Linking Genome to Physiome

Oscillatory Systems: Lab 2

The purpose of this exercise is to explore different kinds of oscillators found in
natural systems and to investigate one particular property of cyclic networks.

Consider the following simple system:

where the rate for the first step v; = ky * Xo + Vmax x X, x S;"/(15+ S1")

and the rate for the second step, vy = ko X 57.
Set n =4, ky to a value of 0.01 and k, to a value of 0.1.

X, is assumed to be a boundary species with a value of X, = 1. Vmax can
be set to 12. Since the second step is irreversible X; has been omitted from
the pathway diagram (It has no influence).

Question 1. The first task is to confirm that the above system can show
bistable behavior. Attempt to show bistability by varying the starting con-
centration of S; and running simulations. Confirm that you can obtain two
different steady states. Supply the necessary plots as evidence.

Jarnac tip:

You can rename a column label in a matrix by using the command
setColumnName(). For example to set the 3rd column label for a matrix
m to the string “S1(0.01)” use the command:

setColumnName (m, 3, "S1(0.01)");

Question 2. You are now going to build a relaxation oscillator based on the
bistable system from question one. This can be very simply done by adding
one extra reaction to the bistable model:



X, — S, with rate law kg x X,

Note that the X, in the bistable model is now renamed to S,. Make sure
you relabel the species names in the feedback rate law to match this name
change.

By simulation, locate the range of values where the system oscillates by
adjusting the values of the ky rate constant. You might find that kq has to
be on the low side.

The question is how does this oscillator work?

Question 3. We will now build a feedback oscillator based on a series of
connected genes. The last gene product should inhibit the first gene. All
other genes should activate the next in series. You will probably need at
least three stages to ensure a sufficient delay (Model will be shown on the
overhead projector)

Stop here

Question 4. Build the following model:

v A— AP
ve i AP — A

The above reaction steps form a cycle. Species A might represent a protein
and AP the phosphorylated form of the protein. Assume that each cycle
reaction is catalyzed by a simple irreversible Michaelis-Menten reaction. The
table below shows the values for the kinetic constants.

Reaction Vmax Km
U1 Vmaxl = 0.1 Kml =0.1
Vg Vmax2 =1 Km2 = 0.1




Initialize A to 1.0 and AP to 0.0.

a) Compute the steady state for this system. If you find that the program
complains about being unable to compute the steady state, compute a time
course for a short while (eg p.sim.eval (0, 30, 20,[]1)) in order for the
steady state command to have a good starting point. Something like this
would work:

p.sim.eval (0, 30, 20,[]1);
p.ss.eval;

b) Vary Vmax1 from 0.1 to 2.0 in steps of 0.1 and recompute the steady state
at each new Vmax1. Plot the steady state concentration of AP against the
value of Vmaxl.

c¢) Vary both Km’s using the following values:
0.1,0.2, 0.5, 1.0, 5.0

In each case recompute the curve you generated in b).



