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Modeling is essential to integrating knowledge of human phys-
iology. Comprehensive self-consistent descriptions expressed in
quantitative mathematical form define working hypotheses in
testable and reproducible form, and though such models are al-
ways “wrong” in the sense of being incomplete or partly incorrect,
they provide a means of understanding a system and improving
that understanding. Physiological systems, and models of them,
encompass different levels of complexity. The lowest levels concern
gene signaling and the regulation of transcription and translation,
then biophysical and biochemical events at the protein level, and
extend through the levels of cells, tissues and organs all the way
to descriptions of integrated systems behavior. The highest levels
of organization represent the dynamically varying interactions of
billions of cells. Models of such systems are necessarily simplified
to minimize computation and to emphasize the key factors defining
system behavior; different model forms are thus often used to rep-
resent a system in different ways. Each simplification of lower level
complicated function reduces the range of accurate operability at
the higher level model, reducing robustness, the ability to respond
correctly to dynamic changes in conditions. When conditions
change so that the complexity reduction has resulted in the solution
departing from the range of validity, detecting the deviation is crit-
ical, and requires special methods to enforce adapting the model
formulation to alternative reduced-form modules or decomposing
the reduced-form aggregates to the more detailed lower level
modules to maintain appropriate behavior. The processes of error
recognition, and of mapping between different levels of model com-
plexity and shifting the levels of complexity of models in response
to changing conditions, are essential for adaptive modeling and
computer simulation of large-scale systems in reasonable time.

Keywords—Adaptive model configuration, cardiac contraction,
cardiac metabolic systems modeling, constraint-based analysis,
data analysis, energetics, model aggregation, multicellular tissues,
multiscale, optimization, oxidative phosphorylation.

I. INTRODUCTION

The importance of developing multiscale models for
integrating our knowledge of biological systems, from
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microorganisms to the intact human, has been emphasized
in a series of papers by Coatrieux beginning last year [1].
Physiology has been the preeminent integrating discipline,
but it is the combination of engineering and physiology
that is putting systems together in a quantitative fashion.
Though standard textbooks tend to consider only one level
of complexity at a time, modern developments in genomics,
molecular biology, and physiology encourage thinking
through the different levels of modeling complexity, from
cell, tissue, and organs to the behavior of highly integrated
systems. But the path is seldom clear, because the systems
are exceedingly complex.

One idea is to represent the system complexity in terms
of different scales of resolution, where scaling might be spa-
tial or temporal or both. In this conceptual approach, we start
with a set of well-defined parts of the system, which repre-
sent working hypotheses about how a portion of the overall
system works. These necessarily local hypotheses are useful
as thinking tools, as aids to experiment design or targets
for disproof, and as components for more all-encompassing
models. For each such subsystem (or module), a mathemat-
ical model is described that captures the behavior of the sub-
system’s inputs, outputs, and state variables. These models
are most commonly sets of differential, partial differential,
or difference equations, but may also incorporate switches,
local operations, and convergence algorithms.

A module might represent a local approximation to the op-
eration of a more complex model, around a specific operating
point. This is normally accomplished at the risk of limiting
the range of adaptability of the model.

Fig. 1 is a pictorial representation of this idea. Each small
pyramid represents a subsystem module. An aggregate
model can be constructed from a set of such modules, and
that aggregate model may itself be one of several modules
at the next level of complexity. One challenge in this aggre-
gation process is matching module inputs, outputs and state
variables. A second issue is the extrapolation for “missing”
modules (where a model is not known, or simplifying as-
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Fig. 1. Diagram of multiscale cell model. Pyramids at each level of complexity represent individual subsystem modules.

sumptions are made). For example, if the levels in Fig. 1
correspond to time scaling, then some of the “missing”
modules might be represented as constants (over intervals
of interest) at a slower time scale modeling level, such as
by linearization. The level of detail that is possible (i.e., the
number of modules that can be constructed) is, of course,
dependent upon the availability of data on which to base the
modeling.

Constructing a fully developed multiscale model is a brute
force task. The level of model resolution is tightly coupled to
the computational load. The high-resolution model is neces-
sarily computationally slow. If models are to be used both
as “mind expanders” in exploring systems behavior and as
data analysis tools, it is critical “to compute at the speed of
thought” (a misquote of the book title by Gates [2]). There
is a tradeoff between the computational complexity of the
model and accuracy at the cost of omitting or approximating
some of the elements, maintaining the correct behavior of the
model within a range of interest.

Consider the requirements to compute model solutions in
real time—for example, for patient care in a clinical inten-
sive care unit or to control the delivery of an anesthetic agent
during an operation. Computational speed and accuracy are
both required. While data are being acquired continuously,
the high level (most aggregated) model is used in the analysis
of those data. If the patient’s status changes such that the re-
duced model form incorporated into the aggregated model is
no longer within its limited range of validity, then the model
resolution will need to be increased, at least for a short time.
That is, more detailed modules must be used (at a higher
computational cost) to capture these changes.

An overall systems approach to developing a multiscale
model of physiological systems might be summarized in six
steps.

Preprocessing
1) Define the model (at its highest level of resolu-

tion) and validate it against diverse data sets. This
involves describing the system (as a set of intercon-
nected subsystems), expressing the system models
mathematically, writing and verifying the computer
code, and then validating the modules and the
system model against high-quality data.

2) Design reduced-form modules and parameterize
them to match full module behavior. These reduced
form models (and associated software modules)
are designed to compute faster, yet to capture the
varied essences of the fully developed models,
parameterizing them for specific conditions by op-
timizing their behavior against the fully developed
equivalent modules or elements.

3) Determine ranges over which the reduced-form
modules are valid.

Processing
4) Monitor variables for deviations from expected

or valid behavior. When appropriate, replace in-
adequate modules with more detailed, lower level
modules.

5) Replace lower level modules with aggregated,
higher level modules, thereby returning to a state
requiring less computation, when conditions allow,
i.e., when within the range of conditions for which
a reduced-form model has been demonstrated valid.

Postprocessing
6) Validate performance of the multiscale model

simulation against expectations and against experi-
mental or clinical data.

Steps 4 and 5 involve the adaptation of the simulation to
changing conditions, in order to attain and maintain both
accuracy and efficient computation. When reduced-form
models become less valid in representing the physiology,
the computation must shift to use either the full subsidiary
model or an alternative form of the reduced model (in either
case using automated reconfiguration of the model). Detec-
tion may involve empirical recognition of signal features,
because either an artificial intelligence approach or a signal
detection technique may be used. Given that sets of reduced
modules are available, successful automation of steps 4 and
5 permits the full model to go through successive reductions,
decomposition as conditions demand, and reduction again.

In this paper, we discuss the variety of mechanisms for
maintaining the accuracy of computationally fast composite
models, while dynamically changing to the slower, more
complex middle and lower level modules. This approach to
carrying out simulations, with continuous monitoring and
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dynamic control of the computing carried out at subsidiary
modules in a multiscale model system, is analogous to
changing numerical methods over time as the degrees of
stiffness vary.

Unlike simulations in engineering and physical sciences,
in physiology the processes are often unknown and are being
redefined. However, in both life sciences and physical sci-
ences, a common principal goal is to determine integrative
behavior. Error in multicomponent physiological modeling
is potentially large because almost every module provides in-
puts to other modules, propagating any error. In our adaptive
approach the idea is to control the processes of simulation to
detect error and to adjust the computation to avoid it. This is
a work in progress, and many advances are needed to refine
the methods.

II. MULTISCALE MODELING OF CARDIAC PERFORMANCE:
MODELING CELL-TO-ORGAN SYSTEMS

Modeling of the physiome from genome to integrated
organism is currently impossible: there is not enough infor-
mation available, particularly at both the lowest and highest
levels, and there is not enough computer power to compute
what is known at the intermediate levels even if one actually
succeeds in putting it into one model of human physiology.
For example, the three levels in Fig. 1 might represent the
cell, from the biophysical/biochemical level of proteins at
the bottom, to subcellular modules for processes like me-
tabolism, energy generation, contraction, etc., in the middle
level, to the top level of integrated cell behavior. Below the
bottom level would lie the levels of gene regulatory networks
and of transcription and translation. Above the composite
model cell level are the levels of tissue, of organs, and of
organ systems and their regulation.

While the fully developed lower level biophysical models
can be designed to account for the function of a particular
protein over a wide range of conditions, changes of temper-
ature, pH, ionic milieu, phosphorylation, and so on, much of
this adaptive condition of the behavior must be sacrificed at
the higher levels in order to keep the larger, midlevel models
running “at the speed of thought” or at least at a speed com-
patible with use in optimized fitting of models to data.

Cardiac electrophysiology has been a target for model
reduction strategies. A cardiac cellular action potential
model requires accounting for many ionic currents, ionic
buffering, and ion pumps and exchangers for maintenance
of the intracellular milieu, about 120 equations in the model
of Michailova and McCulloch [3]. Even so, a pair of equa-
tions from Fitzhugh [4] and Nagumo [5] can represent the
propagation of excitation through the myocardium very
well, a huge reduction in computation time. Poole et al. [6]
looked upon such reductionist approaches in a broader way,
comparing the ordinary and partial differential equation
models with cellular automata models.

That computation time is a problem is understandable in
view of the complexity inherent to the biology. The route
from gene to function is anything but clear, and in fact there is
usually no cause-and-effect chain of understanding between
gene and phenotype. Not only is the idea “one gene—one

protein” [7] now replaced by the recognition that in humans
one gene may contribute to perhaps 10 proteins, but, lacking
intermediate level information to define cause-and-effect re-
lationships, one looks for statistical evidence that a particular
gene is associated with a particular phenotype. At the protein
level, an amino acid substitution in an enzyme or channel
protein may dramatically alter its function. At the level of
integrated cellular biochemical systems, models must be
expressed in dynamical equations in order to capture the
nuances in rate expressions and the thermodynamics of re-
versible reactions. Matrix calculations that account only for
steady-state relationships cannot represent system changes
over time. For assurance of validity, the models must also
capture conservation conditions such as balances of mass
(including the solute mass bound to enzymes), energy, and
constituent fluxes. Tissue-level models are composed of
such cellular models with appropriate anatomic measures
of volumes and distances. As an example, reduced forms
are in use for steady-state tracer analysis of images from
positron emission tomography (PET) and magnetic reso-
nance imaging (MRI). Physiological modeling, however,
requires handling transients in response to external changes,
or tracer transients in chemical steady states, situations in
which steady-state fluxes do not provide the answer.

Some lessons have been learned in the applications of
transport modeling to the interpretation of image sequences
from PET and MRI. Models of cell-to-blood solute ex-
changes and chemical reactions must be simplified to be
computed fast enough to aid in the repetitive trial-and-error
method of devising hypotheses and designing critical exper-
iments. Eliciting physiological parameters from the data sets
acquired over minutes to hours involves fitting time-domain
solutions iteratively for each region of interest (ROI), often
for hundreds of ROIs in order to create a parametric image
conveying physiological information about the tissues. To
save time, reduced-form models must be parameterized to
reproduce the response functions of the full model, for any
given element or module, an optimization that results in a
descriptor that is correct over only a limited range of model
validity. Error correction requires resorting to the more
complex and detailed forms of the modules and elements.
The process of recognition, going down the hierarchy of
model forms and back up is difficult, prone to error, and time
consuming, but is essential for modeling large-scale systems
in reasonable time.

The physiological response to exercise illustrates a point,
namely, that there is rather tight regulation of blood pressure
in spite of large changes in body metabolism, cardiac output,
and vascular resistance. In general, in the adult, there is a
nested hierarchical control, the lowest levels relating to the
regulation of transcription and the generation and degrada-
tion of proteins. Currently, computational models integrating
cellular events into tissue and organ behavior utilize simpli-
fications of the basic biophysical and biochemical models
in order to reduce the complexity to practical computable
levels. The “eternal cell” model [8], [9], focused as it is on
cellular ion and substrate and energy regulation, is relatively
simple but still complex enough that it has reduced forms
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for specific applications. Reductions compromise the adapt-
ability of the models to respond correctly to dynamic changes
in external inputs, for these normally require adjustments in
rates at the biophysical, biochemical, and gene regulatory
levels.

The cardiac responses to exercise involve cardiac cel-
lular energetics, contractile force development, beat-to-beat
ejection of blood from the cardiac chamber, the regulation
of blood pressure and cardiac output, and its redistribution
throughout the body. The five levels of modeling we con-
sider in a cardiovascular system model are these:

• protein kinetics (for individual channels, transporters,
exchangers, receptors, and enzymes);

• cellular subsets or reaction groups (glucose or fatty acid
metabolism, oxidative phosphorylation, contraction,
cellular excitation);

• integrated cell systems, our “eternal cell” (metabolic
rate, ionic balance, redox state, pH regulation);

• multicellular tissue-to-organ function (endothelial,
smooth muscle, and parenchymal cell interactions and
intercommunication, contraction of heart, pressure
generation).

• physiological system function and regulation such as
heart rate and blood pressure.

Our specific exemplary cardiorespiratory systems model
is a five-level model with severely reduced representation
at the supporting levels and is limited to a high-level repre-
sentation, yet it gives appropriate pressures and flows in the
circulatory and respiratory systems, gas exchange including
oxygen and carbon dioxide and their binding to hemoglobin,
bicarbonate buffering in the blood, H production in the tis-
sues, control of the respiratory quotient (RQ), baroreceptor
and chemoreceptor feedback control of heart rate, respi-
ratory rate, and peripheral resistance. This is a large-scale
model that summarizes the information from key studies
done over the past century and that adapts to changing
conditions in a limited way. It is available now for public use
as the model VS0011 and serves as a basis not merely for
the understanding of physiology, but for pathophysiological
processes and their consequences. With development, it will
be a good framework for pharmacokinetics and pharmaco-
dynamics, as the tissue processes become broadly enough
described to handle blood–tissue transcapillary exchange
and cellular metabolism.

A cell model needs to be linked with an overall circulatory
system model in order to support variation in tissue events
(varying blood flows, metabolite production, substrate ex-
changes). While this can be done at a fairly simple level for
handling a few solutes at a time, as we have done using axi-
ally distributed capillary-tissue exchange models accounting
for gradients along capillaries [10], [11], these models are
themselves computationally demanding when used in their
fully expanded forms accounting for intraorgan flow hetero-
geneity [12] and for exchange, metabolism, and binding in
red blood cells, plasma, endothelial cells, interstitium, and
the organ’s parenchymal cells, and require up to the equiva-

1[Online]. Available: http://nsr.bioeng.washington.edu/software/models/

lent of 80 000 differential equations. These particular model
types [blood–tissue exchange (BTEX)] [11] are designed so
that parts not used are not computed, saving much time, and
they can be reduced to the form of a single-compartment,
lumped model.

Control of contractile performance is defined by influences
external to the cardiomyocyte, namely, levels of sympathetic
and parasympathetic stimulation and circulating hormones,
and cardiac filling pressures (preload), the arterial pressure
against which the heart ejects blood (afterload), the heart rate,
and the peripheral vascular resistances. Integration of these
events into a whole organ model accounting for regional het-
erogeneities in flow [13], [14] and contractile stress [15], [16]
gives rise to a level 4 organ model with spatial patterns of
regional flows and oxygen consumption that are fractals in
space but are stable over time. When put into the context of a
fully developed three-dimensional finite element heart model
with all the correct fiber and sheet directions, one should be
able to discern whether or not the spatial heterogeneity of
local flows is governed by the local needs for energy for con-
tractile force development. It takes such a fully developed
model to examine the simple hypothesis that local muscular
work loads determine local blood flows, so this hypothesis
has yet to undergo testing.

Literally hundreds of published models, some in texts
[17]–[20], serve as background to our efforts in composing a
five-level model with full sets of equations. At the cardiores-
piratory system level, the classic model of Guyton et al. [21]
was the pioneer. Of the many recent models near that level,
there are several by Clark et al. [22] illustrating a coherent
and extensive body of work. Reproducible models, carefully
documented, and published with full sets of equations,
parameters, and initial conditions, are remarkably rare, but
include Hodgkin and Huxley [23], Beeler and Reuter [24],
Winslow et al. [25]–[27], Noble [28], Sedaghat [29], and
[30], some of which can be found at our Web site,2 along
with many subcellular level, transport, and electrophysio-
logical models.

Tissue-level models are composed of a set of cell models
(myocyte, smooth muscle cell, endothelial cell) all inter-
acting in governing and in being influenced by interstitial
fluid (ISF) concentrations. For example, in hypoxia, where
ATP is released from myocytes, the extracellular hydrolysis
of ATP to AMP is due to the interstitial alkaline phosphatase,
which is abundant at the arteriolar end of capillaries, not
the venous end. This localization requires using axially
distributed models [11], [12], [31]–[36] for representation
of the convection–diffusion–reaction events.

Cell-to-organ models will be vehicles for integration from
observations of many sorts, mRNA array sequences, gas
chromatography/mass spectrometry metabolomic arrays
and capillary electrophoresis/mass spectrometry proteomic
arrays, nuclear magnetic resonance spectroscopy and optical
observations of cellular kinetics, electrophysiology, ion
regulation, and so on. While the “eternal cell” lacks the key
ingredients for gene regulation, it is centrally positioned to

2[Online]. Available: http://www.physiome.org
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be augmented by data and synthetic models of signaling net-
works and to define the effects of specific genetic variants,
as in the studies by Saucerman, McCulloch et al. [37], [38].
Signaling networks (i.e., ligand-receptor binding, GTPase
activation, intracellular phosphorylations) and genetic reg-
ulatory networks (gene transcription initiation, activation,
repression, etc.) have been extensively studied in recent
years and will be incorporated. Palsson and colleagues [39],
[40] have developed interesting approaches to signaling and
regulatory networks using a constraint-based steady state.
For cardiac studies we think there is an ideal preparation
for studying the regulation of transcription of contractile
proteins, namely, the chronically paced heart of ambulatory
dogs, in which hypertrophy, up-regulation of myofilament
proteins, develops in late-activated regions with increased
workloads, and in which atrophy occurs in early-activated
regions of diminished work [41], evidence of down-regu-
lation of synthesis of the same proteins. The “eternal cell”
model, by providing a basic energetically and metabolically
based picture, is considered a key step to augmenting the
powers of genomic and molecular biology. It is also a key
to determining how genetic and cellular interventions can
affect the physiology of the whole body.

For each component subsystem in a cardiovascular/respi-
ratory model, one or several reduced models are to be devel-
oped; these may use differing levels of approximation or may
be specific for use in different ranges of model functions, as
in metabolism at rest versus exercise. Over a five-level hier-
archical system, one must use successive levels of reduction,
coalescing each time a few lower level modules into a com-
putationally more efficient composite model. However, each
up-the-scale reduction limits the range of operational validity
of the composite model.

III. VERIFICATION AND VALIDATION

The verification, by testing to make sure that the compu-
tation provides results correctly from the equations, of such
models is difficult because there are often no analytical so-
lutions with which to make comparisons. The assurance of
correctness of the code starts with writing the equations to
provide internal checks for unitary balance, providing units
for all parameters and variables and using a compiler or code
checker that checks every equation, as is done in the JSim
simulation system.3 We strongly advocate incorporating unit
balance checking in every simulation system. The second
step is to write into the particular program the equations
checking for balances of mass, charge, momentum, energy,
etc. For biochemical systems, there should be checks for the
masses of particular components, H ion, NAD/NADH, total
phosphate, carbon and nitrogen and sulfur, and any other
moieties that are thought to be conserved while existing in
multiple forms. Water, osmotic, and ionic balances are essen-
tial, but are not easy to impose as constraints on the system.

Initial standard approaches to checking numerical stability
are to use different time step lengths and several different

3[Online]. Available: http://nsr.bioeng.washington.edu/PLN/Software

solvers while testing with a wide range of parameter values
to cause different degrees of stiffness. In some cases, it is
possible to test steady-state behavior in limiting cases and to
determine agreement with known analytical results or sim-
plified solutions. Such procedures do not guarantee, but help
to ensure, the correctness of the mathematical model (irre-
spective of its validity regarding experimental data), compu-
tational algorithms, and computer code.

The validation, by comparison of model solutions with
experimental data, that the model is a reasonable representa-
tion of the biology with its physicochemical, anatomical, and
mass constraints, is the scientific core of any model-based
project. Without it the modeling would be an exercise
in defining a concept. True “validation” requires testing
the model, component-by-component and level-by-level,
through to the integrated systems level, against high-quality
carefully chosen data. Many of these data sets will have
already been selected implicitly, for each of the basic bio-
physical modules would have been validated on particular
experimental data; this raises overtly the question of whether
or not the module’s form or its parameters are appropriate
for the conditions under which the aggregated model is
operating. Obtaining the original data sets is difficult and
often requires asking the original authors for their data. This
often fails because the data have not been retained. We really
need an international repository of experimental data, and
need to strengthen the resolve of journal editors and granting
agencies to push for the archiving of experimental data and
descriptions of experimental and analytical methods.

In physiology and pharmacology the digitized data are
often of time course responses to stimuli such as changes
in concentrations, pH, tracer addition, oxygen deprivation,
and so on. Other validation data are observations of enzyme
levels, metabolite concentrations, anatomic measures, and
tissue composition. Fully detailed metabolic profiling, pro-
viding data during transients, are needed and await technical
developments in the field. Using constrained mass, density
and volume considerations [42] powerfully resolves multiple
observations into a self-consistent mass-conservative context
for biochemical systems analysis.

For validation a dynamic model solution is fitted to the
data using a priori constraints wherever possible from the
anatomy and the thermodynamics. A model is considered
a viable “working hypothesis” when the model fit is good
for a variegated set of observations, preferably from several
different laboratories. Examples of validated models can be
found in [11], [43], [44].

The validation of reduced-form models has to take into
account that there may be more than one of them. Each
model will be an approximate analog to the full-complexity
parent model over a different limited range of conditions
and parameter settings, and therefore each version has to be
validated. These different forms can either be completely
different mathematical equations or different sets of param-
eter values. The validation therefore requires several steps:
namely, validation of the full-complexity model, definition
of the range of conditions over which the approximation is
valid, and reaffirming the validation against experimental
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data, seeking data over wide ranges of experimental or
physiological conditions

IV. CONSTRUCTING REDUCED-FORM MODELS

Cellular models are good targets for testing how best to
construct reduced models, since fully detailed cell models
are currently being developed. A reduced model should use
physically meaningful quantities under the constraint that the
reduced model forms are descriptive of the behavior of the
full models within a defined margin of error over a prescribed
range of conditions. Each is an approximate representation
that improves computational efficiency, but sacrifices some
accuracy in being applicable only over a restricted set of con-
ditions.

Reducing a complex chemical reaction system into a
simplified kinetic model has a long history in chemical
dynamics, a subfield of chemical physics [45]. One stan-
dard approach is to reduce a kinetic model by its time
scales. With a given time scale as the objective, there will
be fast time scales on which all the kinetics are treated
as quasi-steady state, and slow time scales on which the
dynamic variables are considered constant. This is formally
known as singular perturbation in applied mathematics
[46], [47]. Well-known examples of such are the studies on
the Belousov–Zhabotinsky reaction (oregonator) and the
Hodgkin–Huxley theory (FitzHugh–Nagumo) [48]. In the
latter example, the two-equation FitzHugh–Nagumo model
replaces the four-equation Hodgkin–Huxley model, so en-
hancing efficiencies in computing the spread of excitation in
a three-dimensional domain. The advantage of this approach
is that the reduced model usually preserves a high level of
connection with the original mechanistic model; hence, the
model parameters are physically meaningful. The drawback
is that this is a task for trained specialists.

Approaches to reduced model derivation usually involve
reductions in the kinetics of the model. Essentially all the
computational cellular biology models that are based on
nonlinear chemical kinetics involve enzymes. The extensive
literature on model reduction in enzyme kinetics reflects
the difficulty of multiscale model reduction as well as the
central role of enzyme kinetics in computational biology. A
careful biochemical analysis of enzyme catalysis or channel
or ion pump function usually leads to a detailed mechanistic
scheme with multiple steps and multiple intermediate con-
formational states (species). While molecular biochemists
strive for more complete description of the details, not all the
details are important to the description of the dynamics and
physiological functions. Recognizing that it is impractical
to compute large networks of protein reactions at the level
of either detailed molecular motions or of the kinetics of
all the conformational states, model reduction is useful to
move from biophysical- to cellular-level integration. The
key to faithfully modeling physiological function through
model reduction is to know which aspects of the model
require preservation at higher levels and which aspects can
be relatively crudely approximated without compromising
the robustness of the system [49].

V. ADAPTIVE MULTISCALE MODELING

For the multiscale modeling and simulation of complex
biomedical systems, it is necessary to represent the system,
either mathematically or in computer code, with verifiable
accuracy. This must be done for all subsystems (or modules),
at each level of scale. The multiple scales of interest can be
spatial, temporal, or both, and might involve different scaling
variables.

One goal of such a multiscale model representation is to
gain computational efficiency during real-time simulation
of the system, especially if control actions are taken on
the basis of model predictions. The reduced-form models
must accurately match the behavior of the full models (for
the components of interest, at that level) over a prescribed
range of conditions. They must be computationally more
efficient than the full model. It is important that they interact
correctly with other components at the same level and allow
for correct incorporation into the next higher level models,
with the goal being to attain accurate simulations of the
desired behavior, while minimizing computation.

In recent years, the mathematics of multiscale systems
modeling has been of great multidisciplinary interest. Three
excellent documents that address this issue are the results of
workshops sponsored by the U.S. Department of Energy in
2004 [50]–[52]. In particular, [51] contains a collection of
representative references regarding algorithmic approaches,
and applications to different fields. The range of types of mul-
tiscale modeling applications is quite broad, ranging from
ecological model aggregation [53] to representations of ma-
terials properties at the nanoscale.

As might be expected given the diversity of types of
multiscale systems, different types of applications have
special features which will limit generality of a single ap-
proach toward multiscale modeling. Of particular interest
to the authors is the development of well-described and
implementable procedures based upon constrained system
identification methods, to adaptively switch among models
of varying complexity, during real-time simulation.

Systems identification methods (using input/output repre-
sentations) are a common choice for fitting biological models
to the measured data. Most often, a discrete time representa-
tion of the system is used, corresponding to time-sampled
continuous time signals. A wide variety of system identifica-
tion algorithms (mostly based upon recursive least-squares
methods) are available and well understood for such systems.
From a given set of system input–output data, different order
models can be fit, with quantifiable accuracy for each. “Ar-
tificial data” obtained from computer simulation of detailed,
complex models can also be used, to supplement (or in place
of) measured input–output data.

Two key questions that must be addressed are:
• how to insure that identified model parameters are sen-

sible, and do not violate known-to-be true relationships
among system variables;

• how to switch back and forth between levels of com-
plexity during real-time simulation.
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The proposed solution to both of these problems is through
the imposition of equality and inequality constraints on iden-
tified model parameters.

To illustrate aspects of this adaptive switching problem,
we consider here a well-known class of models (dy-
namic system models that are linear-in-parameters) which,
nonetheless, are sufficiently complex that key issues of
interest arise. This choice of model class is for pedagogical
reasons (and because it is the easiest case to consider), but
we believe that the proposed approach has greater applica-
bility (although not yet developed).

Dynamic system models that are linear-in-parameters are
well established as a useful class of models for system iden-
tification and adaptive control. This class of models allows
for linear systems, and also for a large class of nonlinear sys-
tems that can be represented as time series expansions in the
input and output variables.

Models under discussion have the following form (at each
level of complexity, and for each subsystem at the same
level):

where is a vector of observed output variables at time .
There are unknown parameters . The vector of regres-
sion variables (or regressors) contains the data (i.e., the mea-
sured values of system inputs and past outputs or functions of
them) which are used, for each time , to fit the parameter es-
timates . The values of and the parameters are generally
different for each module at the same level of complexity and
tend to increase as the level of model complexity increases.

Any text with “systems identification” in the title will pro-
vide the reader with a detailed description of these methods
to estimate the model parameters (for a single module) [54].
The use of weighted recursive methods allows for capture of
time-varying parameter changes in fitting biological systems.
An example of the application of these methods to a physi-
ological system is the identification of models of electrically
stimulated muscle in paraplegics [55].

There are several issues that must be addressed in ap-
plying parameter identification algorithms for any single
model (of a particular level of complexity). Among these
are: 1) excitation issues and problems related to fitting
parameters of closed-loop systems; 2) offset identification;
3) the identification of input–output delays (i.e., latencies);
4) model order selection; and 5) the imposition of known
constraints in parameter identification. These are described
in the remainder of this section. Additional issues concerning
multiscale model fitting are described in Section VI.

A. Excitation Issues and Problems Related to Fitting
Parameters of Closed-Loop Systems

In order to identify the parameters, it is required that the
system input signal (that is, the time series of inputs) vary
sufficiently to “sufficiently excite” the system, so that all of
the parameters that we seek to identify are contributing to
the resulting output signal. This is analogous to needing to
vibrate all of the strings of a violin to model the response of
the instrument to fingers and bow. For this reason, an approx-
imation of white noise (generated by a pseudorandom binary

Fig. 2. Effect of change of offset on estimation of system steady-state gain.
Measured data points are indicated by the small squares.

sequence) is often used as a test input when identifying the
parameters of a linear time invariant system, since the spec-
trum of this signal has a wide range of frequency content.

When identifying a system that is under closed-loop con-
trol, it may not be possible to have the required excitation
for good parameter identification. If it is desired to maintain
a constant output level, and the control system is working
effectively, the resulting input may be almost constant, pro-
viding little or no parametric information. This is a com-
plicating factor when fitting parameters to the subsystems
of a physiological system during its operation. One strategy
to address this problem is, when possible, to collect data
from the subsystem of interest when it is somehow isolated
or decoupled from interconnecting subsystems—so that ex-
ternal control loops are not in operation. Of course, the re-
sulting subsystem performance may not be normal in such
an unusual situation, which may lead to incorrect model pa-
rameters. Another approach is to deliberately add a small
disturbance input signal, thereby ensuring adequate excita-
tion for purposes of model parameter identification.

B. Offset Identification

In many biological systems, there is a nonzero output
value, in response to zero input. That is, the system may
have an offset. When using a parameter identification like
weighted recursive least squares, the consequences of an
offset change on the estimated parameters can be significant.

Consider the situation shown in Fig. 2, in which the
steady-state input–output gain of the system is computed
from parameters that are identified using a weighted re-
cursive least-squares algorithm. The squares represent
measured data points. The original offset value, the ordinate
intercept [1], leads to the estimated gain shown by the slope
of line 1. At some time, the offset changes to value [2],
resulting in a new input–output relationship shown by line
2. It has the same gain as line 1, since only the offset value
has changed. New measured data points are shown by round
dots. Unfortunately, the recursive algorithm will fit line 3
to a combination of these new and old data points. The
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resulting estimated gain has the wrong sign—which could
be catastrophic if this gain were being used, for example, by
an adaptive controller. Any stable feedback system would
be made unstable by such an identification error.

To avoid this type of problem, it is possible to identify
the offset value directly as an additional parameter in the
vector. This is often difficult to do, because the offset may
change frequently, and thus obtaining data that is sufficiently
exciting for identification may be impossible. A more effec-
tive way to handle offset identification is to filter the input and
output signals, to separate low-frequency and high-frequency
effects. The low-frequency effects can be used to estimate
the offset, and then (after adjusting the data for this estimate
offset), the high-frequency effects can be used to identify the
remaining model parameters. This idea was developed for,
and applied as part of, the adaptive control of cardiac output
using a closed-loop drug infusion system [56].

C. The Identification of Input–Output Delays

Many biological systems have input–output time delay.
The magnitudes of such latencies are additional model pa-
rameters that must be identified. In some cases, they are time
varying (such as physiological responses to drugs, as receptor
sites are filled). Fixed delays in the response of the system
can be modeled in the above representation by shifting the
indexes of the input-related terms in the regressor vector by
the amount of the delay. When the delay is unknown, an alter-
native is to determine it by looking for the parameter related
to the earliest input signal where the identified value is not
“close” to zero. A variant of this method has been applied, as
a part of an adaptive controller of blood pressure in response
to sodium nitroprusside infusion [57].

D. Model Order Selection

In practice, the order of the model, as denoted by the
number of parameters, in the previous discussion, and
hence the dimension of the regression vector , are often not
known in advance. While consideration of model order is
usually associated with statistical time series analysis where
“order” implies the number of elements needed, e.g., for au-
toregressive moving average (ARMA) characterization, the
same ideas can be applied to deterministic modeling where
there are multiple levels of detail that might be used or not,
depending on the accuracy required. One way to select the
best choice of model order is to compare the performance of
a set of models, each using different values. But the larger
the number of parameters in the model, the better it will fit
any given set of data. The key issue is which order model
will be best when then tested on a new set of data (other than
the data used to fit the model).

For linear-in-parameter models, the set of models (of dif-
ferent order) that are involved in this determination might be
fit using the recursive least-squares identification methods
for various choices of . A more computationally efficient
approach is to use ladder time model structures, where each
model of a given order contains the first parameters of
higher order models. This facilitates the use of order recur-
sive identification algorithms, the most common of which

are based on the Levinson–Durbin recursion. In particular,
order recursive identification can be used in real time, to ad-
just model order, increasing or decreasing it as appropriate
to best fit measured input–output data. Several methods have
been proposed to select model order for this class of system.
The three most popular are the Akaike Information Criterion
[58], the Final Prediction Error [59], and the Minimum De-
scription Length [60] methods.

E. Imposition of Known Constraints in Identification

When fitting parameters for the model of a physiological
system, constraints on the allowable values of parameters
of functions of the parameters are often known. Further, a
particular value may be nonnegative or greater than a known
threshold. The system gain might lie between two values.
A linear model’s poles may be stable. The information
contained in inequality constraints on allowable parameter
values should ideally be used in the parameter identification
process.

In complex interconnected systems like the circulatory and
respiratory systems or large biochemical networks, there are
many fewer degrees of freedom than there are equations and
parameters. As a result, there will arise equality constraints
on model parameters. These can also result from interactions
between subsystem levels.

When such constraints on the allowable values of identi-
fied parameters are based on “known to be true” facts, this
information can be exploited to improve model fitting. For
example, known facts about the shape of a particular non-
linearity (the “muscle recruitment curve”) were used, as an
equality constraint on the parameters, in the simultaneous
real-time system identification of nonlinear recruitment and
muscle dynamic properties in the quadriceps muscle of spinal
cord injury subjects [61]. Methods for imposing inequality
constraints, based upon a combination of linear program-
ming methods combined with least-squares methods, have
been applied to the adaptive control of drug infusion for reg-
ulation of cardiovascular system variables [62].

F. Other Relevant Model Types

The five issues described above are relevant to many
other classes of models, beyond linear-in-parameter models.
Physiological subsystem models need not take the form of
difference or differential equations, with parameters and
variables taking real number values. For example, at the
molecular level, a dynamic algebraic system representation
can be used for the prediction of local variations of DNA
helical parameters, with the base pair sequence (from one
end of the helix to the other) considered as the system input
signal, and geometric features of the DNA molecule (at each
location along the helix) considered as the output. Parameter
identification methods have been applied to this type of
system, using genetic algorithms [63].

Some systems essentially switch between different
models, based upon discrete events or certain variables
traveling across switching boundaries. This type of system
is challenging to represent, because such transitions are
generally not fully deterministic. One approach to capturing
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the behavior of systems of this type is to represent them as
switching between different models, due to an underlying
Markov process. The stochastic control theory for such
“jump systems” is well developed [64]–[69] but the design
of parameter identification methods for such systems is an
open question.

Models need not be numerical. For example, they might
be composed of logical (“if–then”) rules. Such rules might
be handcrafted, but they can also be extracted from sets of
input–output data using a variety of methods, including ar-
tificial neural nets and other artificial intelligence methods.
For example, a set of rules using foot force sensor informa-
tion for real-time gait event detection in spinal cord injury
patients during paraplegic walking has been extracted using
fuzzy system identification [70], [71], which enables deci-
sion control based upon observations.

VI. ADAPTIVE MODEL MODIFICATION

Five different actions are involved in adaptive model
modification: 1) reduction: switching to a reduced-com-
plexity model (also called compression or aggregation);
2) model switching: substituting one reduced-complexity
model for another when conditions change or inadequacies
are detected; 3) reparameterization: abruptly or gradually
changing a model’s parameters to make it more accurate
under current operating conditions; or 4) decompression:
using a higher complexity model to obtain more precise
results and also possibly to recalibrate reduced form models
(also called decomposition, disaggregation, and lifting); and
5) detecting when to switch between models. Each of these
is briefly described below, and then methods for determining
when to take these actions are addressed.

Determining when to execute these model modifications
is based upon real-time monitoring of the accuracy and ef-
fectiveness of the simulation currently in use (i.e., its level of
complexity and the modules involved). The decisions to take
any of the five types of actions listed above might involve
error signal analysis (discussed in greater detail below), or it
might involve rule-based methods.

A. Reduction/Aggregation/Decreasing Resolution

For each component subsystem, at each of the levels of the
five-level model, there may be several reduced-order models
fit from observed inputs and outputs to the component sub-
system. These families of identified models will generally be
nested, and of increasingly complexity. Aggregation involves
combining modules at a level into a single module at the next
level of simplicity. One approach to doing this is to solve an
embedded optimization model—finding best approximate fit
of a simplified model solution to that of the more complex
parent model using a least-squares minimization of some par-
ticular objective function. An alternative approach, when de-
creasing resolution for a single module from a more detailed
level, involves lattice form representations, where first pa-
rameters of th order and th order models are the
same. Note that the term “aggregation” is sometimes used to
refer to combining models, without changing the complexity
of the modules.

Reduction may be appropriate when higher resolution
models are not needed to obtain the desired level of accu-
racy, when they will cost too much in computational load, or
when there are mismatches between modules due to lack of
data. Reduction can be thought of as the implementation of
Occam’s Razor, with rationality in terms of first principles.

B. Model Switching

Substituting one reduced form model for another is useful
when prior exploration has defined ranges within which dif-
ferent model variants are applicable. Then it is a simple de-
cision to switch to a different model variant when the system
variables being computed cross a defined limit. An important
requirement for smoothness in the transition is that the two
variants should have very similar behavior in the neighbor-
hood of the defined limit.

C. Reparameterization

Changing the parameters of a reduced-complexity model
to make it more accurate under current operating conditions
is often problematic. As described above, in parameter iden-
tification algorithms, a “weighting factor” can be chosen that
allows the model parameters to track slowly varying system
changes (by discounting past input and output data, relative
to newer information). This use of weightings in the identi-
fication algorithms allows the identified reduced-complexity
models to be adaptively fit to changing conditions.

In “black box” models, the identified parameters of the
model may not have intuitive physical meaning. Often “ob-
vious” facts about the system, which can be expressed as
constraints on the allowable values of identified parameters,
may even be contradicted by the identified parameters of
the model. This problem can be reduced when, under cer-
tain conditions, a priori information about the system can be
used in the system identification process to obtain parameter
estimates that are more realistic and meaningful than if this
knowledge is ignored.

As mentioned previously, this can be done through the im-
position of inequality or equality constraints on the identified
parameters. For example, a constraint might be imposed to
ensure that the parameters estimated result in a subsystem
gain that has the right sign, or that its magnitude is within a
known-to-be-true range. The constraints will ensure that the
models interact correctly with other components at the same
level.

D. Decompression/Increasing Resolution

When it is decided that increased model detail is required,
the challenge becomes the matching of state variable con-
ditions for the higher resolution models. This is critical,
to avoid simulation “bumps” and discontinuities. Mapping
from a simpler model to one with increased detail requires
some method of assigning and partitioning quantities to
various submodels. This assignment might be done through
solution of an optimization problem (e.g., for energy alloca-
tion), or via specified or computed rules.

Substituting in the original high complexity model is the
last resort. The price is the loss of computational speed. The
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implication is that when one has been forced to this extreme
none of the reduced forms are valid; perhaps another reduced
form model variant can be developed if the circumstances
warrant the effort in new model development, coding, ver-
ifying, validating, archiving, and placing it in the decision
tree.

The results of any of the above monitoring and detection
methods can be used as the inputs to drive a decision process,
implemented via rule-based methods, to determine the ap-
propriate model adjustment option to be taken. These rules
might be specified by experts, or learned (from prior simula-
tions) using artificial neural net, fuzzy system identification,
or other learning algorithms.

E. Detecting Inadequacies in the Validity of a Model
During Computation

How to determine the need to modify a reduced submodel
or resort to the full submodel is important, is difficult, and is
part of any multiscale code requiring minimization, since it
does not contribute directly to obtaining a good model solu-
tion. Decisions concerning the adequacy of the algorithms
may need to be made as the solution progresses. New re-
search is needed into devising algorithms for detecting when
the reduced model forms begin to lose accuracy in repre-
senting the physiology because of changes in external con-
ditions or the shifting of the internal conditions causing a
reduced-form module to move out of its local range of va-
lidity. An adjustment requires either changes in the parame-
ters of the reduced-form module or resorting to an alternative
reduced-form module or, in the last resort, reincorporating
the full-form module into the computation. The basic deci-
sion control here is experiential, using prior determination
of the ranges of validity for detection of the need to use an
alternative computation.

An alternative approach to avoiding errors due to model re-
duction is to use signal analysis to detect changes in the char-
acter of variables (signals) which provide information about
potential submodel inadequacy, due to lessening accuracy or
deviation from a range of validity. “Reducing accuracy” im-
plies failure in numerical methods for obtaining the solution.
“Deviation from validity” implies that the solution variables
show a change in a quantifiable characteristic that is not the
variable value itself but a change in the frequency or power
content of a variable or set of variables that is associated with
the overall systems model pushing the limits of validity. A
detection method might also be based on system stability,
e.g., in terms of Lyapunov exponents for subsystems.

On detecting a change in “texture” or signal character-
istic amongst the variables, the next question is what to do.
Methods for either resorting to the use of the full subsidiary
model or shifting to an alternative form of the reduced model
are complicated if there is more than one possible improved
form. Decisions are balanced between demands for speed
versus validity. Also, it is necessary to consider that the sys-
tems-level models demonstrate emergent behavior character-
istic of nonlinear dynamical systems (chaotic systems), al-
though this is not often classifiable as a low order system

with a measurable Lyapunov exponent [72]. For example, if
the changed behavior is due to a bifurcation, the represen-
tation given by the reduced model forms might still be en-
tirely correct, in which case one should not switch to a more
complex model. The goal is automated reconfiguration of the
model when changes in conditions occur. Module or model
selection might also depend on the resolution and accuracy
of the data against which the solution is being matched, but
in principle this ought to be secondary.

For the linear-in-parameter example, for the goal of
sensing when the existing module is insufficient, the con-
cepts behind linear time series predictors can be used. When
the linear predictors break down, their error in prediction
increases, providing a signal to increase model complexity.
The model prediction error provides a signal that can be
used to determine when model adjustments are necessary.
One way to use model prediction errors is to fit them to a
linear time series model, in real time. If and when simple
linear predictability between signal dimensions degrades;
that is, when prediction error grows above some determined
threshold, it is then necessary to diagnose which simplified
models have incorrect parameters and what the appropriate
updated parameters should be. This time-consuming yet
presumably infrequent step would require “retraining” the
simplified model by comparison with high-fidelity models.
Bayesian and classical estimation procedures can be applied
to this problem in two different ways: maximum a posteriori
(MAP) and maximum likelihood (ML) estimation.

When an underlying statistical model is complex and/or
less well-understood, MAP estimators, and other Bayesian
approaches, are more commonly used than ML approaches.
In either case parameter estimates are often thresholded for
hypothesis testing, for example to determine whether models
are suitably complex.

One could also track energy flows, where finding vio-
lations of known constraints would indicate need to make
model changes. However, energy levels, concentrations,
and other observed quantities do not have similar math-
ematical combination properties. For example, energies
and concentrations are never legitimately negative. By
carefully considering these quantities as densities, which
are nonnegative and normalized to range between zero and
one, estimators for change detection are possible. But the
underlying mathematics used for these estimators needs to
change to be consistent with density-type quantities.

Detection of the need to change modules and/or levels can
be based, for example, upon changes in frequency content,
over time. Time-frequency density functions have been
extensively studied [73] and have been applied in acoustics,
radar, machine monitoring, and biomedical signal analysis
as a framework for multiscale combinations of density-type
functions, such as concentrations and energies, for example
in examining molecular signal processing and detection in
T-cells [74]. Multiscale time-frequency density functions
have been previously proposed [75]. These techniques then
identify variance of model solutions from expected behavior
and hand over the task of revising the model by automated
means.
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Recent work in multiscale modulation spectral decompo-
sitions [76], [77] offers a new approach to signal decompo-
sition and has been applied to audio coding and detection
of acoustic signal change. This modulation spectra approach
offers a new approach for multiscale decompositions of po-
tential-like signals, where phase details and shift-invariance
properties need to be maintained. In this approach a signal’s
components are treated as a product of a slowly varying mod-
ulator and a higher frequency carrier [76]. This modulation
spectral approach allows recurrent decompositions into mod-
ulators and carriers, thus providing an approach to represen-
tation of signal change that integrates across multiple scales
[78]. These methods for recognizing change are likely to be
stronger than more conventional techniques, such as time do-
main: auto and cross correlation, AR, ARMA, ARIMA, or
fARIMA models, time frequency: wavelet analysis, or fractal
dimension analysis. The methods listed above involve dif-
ferent kinds of quantities which might be monitored in order
to decide if the model is working well. They have different
underlying mathematical forms, which motivates different
detection strategies.

VII. SUMMARY

Multiscale multilevel systems modeling is in its infancy,
but formulating and operating such models is critical to
future success in integrative systems biology. The problems
associated with using reduced-form components within
large systems models stem primarily from their limited
ranges of validity. Developing high-level models with such
components thus encourages the formulation of multiple
subsidiary or component modules that can be substituted for
one another when conditions demand. The mathematics and
the engineering practices relating to hierarchical modeling is
currently the subject of much research effort and will greatly
enhance developments in biological research.
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B. Nuss, “Molecular interactions between two long-QT syndrome
gene products, HERG and KCNE2, rationalized by in vitro and in
silico analysis,” Circulat. Res., vol. 89, pp. 33–38, 2001.

[27] R. L. Winslow, J. L. Greenstein, G. F. Tomaselli, and B.
O’Rourke, “Computational models of the failing myocyte: relating
altered gene expression to cellular function,” Phil. Trans. R. Soc.
Lond. A, vol. 359, pp. 1187–1200, 2001.

[28] D. Noble, A. Varghese, P. Kohl, and P. Noble, “Improved guinea
pig ventricular cell model incorporating a diadic space, I and I ,
and length- and tension-dependent processes,” Canad. J. Cardiol.,
vol. 14, pp. 123–134, 1998.

[29] A. R. Sedaghat, A. Sherman, and M. J. Quon, “A mathematical
model of metabolic insulin signaling pathways,” Amer. J. Physiol.
Endocrinol. Metab., vol. 283, pp. E1084–E1101, 2002.

[30] J. B. Bassingthwaighte, C. Y. Wang, and I. S. Chan,
“Blood–tissue exchange via transport and transformation by
endothelial cells,” Circulat. Res., vol. 65, pp. 997–1020, 1989.

[31] D. A. Beard and J. B. Bassingthwaighte, “Advection and diffu-
sion of substances in biological tissues with complex vascular net-
works,” Ann. Biomed. Eng., vol. 28, pp. 253–268, 2000.

BASSINGTHWAIGHTE et al.: STRATEGIES AND TACTICS IN MULTISCALE MODELING OF CELL-TO-ORGAN SYSTEMS 829

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 16, 2009 at 17:14 from IEEE Xplore.  Restrictions apply.



[32] J. H. Caldwell, G. V. Martin, J. M. Link, M. Gronka, K. A.
Krohn, and J. B. Bassingthwaighte, “Iodophenylpentadecanoic
acid—myocardial blood flow relationship during maximal exercise
with coronary occlusion,” J. Nucl. Med., vol. 30, pp. 99–105, 1990.

[33] J. H. Caldwell, G. V. Martin, G. M. Raymond, and J. B.
Bassingthwaighte, “Regional myocardial flow and capillary per-
meability-surface area products are nearly proportional,” Amer. J.
Physiol. Heart Circulat. Physiol., vol. 267, pp. H654–H666, 1994.

[34] M. W. Gorman, J. B. Bassingthwaighte, R. A. Olsson, and H.
V. Sparks, “Endothelial cell uptake of adenosine in canine skeletal
muscle,” Amer. J. Physiol. Heart Circulat. Physiol., vol. 250, pp.
H482–H489, 1986.

[35] M. W. Gorman, R. D. Wangler, J. B. Bassingthwaighte, D. E.
Mohrman, C. Y. Wang, and H. V. Sparks, “Interstitial adenosine
concentration during norepinephrine infusion in isolated guinea pig
hearts,” Amer. J. Physiol. Heart. Circulat. Physiol., vol. 261, pp.
H901–H909, 1991.

[36] R. B. King, A. Deussen, G. R. Raymond, and J. B. Bassingth-
waighte, “A vascular transport operator,” Amer. J. Physiol. Heart
Circulat. Physiol., vol. 265, pp. H2196–H2208, 1993.

[37] J. J. Saucerman, L. L. Brunton, A. P. Michailova, and A. D.
McCulloch, “Modeling beta-adrenergic control of cardiac myocyte
contractility in silico,” J. Biol. Chem., vol. 278, pp. 47 997–48 003,
2003.

[38] J. J. Saucerman, S. N. Healy, M. E. Belik, J. L. Puglisi, and A. D.
McCulloch, “Proarrhythmic consequences of a KCNQ1 AKAP-
binding domain mutation: Computational models of whole cells
and heterogeneous tissue,” Circulat. Res., vol. 95, pp. 1216–1224,
2004.

[39] M. J. Herrgard, M. W. Covert, and B. O. Palsson, “Reconstruc-
tion of microbial transcriptional regulatory networks,” Curr. Opin.
Biotechnol., vol. 15, pp. 70–77, 2004.

[40] J. A. Papin and B. O. Palsson, “The JAK-STAT signaling network
in the human B-cell: An extreme signaling pathway analysis,” Bio-
phys. J., vol. 87, pp. 37–46, 2004.

[41] M. F. M. Van Oosterhout, T. Arts, J. B. Bassingthwaighte, R. S.
Reneman, and F. W. Prinzen, “Relation between local myocardial
growth and blood flow during chronic ventricular pacing,” Cardio-
vasc. Res., vol. 53, pp. 831–840, 2002.

[42] K. Vinnakota and J. B. Bassingthwaighte, “Myocardial density
and composition: A basis for calculating intracellular metabolite
concentrations,” Amer. J. Physiol. Heart Circulat. Physiol., vol.
286, pp. H1742–H1749, 2004.

[43] R. E. Safford, E. A. Bassingthwaighte, and J. B. Bassingth-
waighte, “Diffusion of water in cat ventricular myocardium,” J.
Gen. Physiol., vol. 72, pp. 513–538, 1978.

[44] L. M. Schwartz, T. R. Bukowski, J. H. Revkin, and J. B. Bass-
ingthwaighte, “Cardiac endothelial transport and metabolism of
adenosine and inosine,” Amer. J. Physiol. Heart Circulat. Physiol.,
vol. 277, pp. H1241–H1251, 1999.

[45] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear
Chemical Dynamics. London, U.K.: Oxford Univ. Press, 1998.

[46] J. Kevorkian and J. D. Cole, Multiple Scale and Singular Pertur-
bation Methods. Berlin, Germany: Springer-Verlag, 1996.

[47] J. D. Murray, Asymptotic Analysis. New York: Springer-Verlag,
1984.

[48] ——, Lectures on Nonlinear-Differential-Equation Models in Bi-
ology. Oxford, U.K.: Clarendon, 1977.

[49] H. Kitano, “Biological robustness,” Nature Rev., vol. 5, pp.
826–837, 2004.

[50] “Report of the first DOE multiscale mathematics workshop, May
2004,” U.S. Dept. of Energy, Washington, DC, 2004.

[51] “Report of the second DOE multiscale mathematics workshop, July
2004,” U.S. Dept. of Energy, Washington, DC, 2004.

[52] “Report of the third DOE multiscale mathematics workshop,
September 2004,” U.S. Dept. of Energy, Washington, DC, 2004.

[53] L. Sanz and R. Bravo de la Parra, “Variables aggregation in a time
discrete linear model,” Math Biosci, vol. 157, pp. 111–146, 1999.

[54] L. Ljung, System Identification: Theory for the User, 2nd Edi-
tion. Upper Saddle River, NJ: Prentice-Hall, 1999.

[55] L. A. Bernotas, P. E. Crago, and H. J. Chizeck, “A discrete-
time model of electrically stimulated muscle,” IEEE Trans. Biomed.
Eng., vol. BME-33, no. 9, pp. 829–838, Sep. 1986.

[56] W. D. Timmons, H. J. Chizeck, and P. G. Katona, “Adaptive con-
trol is enhanced by background estimation,” IEEE Trans. Biomed.
Eng., vol. 38, no. 3, pp. 273–279, Mar. 1991.

[57] K. S. Stern, H. J. Chizeck, B. K. Walker, P. S. Krishnaprasad, P.
J. Dauchot, and P. G. Katona, “The self-tuning controller: Com-
parison with human performance in the control of arterial pressure,”
Ann. Biomed. Eng., vol. 13, pp. 341–357, 1985.

[58] H. Akaike, “New look at statistical-model identification,” IEEE
Trans. Automatic Control, vol. AC-19, no. 6, pp. 716–723, Jun.
1974.

[59] ——, “Statistical predictor identification,” Ann. Inst. Stat. Math.,
vol. 22, pp. 203–217, 1970.

[60] J. Rissanen, “A universal prior for integers and estimation by min-
imum description length,” Ann. Stat., vol. 11, pp. 416–431, 1983.

[61] T. L. Chia, P. C. Chow, and H. J. Chizeck, “Recursive parameter
identification of constrained systems: An application to electrically
stimulated muscle,” IEEE Trans. Biomed. Eng., vol. 38, no. 5, pp.
429–442, May 1991.

[62] W. D. Timmons, H. J. Chizeck, F. Casas, V. Chankong, and P. G.
Katona, “Parameter-constrained adaptive control,” Ind. Eng. Chem.
Res., vol. 36, pp. 4894–4905, 1997.

[63] S. Hawley and H. J. Chizeck, “Parameter estimation on algebraic
systems: Application to sequence dependent structure of DNA,”
presented at the IASTED Conference on Biomedical Engineering
(BioMED 2004), Innsbruck, Austria, 2004, Paper No. 417-022.

[64] H. J. Chizeck, P. E. Crago, and L. S. Kofman, “Robust closed-
loop control of isometric muscle force using pulsewidth modula-
tion,” IEEE Trans. Biomed. Eng., vol. 35, no. 7, pp. 510–517, Jul.
1988.

[65] X. Feng, K. A. Loparo, Y. Ji, and H. J. Chizeck, “Stochastic
stability properties of jump linear systems,” IEEE Trans. Autom.
Control, vol. 37, no. 1, pp. 38–53, Jan. 1992.

[66] Y. Ji and H. J. Chizeck, “Optimal quadratic control of jump linear
systems with separately controlled transition probabilities,” Int. J.
Control, vol. 49, pp. 481–491, 1989.

[67] ——, “Bounded sample path control of discrete time jump linear
systems,” IEEE Trans. Syst. Man Cybern., vol. 19, no. 2, pp.
277–284, Mar./Apr. 1989.

[68] ——, “Jump linear quadratic Gaussian control in continuous time,”
IEEE Trans. Autom. Control, vol. 37, no. 12, pp. 1884–1892, Dec.
1992.

[69] Y. Ji, H. J. Chizeck, X. Feng, and K. A. Loparo, “Stability and
control of discrete-time jump linear systems,” Control Theory Adv.
Technol., vol. 7, pp. 247–270, 1991.

[70] S. K. Ng and H. J. Chizeck, “Fuzzy model identification for clas-
sification of gait events in paraplegics,” IEEE Trans. Fuzzy Syst.,
vol. 5, no. 4, pp. 536–543, Nov. 1997.

[71] M. M. Skelly and H. J. Chizeck, “Real-time gait event detection
for paraplegic FES walking,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 9, no. 1, pp. 59–68, Mar. 2001.

[72] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West, Fractal
Physiology. New York: Oxford Univ. Press, 1994.

[73] P. Loughlin, J. Pitton, and B. Hannaford, “Approximating time-
frequency density functions via optimal combinations of spectro-
grams,” IEEE Signal Process. Lett., vol. 1, no. 12, pp. 199–202,
Dec. 1994.

[74] J. F. Keane and L. E. Atlas, “Molecular signal processing and
detection in T-cells,” in 2002 IEEE Int. Conf. Acoustics, Speech,
and Signal Processing 2002, vol. 2, pp. II-1597–II-1600.

[75] S. Umesh, L. Cohen, N. Marinovic, and D. J. Nelson, “Scale
transform in speech analysis,” IEEE Trans. Speech Audio Process.,
vol. 7, no. 1, pp. 40–45, Jan. 1999.

[76] L. Atlas and S. A. Shamma, “Joint acoustic and modulation fre-
quency,” Eurasip J. Appl. Signal Process., vol. 2003, pp. 668–675,
2003.

[77] G. Li and H. Qian, “Kinetic timing: A novel mechanism for im-
proving the accuracy of GTPase timers in endosome fusion and
other biological processes,” Traffic, vol. 3, pp. 249–255, 2002.

[78] S. Sukittanon, L. E. Atlas, and J. W. Pitton, “Modulation-scale
analysis for content identification,” IEEE Trans. Signal Process.,
vol. 52, no. 10, pp. 3023–3035, Oct. 2004.

830 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 4, APRIL 2006

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 16, 2009 at 17:14 from IEEE Xplore.  Restrictions apply.



James Bassingthwaighte received the B.A.
degree in physiology and biochemistry and the
M.D. degree in medicine from the University
of Toronto, Toronto, ON, Canada, in 1951 and
1955, respectively and the Ph.D. degree in phys-
iology at the Mayo Graduate School, University
of Minnesota, Rochester.

At Mayo from 1964 to 1975, he became Pro-
fessor of Physiology and Medicine. From 1975
to 1979, he chaired the Department of Bioengi-
neering at the University of Washington, Seattle.

In 1979, he established a National Simulation Resource Facility in Circula-
tory Mass Transport and Exchange, a center for research in modeling anal-
ysis of PET and NMR images and in simultaneous multitracer studies. In
1997, he initiated the Physiome Project under the auspices of the Interna-
tional Union of Physiological Sciences to organize and integrate physiolog-
ical knowledge from genome to integrated function. He is currently Pro-
fessor of Bioengineering and Radiology at the University of Washington.
He has authored 260 peer-reviewed publications and two books and was the
Editor-in-chief of the Annals of Biomedical Engineering.

Prof. Bassingthwaighte has been the recipient of honors from BMES,
the American Physiological Society, the Netherlands Biophysical Society,
the Cardiovascular Systems Dynamics, the Microcirculatory Society, and
McGill University. He served as President of the Biomedical Engineering
Society and the Microcirculatory Society and chaired the Cardiovascular
Section of the American Physiological Society. He is a member of the U.S.
National Academy of Engineering.

Howard Jay Chizeck (Fellow, IEEE) received
the Sc.D. degree in electrical engineering and
computer science from the Massachusetts Insti-
tute of Technology, Cambridge, in 1982.

From 1981 to 1998, he was a faculty member
at Case Western Reserve University, Cleveland,
OH, serving as Chair of the Department of
Systems, Control and Industrial Engineering
from 1995 to 1998. He was the Chair of the Elec-
trical Engineering Department at the University
of Washington, Seattle, from August 1998 to

September 2003. He is currently a Professor of Electrical Engineering
and Adjunct Professor of Bioengineering at the University of Washington.
He has worked with industry in the assessment and implementation of
new technologies, biomedical instrumentation and medical device product
development and testing, and the synthesis and evaluation of automation
and control systems. He has been involved with several technology-based
start-up companies in San Diego, Cleveland and Seattle. His research
interests involve control engineering theory and the application of control
engineering to biomedical and biologically inspired engineered systems.

Les E. Atlas received the Ph.D. degree in elec-
trical engineering from Stanford University, Stan-
ford, CA, in 1984.

He was an Assistant Professor in the Depart-
ment of Electrical Engineering, University of
Washington, Seattle. He is currently Professor
and does research and teaches in digital signal
processing, time-frequency representations, and
applications in speech, acoustic and radar mon-
itoring, and signal recognition and coding. His
recent research is on the theory and applications

of modulation spectra.
Prof. Atlas was a recipient of the National Science Foundation Presiden-

tial Young Investigator Award, was Founder and Chair of the 1992 IEEE
Workshop on Time/Frequency and Time/Scale Signal Processing, General
Chair of the 1998 IEEE International Conference on Acoustics, Speech,
and Signal Processing, and was Chair of the IEEE Signal Processing So-
ciety’s Technical Committee on Signal Processing Theory and Methods. He
recently received a Fulbright Senior Research Award for study at the Fraun-
hofer Institute in Germany. He was Chair of the IEEE Signal Processing So-
ciety Technical Committee on Theory and Methods and a member-at-large
of the Signal Processing Society’s Board of Governors.

BASSINGTHWAIGHTE et al.: STRATEGIES AND TACTICS IN MULTISCALE MODELING OF CELL-TO-ORGAN SYSTEMS 831

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 16, 2009 at 17:14 from IEEE Xplore.  Restrictions apply.


