Spinal Circuits for the Control of Dexterous Movement

NINDS/NIH U19 funded through the BRAIN Initiative

3. Predict cell types

Control theory, Information theory

4. Model mechanical forelimb responses

Newtonian mechanics, model for muscle contraction

Modeling Approach

Model MNs and muscle recruitment during motor behaviors

Model mechanical forelimb responses

Newtonian mechanics, model for muscle contraction

Experimental Data

MNs and INs recording

Bulk EMG Recordings during behavior

Modeling Approach

Model MNs and muscle recruitment during motor behaviors

Model mechanical forelimb responses

Newtonian mechanics, model for muscle contraction

Experimental Data

Elbow flexion/extension Behavior

Elbow isometric contraction

Wrist abductor/adduction

Modeling Approach

2. Model optimal circuit configurations

3. Predict cell types

Experimental Data

Molecular Heterogeneity

Connectivity

Rabies tracings for pre-synaptic input

Viral tracings for post-synaptic output