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Parameter-Constrained Adaptive Control’

W. D. Timmons,** H. J. Chizeck,®' F. Casas,* V. Chankong,? and P. G. Katona”

Wm Timmons & Associates, 513 Sill Avenue, Cuyahoga Falls, OH 44221, Departments of Systems
Engineering and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, and The
Whitaker Foundation, 1700 North Moore Street, Suite 2200, Rosslyn, Virginia 22209

Under certain conditions, parameter constraints that impose a priori information about the open-
loop system can dramatically improve the performance of explicit adaptive controllers. Under
other conditions, the constraints can actually decrease performance. First, this paper presents
a novel parameter-constrained identifier on the basis of an efficient, quadratic program solver
applied semirecursively, making it ideal for real-time adaptive control. Second, several useful
linear constraints for second-order ARMAX models are provided, along with a few examples of
their development. Third, the algorithm and the constraints are applied to a benchmark model
to explore several conditions, summarized as six guidelines, under which parameter constraints
improve or worsen adaptive control. In this last part, it is shown that common orthogonal
projection can produce poor results. It is also shown that a priori information is increasingly
valuable as excitation decreases and that it is especially useful for adaptive control when
combined with re-identification techniques. These results are then applied to the pharmacological

control of a time-varying second-order ARMAX model of blood pressure.

1. Introduction

For systems that are time-varying or nonlinear, an
adaptive controller based on a time series model (AR-
MAX, CARIMA, NARMAX, etc.) may be a useful alter-
native to a classical controller design, since little a priori
information is required. Ironically, the information that
is available is often discarded when an adaptive control-
ler is used. As a result, the controller may need open-
loop probing before initiating control; after initiation,
it may be susceptible to gain and offset disturbances,
temporary bursting, and other problems. If the a priori
knowledge were used instead of being discarded, these
problems might be avoided or reduced. This idea is not
new; almost 20 years ago the imposition of exact
information as equality constraints on one or more of
the model parameters was shown to dramatically im-
prove controller performance (Goodwin and Payne,
1977). Others have since confirmed and refined these
findings (Bai and Sastry, 1986; Chia et al., 1991; Clary
and Franklin, 1984; Fletcher, 1987; Li, 1989; Zheng,
1989; Dasgupta, 1986). Unfortunately, exactness is
rather restrictive, and so this approach is not widely
applicable. Instead, most knowledge falls into the class
of inequality constraints. An algorithm that imposes
both equality and inequality constraints would be more
useful and have wider applicability. However, these
algorithms are complicated and difficult to program.
Probably for this reason, most studies on inequality-
constrained identification for adaptive control are lim-
ited to either the bounding of a few critical parameters
(Goodwin and Sin, 1984) or the use of simplified,
suboptimal algorithms with loose parameter bounds.
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The latter includes the o-modifiers (Ortega and Tang,
1989), the radial contractors (Praly et al., 1989), and
the simple saturators (Goodwin and Sin, 1984). Those
studies primarily address the related and important
issue of global asymptotic stability, which is not the
same as the practical use of a priori information as
parameter constraints.

While simplified algorithms and reduced constraint
sets often dramatically improve controller performance,
it is shown below that they can sometimes decrease
controller performance and even exacerbate temporary
disturbances. The possibility of poor behavior raises
considerable safety concerns for life-critical applications
such as the control of vital signs in hospital patients,
chemotherapy veno-infusion, and anesthesia regulation,
where temporary instabilities and poor transient re-
sponses can be life-threatening. For these types of
applications, it becomes important to understand how
and when a priori information helps or hinders control-
ler performance.

The addition of mixed equality and inequality con-
straints to an adaptive controller creates a nonlinear
system that sometimes exhibits unexpected behaviors.
Since an analytic analysis would be difficult, an empiri-
cal approach is used here to develop and demonstrate
six guidelines for the safe and effective use of parameter-
constrained adaptive control. First, however, equations
are developed for a novel identifier that imposes mixed
equality and inequality constraints both optimally and
semirecursively, two key properties that make the
identifier attractive for real-time adaptive control.
Since the equations form a quadratic program (QP), a
fast, compact, and novel QP algorithm is included in
the Appendix. Following the section on identifier
development, the construction of several constraints
from commonly available a priori information is il-
lustrated and then followed by the empirical analysis.
The results of the analysis are then applied to the
pharmacological control of a time-varying second-order
ARMAX model of blood pressure.
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2. Problem Formulation

Consider a linear or pseudolinear model in predictor
form:

y(t) =" (t=1)0 + e(t) 1)

where e(t) is a zero mean white noise sequence. This
form includes a broad class of time series models
(ARMAX, NARMAX, CARIMA, etc.). For example,
given the discrete time ARMAX model
y(t) = a,y(t—1) + ... + a,y(t—n) + byu(t—1) +

. b ut—m) +e(t) (2)

the vectors 0 and ¢(t—1) may be defined as

OAlay, ... a, b, .., b1

o(t—1) A [y(t—1), ..., y(t—n), u(t—-1), ..., ut-m)]" 3

2.1. The Unconstrained Estimates. For 6 un-
known, the exponentially weighted recursive least
squares (RLS) estimate is (Goodwin and Sin, 1984):

O(t) = 04(t—1) +
P(t—2)¢(t—1)[y(t) — ¢(t—1)"04(t—1)]
a(t—1) + ¢(t—1)"P(t—2)¢(t—1)

P(t-1) =
1 om0 P=2)¢(t—1)p(t—1)"P(t—2)
a(t-1) Pit-2) a(t—1) + ¢(t—1)"P(t—2)¢(t—1) )

where 0 < a(t) < 1is a scalar forgetting factor, P(t — 1)
is a matrix proportional to the inverted data covariance
matrix, and the subscript f signifies that @ is the free,
or unconstrained, solution. The RLS estimate mini-
mizes the sum of the squared prediction errors:

J =",[Y(t) — X(t—1)0"WO)[Y(t) — X(t—1)8] (5)

where @ is the vector of unknown parameters to be
estimated, W(t) is a diagonal matrix defined by the
o(t), and

Y(t) A [y(D), ¥(2), ... yOI"
X(t=1) A [9(0)I#(1)] ... [p(t—1)]" (6)
The equivalent nonrecursive solution is
0(t) = P(t—1)X" (t—1)W(t)Y(t)

P(t—1) = [X (t—1)WO)X(t—1)]* 7

2.2. The Optimal Projector. Now consider the
minimization of (5) subject to the following linear
equality and inequality constraints (a convex quadratic
program):

Mo = K
Lo <C (8)
The Lagrangian for this system is (Fletcher, 1987):

L (0.u,4) = "1,[Y(t) — X(t—1)8]"W(t) x
[Y(t) — X(t—1)8] — " (K — M) — A7(C — L6) (9)
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where g and A are vectors of Lagrange multipliers
associated with the equality and inequality constraints,
respectively. For positive definite XTWX, or equiva-
lently, positive definite P, the first-order Kuhn—Tucker
conditions are the necessary and sufficient conditions
for a unique global minimum (Luenberger, 1984):

K—-M0=0 (10)
C-L6=0 (11)

A=0 (12)
A(C—-LO)=0 (13)

—X"W(Y = X0 + Mg +L"A=0 (14)

(dropping the time subscripts for convenience). Solving
(14) for 6 (which we denote as 6. since it is the
constrained solution), we obtain

0.=0,— PM'u— PL"A (15)

which is in the form of the unconstrained estimate plus
corrections due to the constraints. P and 6; can be
computed from (4) or (7), depending on the speed and
numerical requirements: in applications in which time
is scarce (e.g., adaptive control), the recursive form is
preferred. All that remains is to determine the Lagrange
multipliers g and 4, which must be performed in batch
using quadratic programming (hence the semirecursive
nature of the identifier). Positive semidefinite comple-
mentary linear programming (CLP) is a relatively fast,
compact quadratic-programming technique similar to
the simplex algorithm for linear programming (Dantzig
and Cottle, 1967; Golub and Saunders, 1970). An
enhanced version developed by Timmons (1992) specif-
ically for real-time applications is described in the
Appendix.

A CLP for this problem may be constructed as follows.
Define the slack variables ¢ and v as the constraint
errors (K — M#@) and (C — L#). Using (15), eliminate 6.
to obtain

o| _[MPMT MPLT|[g K — M6,
v| T |pm it ||2] T e Lo | 19
with the conditions
=0, v=0, A=0
ou+vi=0 (17)

Equations 16 and 17 form the CLP. Note that if there
are only equality constraints, the solution reduces to a
closed form:

# = (MPM") (M6, — K)
(=2) (18)

2.3. The Orthogonal Projector. The solution (15)
could also have been obtained by minimizing the cost
function

Jpre = 1[0 = 61'P[6 - 6] (19)
subject to the constraints in (8). In this formulation,

the optimal (least squares) correction terms in (15)
represent the P-weighted projection of 6; onto the
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Table 1. ARMAX Constraints from Commonly Available a Priori Knowledge?

knowledge constraint comments
1 individual parameters Oiin = 0i < O
2 second-order open-loop stability ata=<1
—a;t+a=<1
—a; =<1
3 steady-state gain: Gsspin < Gss < Gssmax  20i T Gssmin 2&i = Gsspin Use only with constrained open-loop stable
2 + Gssmax 2i < Gssmax systems. Do not use with entry 5.
4 one SSP: (U,Y1) y(t) Ay(t) — Use y and 0 to estimate a and b parameters.
a(t) A u(t) — Up This approach is equivalent to, but more
- efficient than, an equality constraint.
5 two SSP’s: (U,Y1), (Uz,Y2) Yo —Y1=(Y2— Y)Za + (U, — Up)Zb; Imposes a steady-state gain. Use in conjunction
with entry 4, but in place of entry 3.
6 one SSP range: (U1,Ymin) 10 (U1,Ymax) (1 — Z&i)Ymin = (Zbj)U;s + D See text for explanation of D.
(1 — Zaj)Ymax < (Zbj))U; + D
7 one SSP range: (Uz,Ymin) t0 (U1, Ymax)  A@@™ ) (Yip(t) — Ymin) = B@ ) (uip(t) — Uz)  A(q!) and B(q™?) is standard ARMAX notation.
A H)(Yip(t) — Ymax) = B@ L) (uip(t) — Uq) Subscript Ip indicates low-pass filtering;
high-pass filtered data is used to estimate
parameters. Noise may invalidate constraints.
See text.
8 open-loop settling time ra; +a;<r? r = exp(—4.6T/ts), where T is the sampling interval
(second-order systems) —ra; +ap < r? and s is the settling time.
—a, < r?
9 min and max settling time 12 a1+ (Fmin — 2rmagaz < rmax Fimin Only applies to sampled, continuous time systems
(certain second-order systems) Imax@s + @ < rmax with real poles. rmin and rmax are the radii
a=<0 associated with the minimum and maximum
settling times.
10 open-loop minimum phase zeros sgn(ba)(bsr? + byr, + bg) = 0 For stable second-order systems, b; has the same
(second-order systems) sgn(by)(bsr? — br, + bg) = 0 sign as Ggs. r; = maximum radius of zeros (<1).
sgn(by)(bsr? — bg) = 0
11  minimum phase noise polynomials —raC1—Cp < rﬁ r, = maximum radius of the noise polynomial roots (<1).

(second-order systems)

rnC1 — Cp < r2
co<r?

a See Timmons (1992) for detailed derivations.

constraint surface. By replacing P with the identity
matrix, an orthogonal projector is obtained. Assuming
the constraints are true, parameter bias can never be
increased with this algorithm, which is something that
cannot be said for the optimal projector (Chia, 1991).

The orthogonal projector can often be greatly simpli-
fied. For example, when the constraints consist of
individual parameter bounds only, the orthogonal pro-
jector reduces to a saturator:

O;  if 0 <6
QCi = in if 0.m|n = efi = Oimax Ci (20)
| if 0f

max Tmax

and when the constraints are in the form of a sphere, it
reduces to a radial contractor

0, = 0. — 0,
O+ 110; — 0,1

0l <p

otherwise (1)

where 6, is the center of the sphere and p is its radius.
The orthogonal projector thus has a seeming advantage
over the optimal projector. This is discussed further
below.

3. Armax Constraints

A range on steady-state gain and settling time, an
approximate pole or zero location, and the sign of one
or more parameters are often known. Classifications
such as “open-loop stable” or “well-damped” also convey
useful information. Linear ARMAX constraints that
impose this type of information are listed in Table 1.
While some constraints are general, for clarity and

simplicity, most are targeted toward the common,
second-order ARMAX model. Many of the constraints
rely on the Jury criteria for the sign of 1 — Xa; and hence
require stability. For unstable systems, the constraints
must be reformulated. These modifications, as well as
extensions to other model forms, are mostly straight-
forward. In the following, constraint development is
briefly illustrated and then followed by an elaboration
on several of the more complicated constraints in Table
1.

3.1. Example of Constraint Development:
Steady-State Gain. Since steady-state gain is only
defined for stable systems, open-loop stability must also
be imposed on the estimates. From eq (2), Gss may be
calculated as

(22)

For Gss,, < Gss < Gsse We obtain two inequality
constraints, which can be put into linear (in 8) form only
if the sign of 1 — Xa; is known. By the Jury criteria,
the sign must be positive, resulting in entry 3 in Table
1.

3.2. Steady-State Points. A steady-state point
(SSP) is a known steady-state input/output pair associ-
ated with the model. Often the background level (the
steady-state unforced output) is known. Sometimes
another point, such as an equilibrium point for a
chemical reaction, is also known. For many systems,
these points drift. For nonlinear systems, these points
may appear to drift due to linearization and hence may
range farther than anticipated. In such systems, these
points may better be regarded as free or slack variables
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Figure 1. Settling time conditions for second-order systems: (a) poles restricted to circle of radius r (<1); (b) transformed system poles
are now restricted to the unit disc; (c) stability conditions for the transformed system; (d) inverse-transformed stability conditions result

in settling time conditions.

that impart integral action into the estimator and its
coupled controller. Nevertheless, with care, a specified
range may be advantageous. Several approaches are
summarized in Table 1. They are briefly described
below.

ARIMA- and CARIMA-type approaches estimate the
parameters using incremental outputs and inputs
ya(t) and ua(t), defined as

ya(t) A y(t) — y(t—d)
Ux(t) A u(t) — u(t—d) (23)

where d is an arbitrary constant such as the system
dead time. By using this method, offsets are implicitly
removed. Because of this formulation, a known SSP or
its range is not easily imposed on the identification
(though two SSP’s and their ranges can be imposed as
constraints on steady-state gain using Table 1, entry
5). If instead, an offset term D were added to the right
side of eq (2), linear inequality constraints for the range
of D may be formed with knowledge of the sign of
1 — Za;. If the system is open-loop stable (and the model
is constrained as such), then the sign will be positive,
and the constraint in Table 1, entry 6 may be used. The
floating identifier (FI), described in Timmons et al.
(1991), is another, related approach. It high pass or
band pass filters the outputs and inputs: offsets are
removed for dynamics estimation and then added back
for offset estimation. As before, if the model is con-
strained to be open-loop stable, then we arrive at a
similar set of inequality constraints (entry 7, Table 1).
However, the constraints now depend on recent input/
output data so that noise may invalidate them; hence,
one must use care when imposing them.

3.3. Open-Loop Settling Time. Settling time, the
time required for a step response to settle to within a
band of its final value (e.g., £1%), is commonly known.

For second-order discrete time systems, a known maxi-
mum settling time 7s approximately translates to all
poles lying within a circle centered at the origin in the
Z-plane with radius r = exp(—4.6T/zs), where T is the
sampling interval (Franklin and Powell, 1980, pp 100—
103).

Consider two poles, p; and p2, with magnitude less
than r as in Figure la. Let p; = pi/r and p, = po/r. In
this new coordinate system, the original circle of radius
r corresponds to the unit circle (Figure 1b). We can
directly apply the stability constraints of Table 1 (entry
2) to the transformed system (Figure 1c):

a,+ta, =<1
-a,+a,=<1
-a,=<1 (24)
For second-order model structures similar to eq (2),
a=p;tp;
a = —P1P2 (25)
and
a; =Py + Py = (P + pIr =aylr
a, = —P,P, = —pyP,Ir° = a,/r? (26)
As shown in Figure 1d, we obtain the constraints
listed in entry 8 of Table 1.
3.4. Example of Constraints Built on Other
Constraints: Open-Loop Zeros. The zeroes of mini-

mum phase systems often lie within the unit circle in
the Z-plane. For a second-order ARMAX-type model,
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Figure 2. Example of combined conditions for a second-order
system: (a) conditions for positive real poles; (b) conditions for
minimum and maximum settling time superimposed on (a); (c) a
closer look at the linear convex hull of (b).
the B(g™?) polynomial (assuming a d-step delay) is given
by

B@ ) =b,q +bg " +byg

b b
=b,q* (1 +og b—3q2) 27)
1 1

In this form, we can utilize the constraints for settling
time (entry 8, Table 1) with a; and a; replaced by —b,/
b; and —bz/b;. The radius r < 1 now specifies the
maximum radius of the zeros. For stable systems, we
can convert these constraints to linear in 6 form (entry
10, Table 1) by recognizing that b; has the same sign
as Ggs (Timmons, 1992). A similar approach can be used
for second-order minimum phase noise polynomials
(entry 11, Table 1).

3.5. Example of Constraint Combinations. When
constraints are combined, previously unusable (noncon-
vex) conditions may become usable (convex). For ex-
ample, for second-order systems, minimum open-loop
settling time cannot be used because it forms a set of
nonconvex constraints. However, this potentially useful
information can be used under certain common condi-
tions, such as when the open-loop discrete time poles
are positive and real (this condition results when
continuous time systems with real poles are sampled
(Kuo, 1963)). In this instance, the parameters are
restricted to the fourth quadrant, above a concave
parabola (Figure 2a). Now, constraints for both mini-
mum and maximum settling times can be superimposed
(Figure 2b), producing a greatly reduced feasible space
whose linear convex hull (Figure 2c) is listed in Table 1
(entry 9).

4. Application Guidelines

In this section, the algorithms and several constraints
developed in the previous two sections are applied to a

first-order, time-varying benchmark model. The noise
level, the presence or absence of constraints, the type
of optimization, and the inclusion of a variable forgetting
factor are used to illustrate some of the conditions for
which parameter constraints improve or worsen adap-
tive control. These conditions are summarized by the
six guidelines in Table 4.

4.1. Experiment Designs. 4.1.1. The Plant. The
plant is a discrete time, linear, nonminimum phase
ARMAX model. Except for an extra delay, it is identical
to the benchmark model used in Clarke (1984), Tim-
mons et al. (1991), and Voss et al. (1987). It was chosen
because it is complex enough to produce several types
of control anomalies, yet simple enough to allow for a
clear, insightful analysis. It has a pole at 0.7, a
nonminimum phase zero at —2, a delay of 2 steps, and
a steady-state gain of 10:

y(t) = 0.7y(t—1) + u(t—2) + 2u(t—3) + e(t) (28)

To challenge the controller, at simulation step t = 105,
the steady-state gain is doubled (i.e., the second and
third coefficients are doubled). For each of the demon-
strations below, the plant is simulated three times with
different levels of zero mean white gaussian noise: no
noise (e(t) = 0; SNR = « dB), small noise (0¢2 = 1; SNR
= 31.1 dB), and large noise (02 = 5; SNR = 24.1 dB)
(where the approximate SNR is given by 20 log(setpoint/
ow) and w(t) = 0.7w(t—1) + e(t)).

4.1.2. Simulation Protocol. Except for a few
instances when large noise is present, the following
protocol ensures that no constraints are invoked up to
the time of the challenge so that all controller configu-
rations enter the challenge under identical conditions.
In the protocol, a small step input (0.1 units for no noise,
0.3 units for small noise, and 1.0 unit for large noise) is
administered for open-loop identification. The loop is
closed after five steps (t = 5) with a setpoint of 50.
Undisturbed control then continues for 100 steps. At
this point (t = 105), the challenge begins (unknown to
the controller), and control is continued for another 100
steps.

4.1.3. Control Law. For all simulations, control is
implemented by a receding horizon predictive controller
as in Voss et al. (1987), with a fixed prediction horizon
of four steps. For the control calculation at each step,
this algorithm assumes all future inputs will be equal
to the current input. While automatic tuning of the
control advance could be used to improve performance
in several instances, this feature was disabled so that
performance changes would be due solely to the identi-
fier and its constraints.

4.1.4. Design Factors. Five designs were crossed
with the three noise levels: (1) loose vs tight constraints;
(2) complete vs incomplete constraint sets; (3) true vs
untrue constraints; (4) optimal vs orthogonal projection;
(5) momentarily increased data discounting vs fixed rate
data discounting. The constraint set definitions are
summarized in Table 2. Further details of each design
are described below.

4.2. Results and Discussion. The plant outputs
for each experiment design are plotted in Figure 3, and
the mean squared control errors following the plant
change (t = 105—205) are recorded in Table 3. Each
guideline is presented in turn. In each, details of the
experimental conditions are described first, followed by
simulation results, a discussion, and the concluding rule
or guideline from Table 4.
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Gss Zp ax by bo
constraint set min max min max min max min max min max
actual parameter values 10 20 -2.0 -2.0 0.700 0.700 1.0 2.0 2.0 4.0
loose —10 10 —10 10 —10 10
tight? 5 30 -2.5 -15 0.596 0.762 0.5 5.0 0.5 5.0
incomplete -25 -15 0.0
untrue? 5 10 —2.5 —-1.5 0.596 0.762 0.5 5.0 0.5 5.0

a8 Minimum and maximum a; were chosen to achieve minimum and maximum settling times of 8.91 and 16.91 steps (+3 steps from the

plant’s settling time of 12.91 steps).
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Figure 3. Closed-loop simulations for no noise (dash), small noise (dash-dot), and large noise (dot): (a) loose constraint set; (b) tight
constraint set; (c) incomplete constraint set; (d) tight constraint set with a too small maximum steady-state gain; (e) tight constraint set
with orthogonal projection; (f) loose constraint set with re-identification; (g) tight constraint set with re-identification.

4.2.1. Loose vs Tight Constraints. Two sets of
constraints, “loose” and “tight”, were used to demon-
strate this point. Each set enforced minimum and
maximum parameter values. In addition, since the
tight set enforced open-loop stability (the bounds force
the pole to lie within the unit circle), steady-state gain
and a zero range were also included in this set (see
Table 2).

In these simulations, the loose constraints were never
invoked; the simulations were identical to unconstrained
control (Figure 3a). The tight constraints, on the other
hand, did become active (Figure 3b). For the no noise
simulations, the mean squared control error (MSE) for
the tight constraint set was more than 26 times lower
than it was for the loose set. As the noise level
increased, the unconstrained (loose) controller still
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Table 3. Simulation Results: Mean Squared Control
Error (t = 105—205)

conditions no noise small noise large noise
loose 4746.92 3491.04 386.70
tight 179.24 191.18 210.68
incomplete 2519.12 3552.27 312.26
untrue 611.49 624.02 643.59
suboptimal tight 2226.18 2080.77 1736.14
loose + re-ident 3086.46 7116.13 210.39
tight + re-ident 44.76 47.81 56.13

exhibited instability at the plant change, though its
overall MSE improved. The constrained (tight) control-
ler only slightly worsened (Table 3). Eventually, for a
large enough excitation, the a priori information would
have provided little additional benefit.

Thus, the rule here is constraints should be tight
enough to be invoked. That is, if we want a performance
improvement using constraints, the bounds must be
tight enough that they will become active at some time.
A second rule can also be stated: a priori information
becomes increasingly important as excitation decreases.
This last rule is very important considering that most
regulators try to achieve zero excitation.

4.2.2. Complete vs Incomplete Constraint Set.
In this example, several of the constraints in the
previous example were eliminated. When using mini-
mum variance adaptive control, it is common to bound
the sign of by or fix it within a range of values so as to
enforce stability (Astréom and Wittenmark, 1973; Lo-
zano-Leal and Collado, 1989). For extended and reced-
ing horizon control laws, however, b; is no longer the
only important parameter (Egardt, 1980; Elliott, 1982;
Lozano-Leal and Collado, 1989). Here, only the sign of
b; and a range for the zero are enforced (see Table 2).

In this simulation, the reduced constraints did not
eliminate the instability when the plant changed (Fig-
ure 3c), although for the no noise case they did decrease
the input and output excursions compared to the
unconstrained case. For the small noise case, the MSE
with these constraints was worse than it was for no
constraints (see Table 3).

In general, we have found that if only one part of a
model is constrained, then the modeling error may be
exaggerated in another. If the controller is sensitive to
errors in the unconstrained part of the plant, then
controller performance may suffer, sometimes more
than if no constraints had been used. This raises the
questions, should some types of information be ignored,
or is there some way to complete the information set so
that this problem does not occur? While these questions
remain the topic of future research, constraints that
enforce the global asymptotic stability conditions may
suffice. For example, we have found that since receding
and extended horizon control laws are sensitive to the
location of plant zeros, constraints on the zeros often
overcome this problem. Furthermore, the results from
Eskinat et al. (1993) suggest that modeling the system
around its crossover frequency might help generate the
critical missing information. Also, as in Kwong et al.
(1995), focusing on the control-relevant information
should help address this issue. For now, however, the
completeness issue remains a potentially serious draw-
back for life-critical applications. While it may be
difficult to implement, the rule here is the constraint
set should be complete.

4.2.3. True vs Untrue Constraints. In this ex-
ample, the set of tight constraints in the first example
was modified to impose too small of an upper limit on

Table 4. Application Guidelines

1. Constraints should be tight enought to be invoked
2. A priori information decreases excitation needs

3. The constraint set should be complete

4. Untrue constraints degrade performance

5. Use optimal projection

6. Re-identify after suspected changes

the steady-state gain. Although temporary instability
was eliminated at the plant change, a constant steady-
state error remained (Figure 3d). The sum of the
squared errors would have continued to accumulate over
time; eventually the MSE would have been larger for
this case than for any of the previous examples. Thus,
the rule here becomes untrue constraints degrade per-
formance. While this rule may seem trivial and obvious,
it is important because it is easily and unsuspectingly
violated, especially when linear approximations are used
for nonlinear plants.

4.2.4. Optimal vs Orthogonal Projection. In all
previous simulations, the optimal (least squares) esti-
mates were used. In this example (Figure 3e), the
simulation experiment in Figure 3b (the tight set of
constraints) is repeated with the orthogonal projector
in place of the optimal projector. Here, just like the
optimal projector (Figure 3b), the instability was elimi-
nated. Unlike the optimal projector, however, a steady-
state error remained. As in the example with the
incorrect constraint (Figure 3d), the sum of the squared
errors would have continued to increase linearly with
time. Moreover, this steady-state error (Figure 3e) was
larger at all noise levels than it was with the untrue
constraint (Figure 3d). Application of the orthogonal
projector to the other experiment designs of this study
provided no additional information and so are not
included here. However, in our experience with other
models, the orthogonal projector occasionally impaired
transient stability too.

The question might be asked, “Is performance worth
trading for algorithm simplicity?” There are three
responses. First, in this experiment, since the con-
straints do not form a set of simple bounds or a simple
hypersphere, the orthogonal projector does not reduce
to an attractive, simple algorithm, but remains as
complex as the optimal projector. Second, simplicity
could be regained if the constraints were relaxed to a
convex hull made up of simple bounds or a hypersphere
(potentially ignoring some useful a priori information),
but then guideline 1 (Table 4) would be violated,
potentially causing further degradation. Third, even if
a simple algorithm could be used, the performance (as
shown in this experiment) would still be unacceptable
in life-critical applications. Thus, we conclude that the
orthogonal projector is not a worthwhile substitute for
the optimal projector, even when the constraint space
is simple, and especially when a high price may be
attached to poor performance. Interestingly, there is
some evidence that the orthogonal projector may actu-
ally be a better choice when the P-matrix is poorly
conditioned, which would be consistent with the results
in Chiaetal. (1991). This is the topic of future research.
With this caveat in mind, the rule here is use optimal
projection.

4.2.5. Momentarily Increased Data Discounting
vs Fixed Rate Data Discounting. After a plant
change, data from the new plant must compete with
data from the old during system identification. There-
fore, it is common to discard old data when a change
has been detected (Goodwin and Sin, 1984). The data



can be discarded by either resetting the P-matrix
(blanking past data) or increasing the speed of adapta-
tion by lowering the estimator’s exponential forgetting
factor (rapidly discounting past data). In this next
example, the past data is discounted by reducing the
forgetting factor to 0.5 for five steps, then increasing it
to 0.75 for eight steps, and finally returning it to its
original value of 0.98. This approach is applied to the
experiment designs in Figures 3a (loose) and 3b (tight).
Results are plotted in Figures 3f and 3g, respectively.

Re-identification after the plant change when using
the loose set of constraints (Figure 3f) did not eliminate
the plant change instability. In fact, when small noise
was present, the input and output excursions were
nearly twice as large as when re-identification was not
used. However, the control error did go to zero im-
mediately after the instability, unlike Figure 3a.

When using the tight set of constraints, control
remained stable and the control error went to zero
rapidly (Figure 3g). For the no noise case, the MSE was
reduced by more than a factor of 100 compared to the
original loose constraint example in Figure 3a. Fur-
thermore, with the tight constraint set, the MSE
increased only slightly as the noise level increased (see
Table 3). Note that this trend still supports guideline
2. More importantly, note that with appropriate pa-
rameter constraints, the adaptation gain can seemingly
be increased without sacrificing stability. This suggests
the final rule, re-identify after suspected changes.

5. Control of Second-Order Blood Pressure
Armax Model

In this section the guidelines are applied to the control
of a simulated mean arterial blood pressure (MAP)
model using a vasodilator (sodium nitroprusside, SNP).

5.1. The ARMAX Model. In modeling the MAP/
SNP system, the y(t) in (2) represents the measured
MAP at time t, while u(t) corresponds to the SNP
infusion rate at time t. To form a time-varying ARMAX
model, a before and an after model were defined. The
before model was obtained by probing a pentobarbital-
anesthetized dog with SNP; the after model was ob-
tained from the same dog following a disturbance caused
by an unknown event which resulted in a 3-fold increase
in the steady-state gain and a change in the base line
blood pressure (Timmons, 1992). The disturbance was
implemented by ramping the exogenous input param-
eters (the b’s) between the before (—0.072, 0.036) and
after (—0.216, 0.108) models, while maintaining the
autoregressive terms (the a’s) fixed (—0.7, 0.06). To
obtain a resting MAP, base line levels of 150 mmHg for
the before model and 111 mmHg for the after model were
added. In addition, a zero mean white Gaussian noise
with a variance of 0.25 mmHg? was added to the process
as in (28).

5.2. Controller Setup and Simulation. For sys-
tem identification, a recursive least squares algorithm
with a variable forgetting factor was used. The identi-
fied model assumed a 20 s sampling interval, two
autoregressive terms (a’s), and three exogenous input
terms (b’'s) with an input/output delay of one sample.
For the constrained identification, minimum and maxi-
mum limits were imposed on the steady-state gain
(—1.0, —0.04), the settling time (0.4, 0.7), and the
magnitude of the zeros (0.7) (see Table 1, entries 3, 9,
and 10). A receding horizon predictive controller with
a prediction horizon of six samples (Voss, 1988) was
used to generate the SNP infusion rates.
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Two simulations were performed to compare adaptive
control with and without constraints. After 5 min of
probing, control was started with a target MAP of 100
mmHg, representing a drop of 50 mmHg from the base
line. After an additional 15 min of control, the transi-
tion from the before model to the after model began
unknown to the controller (t =20 min). The transition
was completed in 10 samples (3.3 min), and control was
allowed to continue for another 16 min. On the basis
of the definition of SNR given earlier (with w(t) =
0.7w(t—1) — 0.06w(t—2) + e(t)), going into the distur-
bance it was 37.5 dB, while coming out it was 24.4 dB.

5.3. Results and Discussion. Both simulations are
plotted in Figure 4. Results show that large oscillations
occur during the model transition for the unconstrained
controller while only small oscillations occur for the
constrained case. The mean squared error (MSE)
calculated for times greater than 10 min is dramatically
reduced when using the constrained controller (MSE =
36.67) as opposed to the unconstrained controller (MSE
= 496.36). The maximum absolute error when using
the unconstrained controller is 100 mmHg, clearly an
unacceptable value for blood pressure regulation in a
clinical setting. In contrast, the constrained controller
was able to maintain MAP at acceptable levels through-
out with a maximum absolute error of 33.5 mmHg.
Furthermore the total amount of drug infused was less
when the constrained strategy was used (28.5 mg when
unconstrained vs 25.9 mg when constrained), and infu-
sion rates were smoother. Several other applications
with similar results may be found in Timmons (1992).

6. General Discussion

While specific cases were discussed above, this section
discusses several general issues relating to the use and
extension of parameter-constrained adaptive control.
Our findings are also contrasted with the results of
other studies.

Interestingly, there appears to be a certain degree of
skepticism regarding the use of a priori information.
Some investigators consider its use antithetic to the
spirit of adaptive control, since they claim that the goal
of adaptive control is to use as little a priori information
as possible (see for example Giri et al., 1992). While
this may be a worthwhile goal, as a practical matter,
some information is almost always available. Since, as
shown in Figure 3, a priori information can improve
controller performance, often dramatically, it would
seem prudent to use as much information as possible.

Others investigators conclude that projectors are not
necessary because momentarily unstable parameter
settings are self-correcting (see for example Kosut,
1987). While this statement may well be true, again
as a practical matter, momentary instability may be
undesirable. One problem with allowing momentary
instability is that the adaptation gain becomes small,
leaving the adaptive controller unable to compensate
for later changes. Another problem is that instability
may be dangerous or life-threatening in some situations
(e.g., medical systems for human patients, cf. Figure 4).
Finally, if rapid learning is desired, there are less
detrimental techniques that can be used, such as
temporarily lowering the forgetting factor. The control-
ler in Figure 3g demonstrates the efficacy of this latter
technique. One could aid the process further by adding
a small perturbation to the input signal, as well as by
including an automated, continuous adaptation of the
forgetting factor as described in (Goodwin and Sin, 1984,
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Figure 4. Second-order ARMAX model simulations: (a) unconstrained case; (b) constrained case.

p 227). Indeed, the adaptive forgetting factor proved
to be the most important adjuvant in the blood pressure
application in Figure 4.

Probably because of the apparent difficulty of coding
an optimal projector, the simplified orthogonal projector
is used more commonly. For example, many of the
robust stability schemes that depend on parameter
bounding do so using an orthogonal projector, as in
Ydstie (1989), Naik et al. (1992), and Praly and Kumar
(1989). Yet clearly, as demonstrated by Figure 3e, the
orthogonal projector does not necessarily lead to im-
proved control, although it did reduce the magnitude
of the transient excursions. We speculate that these

findings also apply to variants of the orthogonal projec-
tor, such as the o-projector, so that the extra effort
required to code for the optimal projector is worthwhile.
Furthermore, many reliable quadratic programming
packages are available at low cost, substantially reduc-
ing the effort needed to construct an optimal projector.

A more serious concern, however, is that the develop-
ment and conversion of a priori knowledge into suitable
linear constraints may be problematic for high-order
and nonlinear systems. For example, the Jury stability
criteria become nonlinear above second order. For these
types of problems, a nonlinear (and possibly nonconvex)
program solver would be required. As such, there would



be no guarantee that a unique or global solution could
be found in a reasonable amount of time. On the other
hand, these solvers would allow the inclusion of even
more a priori information, such as the nonconvex
constraints arising from control and trajectory admis-
sibility conditions, nonminimum phase plant zeros, and
generalized minimum and maximum plant settling
times. A treatment of one such optimizer may be found
in Luyben and Floudas (1994), where it is used to
impose output controllability on several process designs.

Of course, the constraints developed here could still
be applied to high-order MIMO systems which can be
decoupled, so that at least low-order, local information
can be imposed. Or, using a different approach, it may
be possible to reduce the required model order by using
only control-relevant information, as in Rivera et al.
(1987). Also, many classical control designs consider
only the two most dominant poles regardless of the
actual “best” order of the system. Hence, for many high-
order control applications, the constraints in Table 1
may still be practical and directly useful.

Soft, moving, or adaptive constraints can be used to
impose important and useful information about the rate
at which a plant is expected to change or drift over time.
Several of the constraints in Table 1 lend themselves
directly to this type of application. Examples include
simple bounds around a parameter, a gain, or a pole
radius that changes as a function of the recent mean of
the input and output signals. This approach further
allows the possibility of using the constraints them-
selves to detect system parameter jumps. For example,
a sudden increased cost associated with a soft constraint
could be used to trigger re-identification (guideline 6)
or at least to alert a supervisory system of a potential
change in the plant. If the parameter jumps are
exclusive, then two sets of constraints could be used to
define each feasible space. One or the other should then
have a high cost associated with its imposition.

7. Conclusion

In summary, an optimal constrained identifier has
been derived as a semirecursive quadratic program,
making it attractive for real-time applications. A
reasonably fast, novel quadratic program solver has
been included for this purpose in the Appendix. Linear
constraints from commonly available information have
been developed (Table 1), and application guidelines
have been demonstrated and listed in Table 4. Of the
experiments shown here, most surprising was the poor
performance exhibited by the orthogonal projector,
suggesting that it should not be used in low-tolerance
applications. Additionally, these experiments clearly
showed that a priori information reduced the need for
system excitation, which is consistent with results from
other related areas. Constraint set completeness re-
mains a potentially thorny issue, though it possibly may
be solved using stability analysis, crossover frequency
analysis, and other control-relevant information. Fi-
nally, it was also shown that optimal, parameter-
constrained identification can lead to dramatically
improved controller performance when combined with
selective re-identification. The potential benefit of
parameter constraints for adaptive control has thus
been shown to be significant, though additional work
is needed to extend this idea to high-order and nonlinear
systems, as well as to generate formal mathematical
proofs of the guidelines.
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Appendix: An Enhanced CLP Algorithm

The CLP Tableau: Definitions and Structure

Given a real n-vector y and a real positive definite or
positive semidefinite (but not necessarily symmetric) n
x n matrix Q, find vectors x and z satisfying the
conditions

X=Qz+y

X=>0,z=0
x'z=0 (29)

The complement of x; is z; and vice versa. The goal of
CLP is to permute the equations x = Qz + y using
simplex pivots until the complementary and nonnega-
tivity conditions are met. Basic and nonbasic variables
are defined as for the simplex method: left-hand
variables are basic and right-hand variables are non-
basic. For an arbitrary tableau, let x and z define the
basic and nonbasic variables, respectively. For each
pivot, we define the entering variable as the variable
that becomes basic and the exiting (or blocking) variable
as the variable that becomes nonbasic. When the
complementary conditions are satisfied (zix; = 0 for all
i), the tableau is complementary, and the vectors X and
Z form a complementary solution. If the basic variables
are additionally nonnegative, then the complementary
solution is optimal. If one of the xjzi # 0, then the
tableau is almost complementary, and the vectors X and
z form an almost complementary solution.

During the tableau permutations, nonnegative vari-
ables are not allowed to become negative. This restric-
tion may cause the formation of an almost complemen-
tary tableau. A major cycle is the sequence of pivots
needed to restore (or maintain) the complementary
condition. Each major cycle begins with the selection
of a target variable from the basic variables and ends
when this variable becomes nonbasic. Within a major
cycle, the entering variable is not necessarily the
complement of the target variable, and the exiting
variable is not necessarily the target variable.

Given (29), a complementary starting tableau can be
initialized with X = x (=y) and z = z (=0):

Zq cee Z,
X1 | Q... Qum iy
Xn | Qm .. Qn i Yo
Fl-yr ... “¥»iO0

where the bottom row entries are the relative cost
coefficients for a quadratic program of the form (16)
(without equality constraints). For a complementary
solution, the value of the quadratic projection cost
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function (19) is Y/2F (where F is the lower right entry in
the tableau). For an almost complementary solution,
the value of the cost function is Y/»(F + x7z) (Timmons,
1992).

The Enhanced CLP Algorithm

Step 0. Initialize tableau.
Step 1. Start major cycle.
S=theset{x| xi <0,i=1, .., n} /*Sis the set of
potential target variables*/
Step 2. Find target variable.
If (x = 0) then
Return with solution /*Solution is optimal*/
Else if (S = &) then
Return with error /*No solution*/
Else
Target = X;, where %; € S and y;2/Q;i is maximum
Endif
Step 3. Find entering variable. /*i.e., find the pivot
column*/
If (tableau is complementary) then
Entering variable = complement of target
Else
Entering variable = complement of previous block-
ing variable
Endif
Step 4. Find exiting variable. /*i.e., find the pivot row*/
/*A block occurs when, upon increasing the entering
variable, (a) the target variable increases to zero or
(b) another basic variable decreases to zero*/
If (blocked) then
blocking variable = first variable to block
/*Ties go to the target variable, if involved.
Otherwise, resolve degeneracies using Charnes’s
method (e.g., see Luenberger, 1984)*/
Else if (tableau is complementary) then
Remove the target from S /*No block, so reject
target*/
Goto to Step 2
Else
Return with error /*No solution*/
Endif
Step 5. Pivot.
Exchange the entering variable for the blocking
variable
Step 6. Loop back.
If (tableau is complementary) then
Goto Step 1 /*The major cycle ends*/
Else
Goto Step 3 /*The major cycle continues*/
Endif
Our modifications to the original algorithm are (a) the
least distance target selection rule in Step 2 and (b) the
target rejection rule in Step 4. See Timmons (1992) for
details.

Equality Constraints

For numerical robustness, any equality constraints
that are present should be included in the tableau (as
in eq 16) (see Golub and Saunders, 1970). Their
Lagrange multipliers and constraint errors should be
made basic and nonbasic, respectively (thus driving the

constraint errors to zero), and then removed from the
list of possible pivots.
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