used in this example are the so-called “medical” units, with Q
in ml, F in ml/s, and P in mmHg. In these units resistances are in mmHgx*
sec/ml, and compliances in ml/mmHg.

This program was first run as shown (with infusion FI, but with no
change in G2) for TF = 10 sec (see Fig. 4.6.3). The total infusion (25 ml/s
for 2 s) was 60 ml, and this amount of change in QT would be expected
during the period from T = 1 to T = 3 sec.

The program was also run with FI zero during the operating period,
but with G2 decreased (corresponding to an increase in left ventricular
stiffness) at T = 1 sec (see Fig. 4.6.4). This results in increased PS and QS;
PR and QR also increase, but somewhat more slowly. As a result of these
increases, the variables PP, QP, PL, and QL decrease. The flow, after
transients settle out, will again be equal, but will be larger because of the
stronger left heart. Total volume QT will be constant.

Many changes may be made in the model in addition to the introduc-
tion of a number of parallel paths in the systemic circulation (See Eqns.
4.6.11 and 4.6.12) and similar introduction of parallel paths in the pulmo-
nary circulation. Some of these are nonlinear changes, such as the intro-
duction of a square-law term in the diastolic compliance, and non-
linearities in the peripheral resistances.
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Figure 4.6.3. Response of the non-pulsatile model of Fig. 4.6.2 to an infusion
pulse, FI.

(a) Input FI and total volume QT. Note that the change in QT is linear and
occurs only during the infusion.

(b) Volumes associated with the four compliances. All volumes tend to increase
with a total which equals 50 ml. Volume QR shows the fastest response, and
has the most overshoot.

(¢c) The varying parts of pressures PR and PS have the same forms
as QR and QS, as would be expected.

(d) The flows all tend to be equal, initially, and after transient ex-
cursions which are slower as we go from FR through FP, FL and FS,

they are again equal.
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The transients shown in the nonpulsatile model solutions indicate
that the human CV system has time constants that are not much greater
than a typical pulse period (of about 0.8 sec). It was deemed important,
therefore, that comparisons be made to check the nonpulsatile model
against the corresponding responses for a pulsatile model. This was done,
and the nonpulsatile model outputs were found to follow closely the
pulsatile outputs, when the latter were averaged over each pulse
(Rideout-88).
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It is possible to find some closed-form expressions that give the
changes in the steady-state conditions in the linear nonpulsatile model,
by solving the set of algebraic equations for this system that results when
derivative terms are set to zero (Rideout-83b). This may be done using a
nonnumeric language such as REDUCE (Hearn-73) or MAXSYMA.
Some interesting results are as follows:

1. For a change Ag in total blood volume, the change Af in cardiac
output will be

Af = (G*G5 — GG *Ag/(—det) (4.6.15)
where
—det = (Cp, + CpHGax(1 + GoxRg) + Gyl
+ (Cg + CgilG, 1 + GgRp)+ Gyl
+ G#Gx(Rp + RgCg) + GG *(Rp*Cy,
(4.6.16)

+ Rg+Cp)
2. For a change ARg in total systemic peripheral resistance,
the change in cardiac output will be

Af = —FH[G*G3xCg + GpGxCy

+ GpGyr (Cp, + Cp)l*ARg/(—det) 4.6.17)
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