Models and Methods for the Analysis of Large-Scale Neural Recordings, with Application to Allen Brain Observator

Project #1: Spike inference from calcium imaging data

- A fast algorithm for estimating spike times (Jewell et al., 2020, Biostatistics)
- Quantifying uncertainty associated with estimated spike times (Chen et al., 2021, Biostatistics)
- Applying spike inference methods to dopamine neurons (Fleming and Jewell et al., 2021, PLoS One)

Project #2: Comparisons of calcium imaging and electrophysiology

- Analysis of jointly recorded calcium imaging and juxtacellular electrophysiology (Huang, Ledochowitsch, et al, eLife 2021)
- A comparison of physiological responses recorded with either extracellular electrophysiology or calcium imaging with large scale datasets collected with standardized pipelines. (Siegle, Ledochowitsch, et al, eLife 2021)

Project #3: A mixture model for neural activity

- We propose a model in which each neuron belongs to one of several clusters based on its functional response stimulus
- We fit the model using an EM algorithm
- Application to the Allen Cell Types Database

Project #4: Building and training anatomically constrained deep neural networks

- We constructed a convolutional neural network whose architecture is determined by data from the Allen Mouse Brain Connectivity Atlas and other sources. (Shi, et al, in review, 2021)

End Users Anybody who collects calcium imaging data or other large-scale neural recordings Daniela Witten – U. Washington Michael Buice – Allen Institute NIH R01 EB026908

