
 1

Summary of Some Common Jarnac

Language Constructs

Sample model definition:

p = defn cell

var S1,S2; // floating species

ext X0,X1; // boundary species (remain constant)

// Declare each reaction and its associated rate law

J1: X1 -> S1;k1*X0-k2*S2;

J2: S1 -> S2;Vm*S1/(Km+S1);

J3: S2 -> X1;k3*S2^n;

end;

// Initialize all the parameters and variables
p.X0=1.2; p.X1=0.0;

p.S1=0.001; p.S2=0.001;

p.k1=1.2; p.k2=5.6;

p.Vm=10.5; p.Km=0.4;

p.k3=5.6; p.n=3.5;

// Define some convenient variables
TimeStart=0;

TimeEnd=10;

NumberOfDataPoints=100;

// Perform the simulation
m = p.sim.eval(TimeStart, TimeEnd, NumberOfDataPoints,

 [<p.Time>, <p.S1>, <p.S2>, <p.J1>]);

// The above statement returns a matrix which we can graph
graph(m);

 2

Multiple Plots

To overlay an existing graph with another use the command:

setghold (true);

For example, carry out one simulation, change a parameter and

resimulate, displaying both simulations on the same graph:

// Carry out first simulation
m = p.sim.eval(TimeStart, TimeEnd, NumberOfDataPoints,

 [<p.Time>, <p.S1>, <p.S2>, <p.J1>]);

// Plot the results
graph (m);

// Hold the current graph
setghold (true);

// Change a parameter value
p.k1 = 35.5;

// Repeat the simulation
m = p.sim.eval(TimeStart, TimeEnd, NumberOfDataPoints,

 [<p.Time>, <p.S1>, <p.S2>, <p.J1>]);

// Plot the new results
graph (m);

// Turn off the graph hold
setghold (false);

Stochastic Simulations

Jarnac has a wide variety of commands for carrying out stochastic

simulations. These include:

gillLoadSBML (sbmlString);

This loads an SBML model into the Gillespie simulator, eg.

gillLoadSBML (p.xml);

where p is a Jarnac model variable.

 3

Using the loaded model, carry out a Gillespie simulation from time

start to time end. The samplePeriod is indicates how often to take a
measurement. A samplePeriod = 1 means take every data point that

the Gillespie algorithm generates, whereas samplePeriod = 10 means
take every 10th point. Note that time intervals in a Gillespie simulation

are not regular, to get regular time points use the grid based calls.

gillSimulate (startTime, endTime, samplePeriod);

Using the loaded model, carry out a Gillespie simulation from time
start time end. The gridSize indicates when to record data from the

simulation. A gridSize = 1 means record data at intervals of time one.
The units of time will depend on the units given to the rate constants

in the model.

gillSimulateOnGrid (startTime, endTime, gridSize);

The following call is the same as the previous one except it will do

multiple simulations indicated by the populationSize argument. From
the population of runs, the method will return columns corresponding

to the mean changes. For example, the following call will run 10,000
simulations on a grid of width 0.1 and returns the mean change in

species levels.:

gillSimulateMeanOnGrid (0.0, 10.0 0.1, 10000);

gillSimulateMeanOnGrid (startTime, endTime, gridSize,

populationSize);

The following call is the same as the previous one except it also

returns the standard deviation as well as the mean.

gillSimulateMeanAndSDOnGrid (startTime, endTime, gridSize,

populationSize);

 4

There are times when simulations runs need to be repeated exactly,

this can be accomplished by setting the random number generator
seed. This ensures that runs with a given random number seed will be

identical.

gillSetSeed (value);

This call enables a parameter in the model to be changed without
having to reload the SBML model into the Gillespie solver.

For example: gillSetParameter ("k1", 0.1234);

gillSetParameter (parameterName, value);

The following call will return parameters names in the model:

gillGetNamesOfParameters();

The following two calls return the names of the floating and boundary
species respectively.

gillGetNamesOfFloatingSpecies();

gillGetNamesOfBoundarySpecies();

Example:

// This will run multiple Gillespie simulations

// at different parameter values and plot the

// resulting runs on one graph.

P = defn myModel

 $Xo -> S1; k1*Xo;

 S1 -> $X1; k2*S1;

end;

p.Xo = 10;

p.S1 = 0;

p.X1 = 0;

p.k1 = 0.23; p.k2 = 0.56;

gillLoadSBML (p.xml);

 5

m = gillSimulate (0, 50, 1);

graph (m);

setghold (true);

k1 = 0.1;

for i = 1 to 5 do

 begin

 gillSetParameter ("k1", k1);

 m = gillSimulate (0, 50, 1);

 graph (m);

 k1 = k1 + 2;

 end;

setghold (false);

Other Useful Methods:

m = timeSlice (matrix, lowerTime, upperTime;

This call will take a matrix and returns all rows between lower and
upper time bounds. It is assumed that the first column of the matrix

contains the time variable with ascending values.

v = getColumn (matrix, index);

This function returns a single column from a matrix m at column index
and returns the column as a vector.

m = getColumns (matrix, [3,4,1,2]);

This function extracts a set of columns from a matrix argument and

the returns the columns in the form of a new matrix. The columns are
selected from the list argument where elements of the list indicate

column indices.

m = pdf (v);

This function takes a vector as an argument and returns a matrix

corresponding to the probability density function.

pdfPlot (v);

Same as the function pdf() but plots the data as a histogram.

exportCSV (matrix)

or

 6

exportCSV (matrix, separator)

Exports the matrix, m as CSV data. Depending on your computer
setup, an appropriate application will be launched (eg. Excel,

OpenOffice) to load the data. This is useful for quickly transfers a
matrix of data to another application such as Excel or OpenOffice.

The second version of exportCSV() allows one to specify the separator

between data values. The default is to separate data values using ‘,’
but this may not always be appropriate.

For-Loop :

for i=1 to 100 do

 begin

 <code>

 end;

If-statement:

if a == 4 then

 // begin-end only needed for multiple statements

 begin

 <code>

 end

else

 begin

 <code>

 end;

printing:

println "statement”, x, y, z;

Matrix operations:

m1 = matrix (10,5); // Construct a 10 x 5 matrix

v1 = matrix (10,1); // Construct a column vector

v2 = matrix (1,6); // a row vector

m2 = aug (m1,v1); // Augment the columns of m1 and

 v2 together

m3 = augr (m1,v2); // Augment the columns of m1 and

 v2 together

