
Chapter 14
Convective Transport of Fluids

14-1. Fluid displacement: flow through a pipe

There are many representations of flow through a pipe. The one most commonly used is the one
developed independently by Poiseuille (1846) and Hagen (1841). It was based on observations of
the steady flow of water and other solutions in smooth straight cylindrical tubes. From the data on
the observed flows, the pressures at inflow and outflow, viscosities, tubing length and radius,
Poiseuille derived the summarizing equation,

, (14-1)

where ∆P is the pressure difference between inflow and outflow, R is radius, η is viscosity of the
fluid, and L is the length of the tube. This is just Ohm’s law, with F = current and P = voltage; the
resistance is 8πηL/R4. (The units are given in the Terminology in Chapter 1.) The beauty of this
simple expression, either Poiseuille’s or the more general Ohm’s Law version, Flow =
Pressure/Resistance, is that it is not only an excellent quantitative descriptor over a wide range of
conditions but in addition describes qualitatively the relationships under a yet broader range of
conditions even where Poiseuille’s conditions do not hold: higher pressure causes more flow,
higher viscosity decreases flow, greater length gives greater resistance, and larger radii give
reduced resistance and higher flow. All of these are intuitively obvious to us nowadays. But where
did the 8 come from? The theory is in the next chapter.

Now change the view point from that of assessing flow/pressure relationships to assessing
input/output relationships. This I/O view going to be brought back to mesh with that of
pressure/flow studies, but it focuses on observations of the fate of fluid molecules entering the
system, not on mechanism. Questions are: What is the transit time from entrance to exit? How is a
specific concentration-time curve for a solute at the entrance deformed in the processes undergone
during that transit? The ideas are based on Conservation of Mass coupled with the effects of
diffusion or other sources of dispersion. Tracer principles come into play in such experiments;
radioactive tracers can be detected by sampling the flowing fluid at which frequency to
characterize the input and output concentration-time curves. Moreover, gamma emitting tracers
can be detected while inside the system by placing gamma detecting NaI(Tl) crystals (sodium
iodide, thallium activated) externally. (Such external detection is the basis of noninvasive imaging
procedures.)

This chapter takes a “model-free” approach. (Never trust anyone who says a “model-free”
approach is used. There is always an underlying set of assumptions which comprise, of course, a
model. Figure out how to make such assumptions explicit, and so reveal the underlying
hypotheses.) In our “model-free” approach we assume certain fundamentals: (1) no mass loss
between inflow and outflow, (2) flow is steady, and (3) there is no binding of tracer or fluid
molecules to the wall of the vessel. Then more assumptions will be made, all explicitly.
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2 Convective Transport of Fluids
14-1.1. Simple fluid displacement without dispersion
Consider the lowly pipe. Unless it is clogged or leaks, what comes in goes out. This is mass
balance—nothing lost, nothing gained. Figure 11-11 shows an idealized frictionless pipe, one in
which the fluid does not stick to the walls. Sticking only to itself (internal viscosity) but not to
walls allows a flat velocity profile.This is the explicit model assumption, fourth one on top of the
three listed above. (A velocity profile is defined as the map of velocities at each radial position
across a cross section of the pipe, the relation v(r); in this particular case v(r) = constant.) Now a
fifth assumption: there is no molecular diffusion spreading the fluid particles upstream or
downstream; they all move with the same velocity. When the velocity profile is flat, disc-like
within the tube, and there is no dispersion axially, it doesn’t matter if there is or is not fluid
rotation, since this will not influence the arrival time of the fluid particles at the outflow.

14-1.2. A special input, the impulse (so short that it happens only in theory).
A flat or uniform velocity profile in the pipe (Fig. 11-11) makes description of the mass balance
simple. The output is merely a delayed replica of the input. When the input to such a
mathematically nice pipe is a very short pulse, close to the idealized Dirac delta function, δ(t),
then the uninteresting result is a spike in, and later a spike out (Fig. 11-12). What is useful is a
measure of the delay between input and output.

Consider the line in Fig. 11-11 to designate the front of a column of fluid, labeled just at the
interface between the column of fluid filling the pipe and the new fluid which is about to displace
it. Now the new fluid advances at a constant velocity, the same at all points across the cross
section, pushing out the old. When the labeled front of the piston emerges, the volume of new
fluid has just sufficed to push out the old. The time, t0, required to move the column of new fluid,
the piston, from the entrance to the exit is calculated exactly by

, (14-2)

where Vpipe is the volume of the pipe and F is the flow (volume/unit time). The calculated t0 and
the observed delay must match. The delay is tout − tin, where tin is the appearance time of the input
concentration and tout the appearance time of the output concentration. This must equal t0 if the
flow is steady and no fluid is lost (conservation of mass). The mean transit time, t, through the
pipe is t0, all particles having this same transit time.

Figure 14-1: Fluid displacement without dispersion, a uniform velocity profile, often
called piston flow.

F

t0 V pipe F⁄=
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Convective Transport of Fluids 3
The amount of the tracer label within the pipe is graphed in the upper panel of Fig. 11-12. It
is the signal that would be obtained by external detection of a gamma-emitting or
positron-emitting tracer, using a detector that recorded emission coming only from the tracer
inside the pipe. This is the residue function—the sum of all the tracer that has entered the pipe but
not yet left the exit. In this idealized example, the residue function rises from 0 to 0.01 moles
between t = 2 seconds and t = 3 seconds for the whole of the tracer entered during that time. The
residue function declines from 0.01 to 0 moles between t = 17 seconds and t = 18 seconds.
Between t = 3 seconds and t = 17 seconds all of the tracer was inside the pipe, was seen by the
detector, and gave a constant signal.

In a formal sense, when the input is an infinitely short pulse and yet introduces a unit mass,
Cin(t) = δ(t), then Cout(t) = δ(t − t0). The Dirac delta function or impulse input δ(t) is formally
defined as an infinitely narrow, but infinitely high spike occurring at t = 0, and having unity area.

Figure 14-2: Brief pulse input of 10 millimoles in 1.0 second into a pipe. Cin is the
concentration at the inflow, a pulse beginning at t = 2 s and ending at t = 3 s, and Cout is
that at the outflow end of the pipe, a pulse beginning at t = 17 s and ending at 18 s. The
delay, t0, is the transit time. The upper panel records the amount of material in the pipe,
as if by external detection. F = 0.0167 ml g−1 s−1 = 1 ml g−1 min−1, V = 0.25 ml g−1, and
t = V/F = 15 s.
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4 Convective Transport of Fluids
At times before and after t = 0, its value is zero. Accordingly δ(t − t0) is a spike of unit area
occurring at time t = 0 and having zero values before and after. One can think of it as a unit area
Gaussian normal curve with the standard deviation reduced to zero. For an input of any form,
Cin(t), when the impulse response is a delayed Dirac delta function, undispersed, then the output,
Cout(t), has the same value as the input, but is delayed by t0:

, (14-3)

or in words, that the output is identical to the input except for a delay of t0. When material is
entering, then the residue function R(t) accumulates all that enters, i.e., it is the integral. Formally,
this is represented in the special case where the input is a delta function, δ(t), as a step function; at
time 0 the contents of the pipe increased by the unit step, and at time t0 the contents decreased by
a unit step, S(t):

. (14-4)

In this case the unit step function is appropriate because exactly one unit of material entered
at time 0 and emerged at t0. The area under the curve of q(t) is the transit time itself in this case
because one unit of tracer was used. In general, the area of q(t) divided by the amount entering, q0,
gives the transit time.

14-1.3.  A clean but broad pulse input
Injecting a broader bolus with the same total amount of tracer but over several seconds rather than
as a short impulse gives the result shown in Fig. 11-13. The relationship between Cin and Cout is
the same, they are identical in shape and Cout is delayed by t0. The content of the pipe, q(t) (upper
panel), is changed in form: the longer pulse entering results in a linear increase in content until all
has entered, but as before the plateau is steady until the first tracer exits, then has a linear
decrease. These ramps, in and out, illustrate another generality: just as the step function is the
integral of the impulse, the ramp function is the integral of the step. The ramp increase will
continue so long as the input is a constant, or, for a continuous inflow, until outflow begins. With
the longer input pulse, the plateau shortens.

14-1.4.  A more general dispersed input
When Cin is dispersed in some nondescript way, the same principles apply, as shown in
Fig. 11-14. The output is just as precisely defined as before, i.e., Cout(t) = Cin(t − t0). The shape of
the residual content of the pipe is predictable from the input, for it integrates what enters until
there is outflow, and then subtracts the integrated outflow:

. (14-5)

If one were to collect all the outflow in a beaker, one would gather the total dose, q0:

Cout t( ) C in t t0–( )=

q t( ) S t( ) S t t0–( )–=

q t( ) F C in λ( ) Cout λ( )–( )dλ
0

t

∫=
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Convective Transport of Fluids 5
. (14-6)

14-1.5.  A small pipe begins to lose material before the input is complete
Figure 11-15 illustrates what is commonly found when one examines the content of a Region Of
Interest (ROI) in a PET (Positron Emission Tomography) signal, particularly when the region is
small. Material starts to leave so soon after entering that not all of the injected material has
entered. When this happens the plateau is never reached. (This is compromising to analyses that
are based on measuring the total amount of tracer that entered a region. Using a deposited
indicator, regional flow is estimated from the tracer content of the ROI, but when tracer leaves
before the entry is complete the contents of various ROIs at any particular moment are not
proportional to the local flows.) Figure 11-15 shows a family of outflow and content curves for
various pipe volumes. If the input, Cin, is brief enough, then even a small volume pipe would
contain the complete bolus of tracer. The practical problem is to achieve a short input function;

Figure 14-3: Input and output concentration-time curves for a dispersionless pipe with
finite pulse input. Same F and V as in Fig. 11-12. The total injected, q0 = 10 mmole is
also the same, but the input pulse is 4.0 seconds, four times as long as that in Fig. 11-12.
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6 Convective Transport of Fluids
one needs to make injections short and close to the entrance into the organ or pipe. All vascular
transport is dispersive, that goes for large arteries and veins, as well as in capillaries, making it
impossible for an injection to reach a small region as a nice square pulse.

14-2. Fluid displacement with dispersion

Dispersionless piston-flow is unattainable in reality. A thin cross-sectional lamina of fluid is soon
spread out along a tube. The mechanisms vary in importance in different flow regimes and
differently structured tubes, but they include: (1) variation in velocities at different points in the
cross section, the velocity profile; (2) molecular diffusion axially and radially, prominent at very
low flows; (3) turbulent dispersion, which is random like molecular diffusion; (4) eddies at
branches and bends; (5) pulsatile flow; (6) the particulate nature of blood, with red cells and
plasma being separated near walls, particularly in small vessels; and (7) fluid viscosity changing
with shear rate (thixotropy) and hematocrit.

Figure 14-4: Responses of the same system as in Fig. 11-13 to a dispersed input. (Input
is a lagged normal density curve [Bassingthwaighte, Ackerman, and Wood, 1966] with
σ = 0.96, τ = 1.15 seconds, and tC = 4.85 seconds.)
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Convective Transport of Fluids 7
14-2.1. Comparing dispersionless and dispersive systems
The same system responses are shown in Fig. 11-16 for a brief pulse injection into a pipe where
dispersion is allowed. Now we begin to approach reality, because in pipes in which there is
friction between fluid and wall the velocities are lower at the wall, higher in the center of the
stream, so tracer in the central laminae of the flow streamlines and will arrive sooner at the
outflow. This is dispersion by the velocity profile. When dispersion occurs because of turbulence
or disturbed flow streams, at high or low flows, or by molecular diffusion that randomizes the
position of the tracer molecules, then the end result is similar: tracer entering as a narrow bolus is
spread in space and time of arrival at the outflow. The two examples shown in Fig. 11-16 illustrate
the role of dispersion in complicating the form of the residual tracer content. When the volume of
the pipe is large enough, the dispersion has no influence on the plateau in pipe content, q(t). For
smaller volumes, the plateau is achieved because the input waveform is a rather brief clean pulse,
but is not maintained very long because the dispersion within the pipe leads to earlier loss through
the outflow. If the pipe had a significantly smaller volume, the plateau would not be reached.

In Fig. 11-17 the contrast between a brief pulse input and a dispersed input is more evident.
The upper panel shows the effect of diminishing the volume on the retained tracer content of the

Figure 14-5: Effect of diminishing volume on the system responses to a dispersed input
(lower panel). The system content fails to achieve a plateau when V is small (upper
panel).
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8 Convective Transport of Fluids
pipe, q(t), when the input is brief. The plateau is reached even for the smaller volumes. The lower
panel shows that the plateau is not achieved with smaller volumes when the input is more
dispersed.

14-3.  A formal notation

The notation defined originally by Zierler (Meier and Zierler, 1954; Zierler, 1962 and 1965) and
formalized by an international agreement (Bassingthwaighte et al., 1986), summarizes what has
been represented for transport through an idealized pipe. When the input is the Dirac function,
δ(t), then the system responses are given formal names; these names are completely general.
When any other input occurs, the system responses can be defined from the formal descriptors by
minor arithmetic manipulations, usually a convolution. See Fig. 11-18.

 The impulse input occurs at t = 0. The system response to it at the outflow is the transport
function h(t), defined by Zierler as the frequency function of transit times, or the probability

Figure 14-6: Responses to a pulse input in a system with dispersion. When the volume
is sufficiently large relative to the volume of fluid containing the input, a plateau is
reached even when there is internal dispersion. However, internal dispersion abbreviates
the plateau, and may even reduce the maximum tracer content when the volume is
smaller. F = 1 ml g−1 min−1.
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Convective Transport of Fluids 9
density function of transit times, through the system. The accumulation of all the material flowing
out, as if in a bucket at the exit, is the residence time distribution function, H(t). In this special
case, everything has entered the system at t = 0, so that the residue function R(t) is 1.0 at t = 0, and
remains at that level until tracer begins to exit. The residue function is the complement of what
has emerged:

. (14-7)

The rate at which material emerges is h(t), the fraction of the material injected as an impulse
which emerges per unit time. Another way of looking at the system is from the point of view of
the contents. The rate of exit h(t) is the rate of diminution of R(t):

. (14-8)

Figure 14-7: Tracer content of a dispersive system at various volumes when the input is
a pulse of 1.0 second duration (upper panel), or a dispersed input form (lower panel).
With a small system volume, the peak, q(t), reaches the plateau representing the total
dose only when the input concentration-time curve is shorter than the shortest transit
time.
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10 Convective Transport of Fluids
Again from the point of view of the contents, the fractional rate of loss is the rate of exit h(t)
divided by the contents itself. This defines the fractional escape rate for an impulse response, the
emergence function, η(t) is

. (14-9)

This is the negative of the slope of the residue function, which we see most commonly as a
washout curve recorded by external detection.

14-4. Illustrative Program: Simpipe

Simpipe is a SIMCON program providing an input subroutine, cinput, and an option to choose
one of two delay-type operators, btex10 (bt10) or dlymn, to represent the pipe.

Everything in this section can be reproduced with a single operator, bt10, which is an axially
distributed blood–tissue exchange model that acts as a nondispersing delay when the dispersion
coefficient is set to 0, otherwise it acts as a dispersive delay. Because the coding of bt10 provides
for a maximum delay of 60 intervals of its internal time step (may be longer or shorter than the
user-chosen time step, when the transit time is very long one may prefer to use a pure delay line
when the dispersion is zero, so a second delay operator (dlymn) is provided and is governed by the
same parameters F and V.

The input function is generated by cinput, a program allowing a large variety of input wave
forms. See UNIX manual pages under linux on the NSR system, for cinput, btex10, and dlymn.

Figure 14-8: Mass transport through a stationary system: relationships between h(t),
H(t), R(t), and η(t). Input is an approximation to δ(t), namely a 0.1 s duration pulse
starting at t = 0.
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Convective Transport of Fluids 11
14-4.1. XSIM parameter arrays for figures using simpipe:
To run the programs for each of the figures in this chapter over the web go to

http://nsr.bioeng. washington.edu
Click on Software, then on Blood-tissue exchange models, then on simpipe, and then choose the
particular figure you want by clicking on the relevant parameter file, e.g., simpipe2.par for
Fig. 11-12. When the XSIM control window comes up, click on Results, then Plot Area 1 and
then move the plot window down to the lower right part of the screen so you can access the
control window.

Click Run for a solution. To display other variables on the graph right click in a variable box
(left upper) and choose a variable from the list that comes up. You may have to change the scaling
for the Y variable (right upper part of Plot Area).

14-4.2. Programs archived and available that relate to this chapter:
These are available for those using Unix or Linux systems:

• Subroutines—cinput, bt10, dlymn, and their related subroutines.
• Programs to produce illustrations—simpipe.

14-4.2.1. XSIM parameter arrays for figures using simpipe
These are available at http://nsr.bioeng. washington.edu:

• For Figure 2—simpipe2.par
• For Figure 3—simpipe3.par
• For Figure 4—simpipe4.par
• For Figure 5—simpipe5.par
• For Figure 6 —simpipe6.par
• For Figure 7 (top and bottom)—simpipe7T.par, simpipe7B.par
• For Figure 8—simpipe8.par

14-4.2.2. JSIM program and parameter sets (XSIM)
The JSIM program and parameter sets (XSIM) for comparable figures can be found at
/user12/garyr/public_html/BTEX/BTEXPLUS. Copy btex10plus_pde.mod and the parameter sets
to your own directory.

14-5. Problems:

14-6. Chapter Summary:

14-7. Further readings:

Bassingthwaighte and Goresky (1984) give a general description of the phenomenology and of
these formal descriptors. The terminology we use here follows that proposed by an international
committee (Bassingthwaighte et al., 1986). Stephenson (1948) gave the general theory in a formal
mathematical fashion, but the several papers of Zierler are more readily digestible and are
excellent sources from which to learn. Methods of applying residue function analysis are
described by Bassingthwaighte (1977) and Bassingthwaighte et al. (1993).
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12 Convective Transport of Fluids
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