
M
U

LT
IS

C
A

LE
M

O
D

EL
IN

G
PA

RT
2 Error Detection

and Unit Conversion

C
omputer models of physiology are based on physical
laws governing chemical reaction kinetics, magnetic
fields, hydrodynamics, ion fields, charge transfer, and
other phenomena. Equations that instantiate these

models represent the relationships among time, mass, distance,
force, pressure, chemical concentration, and potential difference.
In the Systeme Internationale (SI) system, the seven base units are
ampere, candela, kelvin, kilogram, meter, mole, and second. The
units may be fundamental, as in SI units, or derived, as with veloc-
ity (m/s) or pressure in its varied forms (e.g., 1 mmHg ¼
1.00000014 torr ¼ 1:33:322 Pa ¼ 1333.22 g � cm�1 � s�2). Pres-
sure may also be expressed as kilopascals, atmospheres, bars and
microbars, pounds per square inch, etc. Models often refer to
experimental values expressed in units that are convenient to use
during the collection of data and vary in form or in the system of
units that is used.

For the security in computation, one should be able to describe
data and write equations using the habitually used units for a par-
ticular variable and to have the system guarantee correct interpre-
tation and conversion from one form to the form used for the
computation. Unfortunately, standard computational packages
have historically lacked a means of unit balance checking, even
for space missions. A classic example is the Mars Climate
Orbiter mission planning [1], where one team used metric units
and the other did not, leading to a miscalculation that put the
spacecraft in too low an orbit. It crashed.

Most mathematical models published in peer-reviewed jour-
nals are not reproducible: they contain the authors’ errors of
commission and omission, augmented by the errors introduced
by editors and typesetters. Therefore, an exactly reproducible
model is a rarity. Modeling in cardiac electrophysiology has
set a high standard of reproducibility in the works of Hodgkin
and Huxley [2], Beeler and Reuter [3], Winslow et al. [4],
Michailova and McCulloch [5], all of which can be repro-
duced, figure by figure, from the articles. The latter two were
vetted in advance of publication by reviewers, who iterated
with authors to assure that the computer code matched the
equations appearing in the article. In all of these studies, the
published equations had balanced units, which we define as
having the same units on the two sides after simplification.

The modeling of biological systems requires validation to
assure the reader that the model is a good representation of the
real biological or mechanical system, even though it is neces-
sarily a simplification. This means that there is an element of
arbitrariness in each of the equations and that there is no easy
way to affirm the correctness of the derivations or the assump-
tions on which they are based. In addition, there is a need to
verify the code used to embody the mathematical model. This
includes definitions of variables with their units. Articles in
the mathematics literature are easier to compare, as the devel-
opment of a theorem can be reviewed exactly.

Given that every biological or physicochemical model is a
hypothesis defining a concept rather than an exact reality,
reproducibility is critical to the advancement of science: a
hypothesis disproved is a stepping stone toward an improved
hypothesis; i.e., toward a better model. The goals of publica-
tion in science are manifold, but idealistically, the central one
is to make the advancements known exactly so that they can
be challenged and built upon.

To this end, we now see the development of model data-
bases and of tools for modeling. What we would expect of
databases such as CellML and Biomodels (these are archives
of published models using ordinary differential equations in
physiology and systems biology), and of our National Simula-
tion Resource (NSR) Physiome site, is that the models should
be reproducible and correct. In curating published models to
make them available for public dissemination on the Biomo-
dels and CellML databases, the vast majority have needed cor-
rection by the curators; the published articles contained errors
by the authors, editors, and typesetters. Although errors can
obviously be introduced in the process of putting models into
a markup language, there is no doubt that the curation teams
are raising the standards for model archiving.

The ideas discussed here are not new, having been formally
introduced in Buckingham’s classic article [6] and captured in
Wittgenstein’s Tractatus Logico-Philosophicus [7], a work
begun in 1914. Both were cognizant of earlier uses of dimen-
sionless variables such as the Reynold’s number for character-
izing fluid flow in tubes [8], as reviewed by Sterrett [9]. In
1941, Gagge et al. [10] introduced a system of units for use in
making measurements for thermal exchange in physiological
systems. Pappenheimer [11] collated a system for respiratory

BY HOWARD JAY CHIZECK,
ERIK BUTTERWORTH, AND
JAMES B. BASSINGTHWAIGHTE

© Images courtesy of Daniel Einstein

Digital Object Identifier 10.1109/MEMB.2009.932477

Automated Unit Balancing
in Modeling Interface Systems

50 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE 0739-5175/09/$25.00©2009IEEE MAY/JUNE 2009

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 27, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

physiological terminology, including units, in 1950. A 1986
terminology for transport phenomena in physiological sys-
tems [12] extended the nomenclature and emphasized consist-
ent physical and chemical units, allowing for different
standards for units and their interconversion.

In 1978, Karr and Loveman [13] were the first to directly
address the difficult but highly desired capability to incorporate
units into programming languages. Their work is an early exam-
ple of the type of operations described in this article. Gruber and
Olsen [14] proposed an ontology for engineering models that
addresses many of the underlying philosophical issues involved
in unit balancing. Novak [15] presents elegant methods of auto-
mated unit conversion and unit balance checking.

Any mathematical modeling language (MML) can be sum-
marized as a collection of variable declarations and mathemat-
ical equations using those variables. Variables should be
assigned units as they are declared. Variables with no assigned
units are initially inferred to be dimensionless but may later be
inferred to have particular dimensions from the context of
equations in which they are used. The tasks of interest in auto-
mated unit matching involve the following:
1) Equation balance checking: Equations containing impro-

per unit arithmetic (e.g., m=sþm=s
2
) should generate

error messages (for manual correction).
2) Unit scaling factors: These should be inserted into calcu-

lations as needed (e.g., substituting 1 mm/s for 6 cm/min
to match the two sides of the equation). This we call unit
conversion; it is automated.

3) Unit inference: Model variables and constants whose units
were not specified should be assigned units based on con-
text wherever possible. For example, if A has been assigned
the unit cm, then when the expression (AþB) appears, it
implies that A and B have compatible units, and thus B is
assigned the unit cm. Although this strategy appears to
work well, it is not without risk. For example, if B’s units
have been inferred, then they may be in error. The best
practice is therefore to assign units to all of the variables.
Each of these automated unit matching tasks is described

later in greater detail.
An automated system for error detection and unit conver-

sion in a MML should meet the following goals.
1) User specification of units should be simple, intuitive,

and unambiguous.
2) Variants from the basic SI and centimeter gram second

(CGS) units such as commonly used units for physiology
and systems biology must be predefined in terms of SI or
CGS units.

3) Modelers may define new units or abbreviations if
desired.

4) Equations with unbalanced units must be detected and an
error message generated.

5) Equations with compatible but dissimilarly scaled units
(e.g., cm/min versus mm/s) should be detected and unit
conversion factors should be inserted into the computa-
tions. Any change in a variable’s unit assignment (such as
cm to m) should cause computations to rescale correctly.

6) In the near term, the modeling interface system should
accommodate existing models that do not use auto-
mated unit balance checking; i.e., the unit balance
checking should be optional (until modeling standards
are adopted generally).

Unit Balance Checking
Unit balance checking is the first of a series of checks for
achieving correctness and validity of models. It is the simplest
and much easier method that achieves balance of mass, energy,
or charge. It precedes the steps of validation of the model
against the observed data and is a prerequisite for them; there
is no point validating an incorrect model. A checklist for
standards can be found at http://www.physiome.org/standards.
Failure to balance units means that the equations are erroneous.
One source of the error is that units may not have been speci-
fied so that they were inferred from context. The context may
be ambiguous or an inference may depend on units defined by
a previous inference. Since the specification of units is the duty
of the original authors, there is no good rationale for the failure
to define the units for parameters and variables, nor for physi-
cal or chemical constants. Another source of error is the use of
conflicting systems of units. Methods to address these issues
are described by Chen et al. [16] in writing about rule-based
dimensional safety; they defined more than 2,000 rewriting
rules in the Maude and BC programming languages to achieve
their objective, which included the coding of complex matrix
inversions. This is far greater than the number of rules used in
the Java simulation (JSim) unit balancing and conversion sys-
tem (which is 14; see Table 5). This suggests that their work
covers a broader range of situations.

In complicated models, balancing units manually in equa-
tions with many terms is time consuming. Constructs such as
(m=sþm=s

2
) are inherently erroneous, and though they will

be detected by a unit balance check, they must still be corrected
by the programmer. In standard programming languages like
FORTRAN, C, and MATLAB, when the programmer uses
centimeters in one equation and meters in another, this usually
involves the insertion of numeric unit conversion factors into
the model code. It is difficult to find even overt errors, because
these languages have no provision for unit balance checking. It
is also a nuisance to have to convert everything to a common
base system of fundamental units, especially when the experi-
mental observations are best remembered in the format in
which they have been acquired. For correctness in equations,
each group of terms to be summed in a particular equation must

Standard computational packages

have historically lacked a means

of unit balance checking.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MAY/JUNE 2009 51

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 27, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

have identical units, and units to the left of an equal sign must
be the same as those on the right.

The incentives to automate unit balance checking in computer
programs include speed and reproducibility. Automated unit bal-
ance checking provides a substantial acceleration in model code
development. The development of standards for the performance
and reproducibility of algorithms for computer modeling and
simulation is in its infancy. It is likely that future innovations will
continue to improve the speed of model code development.

What we show here is that unit balance checking can be
automated. Although our example implementation is under a
specific simulation system, JSim (http://www.physiome.org/
jsim/), the program to automate the unit balance checking is
general and can be applied to other systems in which units can
be specified and checked. Although JSim was apparently the
first simulation system that did this (in its 1999 release), others
have implemented similar improvements to numerical simula-
tion packages. For example, the caretakers of CellML [17],
[18] require units on all variables, allow no inference of units,
and they are implementing unit balance checking [19] in an
ODE-based simulator Physiome CellML Environment (PCEnv;
http://www.cellml.org/tools/pcenv/). The methodology we de-
scribe here exploits that fact that unit balancing follows rigid
logical rules and can thus be automated. Automated unit bal-
ance checking not only reduces errors in individual equations,
but by alerting the model builder to imbalances it also helps to
identify any conceptual errors in their formulation.

Unit Compatibility and Scaling Factors
Two units are said to be compatible if one can be converted to
another via a dimensionless scaling factor. For translating milli-
meters per minute (mm/min) to centimeters per second (cm/s), the
scaling factor is 0.1 cm/mm ‚ 60 s/min or simply 0.1/60, since the
components cm/mm are both length measures and s/min are both
time measures and are therefore compatible. However, moles per
gram (mol/g) and moles per liter (mol/L) are not; (mol/g) 3

(g/mL) would be compatible with mol/L.
The scale factor is used for converting compatible units

such as cm/s and mm/min. The dimension vector whose length
is equal to the number of basic units used in the particular
model is used for determining compatibility, and it may be
more of less than the seven fundamental units since some may
be derived units like pressure or flow. Two units are compati-
ble if their dimension vectors are identical.

Scaling invariance is the property of a mathematical modeling
system, such that numeric calculations remain correct under
changes of the scale of the units such as millimeter versus meter.
Consider a variable V that is specified in volts when a model is
first developed but is changed to millivolts later to conform to
usage for a particular application. A scaling invariant modeling
system responds by adjusting all calculations using V to be correct

under the new scaling. This invariance is also a desirable property
for component-based model building, where new models are
built from a set of simpler modules previously constructed. If var-
iables in the composite model are represented at different scales
(e.g., millivolts, microvolts) in the original component models,
then a scaling invariant modeling system reconciles them auto-
matically. This capability thus improves prospects for retaining
modularity when developing multiscale models.

Inferring Units Defined Implicitly in Equations
Ideally, there should be no need for inferring units. The need to do
so arises, because when taking ratios or other mathematical com-
binations of quantities having well-defined units, it is convenient
to derive the units for the resulting products. Automatic assign-
ment carries risk; however, if there are multiple assignments of
units to be made in a given equation, it is essential to remove the
ambiguity that arises from excessive degrees of freedom.

It is best practice to assign units to all variables and parame-
ters, including those of computed quantities of interest. The
model archiving markup language CellML [17], [18] requires
unit specification for variables. The systems biology markup
language (SBML) [20], [21] allows unit specification, and it does
permit inference of units from context, but does not require this.
It should be noted that the practice of designating variables as
dimensionless when they are really dimensioned quantities pre-
cludes unit balance checking. The choice here is a practical trade-
off between user convenience, conciseness, and safety.

The JSim Modeling and Analysis Interface System
We describe here a simulation system that accomplishes the
aforementioned design goals and tasks. It represents one realiza-
tion of an automated unit balance system. JSim [22], [23] is a
Java-based [24] simulation system for building quantitative
numeric models and analyzing them with respect to experimen-
tal reference data. JSim was developed primarily for generating
model solutions for use in designing experiments and analyzing
data in physiological and biochemical studies, but its computa-
tional engine is general and equally applicable to solving equa-
tions in physics, chemistry, and mechanics. JSim has been under
development at the NSR for mass transport and metabolism
since 1999. JSim uses a model specification language, MML,
which supports ordinary and partial differential equations,
implicit equations, integrals, summations, discrete events, and
allows calls to external procedures. JSim’s compiler translates
MML into Java code in which the numeric results are calculated.
Within the JSim graphical user interface (GUI), users adjust
parameter values, initiate model runs, plot data, and perform
behavioral analysis, sensitivity analysis, parameter optimization
for curve fitting. Alternatively, one can use JSim’s command
line interfaces (jsbatch and jsfim). JSim’s capabilities are
more advanced than previous NSR software systems such as

Most mathematical models

published in peer-reviewed journals

are not reproducible.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MAY/JUNE 200952

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 27, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

SIMCON [25] (for simulation control) and XSIM [26] (for X-
terminal operation). JSim source code, binaries (for Windows,
Macintosh, and Linux), documentation, and the defining file,
nsrunits [27] (automatically incorporated into each JSim
project file), are available free for noncommercial use at http://
physiome.org/.

For purposes of describing JSim’s automated unit balance
checking, the MML can be summarized as a collection of
variable declarations and mathematical equations using those
variables. MML allows using physical units in the declaration
of the variables, but does not require them. If unit conversion
is turned on (this is also optional), then JSim’s compiler will
perform the following operations while translating MML to
executable Java code:
� equations containing improper unit arithmetic will gen-

erate error messages (for manual correction)
� unit scaling factors for conversion of compatible units

will be inserted into calculations as needed
� model variables and constants whose units were not

specified in MML will be assigned units based upon
context wherever possible.

MML Unit Definitions and Variable Unit Specification
Before an MML variable’s unit can be specified, the units
themselves must be defined. Units are either fundamental or
derived. Fundamental units are defined first. Derived units are
defined in terms of previously defined fundamental and
derived units. The following MML example fragment defines
three fundamental and six derived units:

unitmeter=fundamental,kilogram=fundamental,
second=fundamental;
unitm=1meter,cm=1/100meter;
unitg=1/1,000kilogram,kg=kilogram;
unitnewton=1kg*m/s^2;
unitdyne=1g*cm/s^2;

Model writers can define units any way they wish, but for
model-to-model compatibility, using JSim’s common unit
definition file (nsrunit.mod, [27]) is recommended whenever
possible. The file nsrunit.mod defines 121 units and 21
decade prefixes (milli, micro, etc.) following the ‘‘Terminology
for Mass Transport and Exchange’’ [12] and the CellML specifi-
cation [17], [18]. It defines seven fundamental units following
the SI [meter kilogram second (MKS)] convention: kilogram,
meter, second, ampere, kelvin, mole, and candela. The choice to
use SI as fundamental instead of CGS is arbitrary, but of no con-
sequence for model writing, since units in both systems are
included. Modelers can define new fundamental or derived units
in addition to those in nsrunit.mod as needed. For example,
many English system units (gallons, miles, etc.) are not defined

in nsrunit.mod, even though it would be easy to do so, since
we wish to discourage the use of nonstandard systems.

Once units are defined, units for MML variables are speci-
fied by combining units into algebraic expressions using the
multiplication (*), division (/), and exponentiation (^) opera-
tors. For example,

importnsrunit; //importstandarddefinitions
unitgallon=3.7854118L; //definegallons,

neededforthismodel
mathmain{ //startofmain

calculationsection
realF¼ 5gallon/min; //Fisflowin

gallons/minute
realg¼ 9.81m/s^2; //gisgravitational

acceleration
. . . //restofmodelomitted

Unit Compatibility and Scaling Factors
Each unit in a JSim model is represented internally by a
Java data structure consisting of a scale factor and a funda-
mental dimension vector. These are defined in double
precision:

doublescale; //scalefactor,e.g.100forcm
whenmisfundamental

double[]dim; //fundamentaldimensionvector

JSim calculates unit scale factors and dimension vectors
using the following rules. For fundamental units, the scale fac-
tor is set to 1.0 and the dimension vector is set to all zeroes,
except for 1.0 in the vector element corresponding to the
fundamental unit itself. In nsrunit.mod for example, the
second fundamental unit is meters, so the dimension vector for
meters is [0,1,0,0,0,0,0]. For derived units, the scale factor and
dimension vector are calculated using the values of the units
from which they were derived. The rules given later are
applied in order of standard algebraic precedence (parentheses
first, then exponentiation, then multiplication and division,
with ambiguities resolved from left to right):

Rules
1) Multiplying by a constant (e.g., min = 60 s): Multiply the

original scale factor by the constant and the dimension
vector remains unchanged.

2) Multiplying two units (e.g., cm 3 g): Multiply the two
original scale factors and add the original dimension vec-
tors element by element.

3) Dividing two units (e.g., cm/s): Divide the two original
scale factors and subtract the original dimension vectors
element by element.

Unit balance checking is the first of a series

of checks for achieving correctness

and validity of models.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MAY/JUNE 2009 53

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 27, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

4) Exponentiation (e.g., cm3): Raise the original unit’s scale
factor to the exponent and multiply each original dimen-
sion vector element by the exponent.
Consider the processing of unit ‘‘grav’’ (representing gravi-

tational acceleration) in the following example:

unitkg¼ fundamental,meter¼ fundamental,
sec¼ fundamental;
unitcm¼ 1/100m;
unitgrav¼ 980cm/s^2;

Exponentiation (s2) has the highest precedence in the g defi-
nition expression. After that, multiplication (980 cm) and divi-
sion (cm=s

2
) have equal precedence and are processed left to

right. Calculations for grav proceed as in Table 1.
Units are considered dimensionless if their dimension vector

is uniformly zero. Units are said to be compatible if their dimen-
sion vectors are identical (within a machine rounding error of
10�7). For example, accelerations in m=min

2
and cm=s

2
would

both have a dimension vector of [0,1,2,0,0,0,0], although their
scale factors (1/3,600 and 0.01) would differ. However, speed
(e.g., cm/s) would have a dimension vector of [0,1,1,0,0,0,0] and
thus be incompatible with the accelerations mentioned earlier.

Compatible units are converted by multiplying by the ratio
of the scale factors. For example, conversion from m=min

2
to

cm=s
2

is accomplished by multiplying by cm/m (¼100 ¼ 1/
scale factor) and dividing by s2=min2 (¼3,600), with the result
(cm=s

2
) ¼ (m=min2)=36.

Unit Conversion Within Equations
MML models declare either unit conversion on or unit conver-
sion off. In the former case, the compiler checks for compatibility

of the units in each algebraic operation, rejecting incompatible
ones and inserting appropriate or any needed conversion fac-
tors into compatible ones. In the latter case, compatibility is
not checked and no conversion factors are introduced (i.e., the
units are used only for documentary purposes). The choice of
unit conversion declaration is important, because correct equa-
tion formulation differs in the two cases. For example, if A (in
meters) and B (in centimeters) are equated, the correct MML
code is as in Table 2.

The remainder of this description will consider only with
the case where unit conversion is on. Unit declarations are
optional for MML variables and constants. We will first
describe processing when units are declared for all variables
and later will deal with missing unit declarations.

JSim’s compiler starts by parsing each model equation into
a tree based on operator precedence. MML operator prece-
dence (Table 3) is similar to that of many computer languages
(C, Java, etc.). Precedence ambiguities are resolved from left
to right.

For example, consider the following model,

unitconversionon;
importnsrunit;
mathexample1 {

realA¼ 2m;
realB¼ 30s;
realC¼ 1min;
realDcm/s;
D¼ A/(B + C);

}

Following the MML precedence rules, the equation for D is
parsed into the tree as in Figure 1.

The tree consists of internal nodes (light blue) that represent
operators and leaf nodes (dark olive) that represent the four
variables. Internal nodes have two children (left and right) in
this example, any positive number in the general case. Internal
nodes are examined, depth first, for unit compatibility. Addi-
tion and equality nodes require compatibility of their children,
but division nodes do not. When compatibility is required,

Table 3. Operator precedence.

Operator Meaning

() Parenthetical groupings
¼ Equality
^ Exponentiation
*, / Multiplication, division
þ, � Addition, subtraction

Table 1. Units in vector form.

Unit
Scale
Factor

Dimension
Vector Rationale

cm 0.01 [0,1,0] Previous definition
s 1 [0,0,1] Previous definition
s2 1 [0,0,2] Exponentiation (rule 4)
980 cm 9.8 [0,1,0] Constant multiply (rule 1)
980 cm=s2 9.8 [0,1,�2] Unit multiply (rule 3)
grav 9.8 [0,1, �2] New definition

Table 2. Compare unit conversion on or off.

With Unit Conversion On With Unit Conversion Off

A ¼ B A ¼ B=100

The incentives to automate unit balance

checking in computer programs include speed

and reproducibility.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MAY/JUNE 200954

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 27, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

internal nodes are assigned the units of either the leftmost or
the rightmost child, and an appropriate conversion scaling fac-
tor is inserted into the tree. When compatibility is not required,
internal nodes are given a unit appropriate to the operation
(here, division). The choice of associativity (leftmost or right-
most child) is arbitrary but results in equivalent calculations,
as in Figure 2.

The resulting calculations are shown in Table 4.

MML Operator and Function Unit
Conversion Summary
Table 5 summarizes how the JSim compiler handles unit con-
version for MML’s predefined operators and functions.

The dimensionless requirements for truncation and round-
ing are motivated by scaling invariance. For example, the fol-
lowing model will give a different value for B if A is declared
as 0.5 kg instead of 500 g, which should be equivalent.

realA=500g;
realB=round(A);

The dimensionless argument requirement for transcenden-
tal functions is motivated by both scaling invariance for
compatible units and by their Taylor series expansions, which
are unbalanced if the argument has nontrivial units, e.g.,

exp(x)=1þ xþ x^2/2þ x^3/6þ . . .

Radians are defined as dimensionless in nsrunit.mod for
modeler convenience. The alternative would be to require
MML writers to convert every
trigonometric function argu-
ment to radians, which we con-
sider verbose and awkward.
Steradians are treated similarly.
Centigrade and Fahrenheit
temperature scale conversions
require additive factors that are
not handled by the methodol-
ogy described here. JSim mod-
els use the Kelvin scale.

Inferring Undefined Units
Using unit declarations for
MML variables and constants
is not absolutely required, and
missing units will be assigned
by the compiler based on the
context provided by the equa-
tions. In the following model,
C is automatically assigned
units m/s (to match the right-
hand side of the equation) and
the constant 1 will be assumed
to be in seconds (to match B)
and listed with values in the
input list, resulting in the cal-
culation of C ¼ 10 m=s:

realA¼ 60m;
realB¼ 5s;
realC¼ A/(B + 1);

In JSim’s MML, the aforementioned formulation is accept-
able shorthand. The completely specified equivalent model
below makes clear the writer’s intention, using the unit s

=

D *

/ 100

A +

B *

C 60

=

D *

/

/

5/3

A +

B

C

60

(a) (b)

Fig. 2. Associativity. (a) Left associativity. (b) Right associativity.

Table 4. Equivalent associativities.

Left Associativity Right Associativity

D ¼ (A=(B þC�60)) � 100 ¼ 20=9 D ¼ (A=(B=60þC))�(5=3) ¼ 20=9

=

D /

A +

B C

Fig. 1. Operator tree.

Table 5. Compiler sequencing of unit conversion.

Operators Unit of Result Argument Requirements

Add(þ), subtract(�), equals(¼),
comparison(<, <¼, > & >¼),
remainder(rem(x , y)),
arctangent(atan(x , y))

Leftmost child’s unit Unit compatibility

Absolute value: abs(x) Same as argument None
Multiply (*), divide (/) See unit multiply/divide

rules 1, 2 and 3 above
None

Derivative (:) Same as divide None
Power (^) See unit exponentiation

rule 4 above
Base is unrestricted,

exponent must be
dimensionless

Square root: sqrt(x) See unit exponentiation
rule 4 above with expo-
nent ¼ 1/2

None

Transcendental functions: exp(x),
log(x), sin(x), sinh(x), arcsin(x),
etc.

Dimensionless Argument must be
dimensionless

Truncation: floor(x), ceil(x).
Rounding: round(x)

Dimensionless Argument must be
dimensionless

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MAY/JUNE 2009 55

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 27, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

within parentheses along with 1 as follows:

realA=60m;
realB=5s;
realCm/s;
C¼ A/(B +(1s));

JSim’s automated unit assignment algorithm proceeds as fol-
lows. A parse tree is generated for each model equation and
searched for internal nodes that require unit compatibility (e.g.,
addition, subtraction, equality). If one of the node’s children
has no unit assigned, it is assigned the unit of the other child. If,
after processing all the nodes in this way, some nodes are still
missing unit assignments, one arbitrarily chosen variable or
constant is assigned the dimensionless unit, and the entire
process is repeated. Eventually, all nodes are assigned units.
However, it is possible that variable units assigned in one equa-
tion may cause other equations to become unitarily unbalanced.
If so, the compiler aborts with a diagnostic error message.

Modelers have generally found the JSim system easy to use.
They do not need the technical understanding of the internal cal-
culations described earlier to balance units properly. The system
helps them find conceptual errors in their equations and allows
them to intermix variables without adding conversion factors. The
absence of conversion factors makes their code more readable.

Modelers prefer not having to explicitly assign units to every
constant in a model, especially when it is easily understood
from the variable name or from the context of the equation.
The JSim compiler therefore assigns an appropriate unit,
choosing the fundamental unit for it from the context of the
equation in which it is used and using unit conversion. If a user
prefers to think of the particular parameter in his experimental
units, then he can add the definition of this unit to MML
variable declaration and define it relative to units defined in
nsrunits.mod. JSim’s compiler currently rejects models that
redefine the units that are not compatible with nsrunits.mod
even if the nsrunits file is not explicitly imported.

However, as implied by the decision to use conversion on or
off (as in Table 2), a problem can be anticipated. If a program-
mer introduces a dimensional conversion factor (e.g., s/min)
without assigning it units (e.g., just using the dimensionless
number 60), this would cause the algorithm to err, as the routine
would introduce the scaling conversion factor 60 again by the
rules. This does not occur with CellML-curated programs,
because they have a policy that such scalars should be properly
dimensioned (e.g., as s/min).

Utility for Model Reviewing
JSim’s unit balance checking is a useful tool for preliminary
checking of models that are downloaded from model databases,
whose formats support the assignment of units. The CellML
library is large and is in an accelerating stage of curation. Units
are used in the CellML files and are inferred in many SBML files.

Many submitted articles contain errors in unit balance that
are easily made evident by the reviewer programming them in
JSim. Authors can then be guided to fix the problems, which
frequently lead to modification of the illustrations. Finding all
such errors without using a unit balance checking system is
difficult in general but is a problem readily avoided by using
automated checking. One might expect that, when a succes-
sion of inferred unit assignments has been made, there might
be difficulty in discovering the primary error. However, since

the inferences are commonly limited to one equation at a time,
long series of inferences are seemingly uncommon.

A difficulty is that though a published model may be techni-
cally correct, it will not automatically pass the checking for
unit balance if it contains transcendental functions of variables
with units, because JSim requires that these be dimensionless.
An error is detected, and each one of these occurrences must
currently be corrected by making the argument of the function
formally dimensionless. For example, for sin ðVÞ with V in
mV, one should write ‘‘sinðV=ð1 mVÞÞ.

The expected usage is to normalize a transcendental argu-
ment via a reference value. Sinusoidal functions of time are
ordinarily no problem, since they are generally written as

sin(2*PI*f*t),

where f is the frequency with units of reciprocal time and t is
the time. The problem comes with such expressions as

exp((V-V0)/10� 1),

where V and V0 are in millivolts, and so this requires rewriting

exp((V-V0)/(10mV)-1)

to render the argument dimensionless. Such coding requires
no change if the programmer should change the units of V to
volts rather than millivolts so that scaling invariance holds.

Example Application
In the development and analysis of the large cardiovascular or
respiratory model VS001 of Neal and Bassingthwaighte, a
subset of which is published [28], we have found that auto-
mated unit balance checking helps to find typographical errors
in equations such as missing terms or parentheses. VS001 is a
closed-loop cardiopulmonary model composed of a four-
chamber varying-elastance heart, a pericardium, a systemic
circulation, a pulmonary circulation, airway mechanics,
baroreceptors, gas exchange, blood gas handling, coronary cir-
culation, peripheral chemoreceptors, and selectable physiolog-
ical changes. The VS001 model code contains 846 equations
relating 718 terms expressed in 64 different units. This model
is available for free download [29].

Consider this example taken from the gas exchange and
intracellular buffering part of the VS001 model: the expres-
sion in bold should be enclosed in parentheses but is not, thus
evoking an error message identifying an imbalance in units
and giving the line number in which the error is found:

PBC_pc:t=(Fpc/Vpc)*(PBC_sc-PBC_pc)
þ kp5*CtCO2_ao*(Cheme-PBC_pc)*

[[SHbO2_ao/(1+H_ao/K3bgh)
þ (1-SHbO2_ao)/(1+H_ao/K2bgh)]]
� kp5*PBC_pc*H_ao*(SHbO2_ao/K6bgh
þ (1-SHbO2_ao)/K5bgh);

Omitting the double brackets (which stand for simple paren-
theses around the terms in bold font) results in an equation that
is algebraically seemingly acceptable, but the unit balance fails.

kp5*CtCO2_ao*(Cheme-PBC_pc)*SHbO2_ao/
(1þH_ao/K3bgh)hasunitsmoles/(m^3*s);

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MAY/JUNE 200956

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 27, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

while

(1-SHbO2_ao)/(1+H_ao/K2bgh)

is dimensionless, so with the double brackets missing, lines 2
and 3 would result in a unit balance error. The error message
identifies the first term of the third line as having different
units than the other parts of the equation. Automated unit bal-
ance checking thus pinpoints a problem that would be diffi-
cult to find by analysis of the model output. The error
message also identifies the nature of the units for the separate
parts of the equation, but does not go so far as to recommend
where the parentheses should be placed.

JSim unit balance error messages arising from complicated
algebraic expressions are sometimes difficult to interpret. This
is because unit balance is checked in terms of fundamental units
(e.g., kg Æ m�1 Æ s�2) while modelers usually think in terms of
derived units (e.g., pascals). To address this, JSim error mes-
sages provide both fundamental and derived unit representations
of the offending expressions. However, derived unit representa-
tions (unlike fundamental unit representations) are not unique,
and typographical errors such as missing parentheses can result
in error messages reporting rather complex unit problems that
are not easy to decipher. The current version of JSim (1.6.85)
performs minimal simplification of derived unit expressions.

Discussion
Unit balancing in programming is being increasingly recognized
as important. For example, Sun’s report Java specification
request (JSR) 275 [30] provides a specification, currently in
development, for handling physical units in the Java language
that may be incorporated in a future version of the Java language.
If so, it will be a valuable addition to the Java language for reli-
ably engineering large systems that deal with quantities in a vari-
ety of physical units. In contrast with JSim, the use of JSR 275
requires significant programming expertise, is rather verbose,
provides no facilities for automated unit assignment, and requires
complete rewriting of existing computational code.

Unit checking systems could be further expanded. Incorpo-
rating offsets combined with scaling would allow the conver-
sion of temperatures from Centigrade or Fahrenheit to Kelvin.
Likewise, pH, pCa, and such logarithmic units could be use-
fully added for modeling in biology.

The next stage, currently being vigorously pursued by
several groups, is to curate the models to try to accurately repro-
duce the results shown in the original publications. The CellML
curation team had, as of August 2008, worked on about 365
models from the literature, taking them through a series of
stages of curation and accumulating 883 model versions in all
[17], [18]. The Biomodels curation team (Biomodels 2008) in
Cambridge checked more than 172 models from the SBML site
[20], [21]; in many, there is a dependence on inferring units. On
the Physiome site [29] (www.physiome.org/Models), there are
approximately 250 models that are archived and downloadable
(as are those on the CellML, SBML, Biomodels, and JWR [31]
model sites). Almost all of the JSim versions can be run over
the Web, with graphics display, parameter adjustment, sensitiv-
ity analysis, and even parameter optimization to fit experimen-
tal data. Thus, they are demonstrably operational. The
Physiome models do allow inferred units and are reproducible,
and all have unit balance in every equation, since that is a built-
in component of the compilation of the model. Unit checking is

impossible for models in which all physical variables have been
labeled dimensionless.

A particular virtue of using unit-balanced equations is that
when two or more correct models are combined into a larger
model, there are no complications matching units between the
components, since conversion factors are automatically inserted
to bring all into compatibility with the fundamental units. The
automated coupling of a set of modules into a composite model
also requires that a common ontology be used, that distinct
regions be identified, and then that the equations containing var-
iables from more than one module be combined properly. In this
situation, the component unit definitions directly facilitate the
process. A preliminary success in automating the combination
of a small set of modules has been achieved.

A future strategy is to allow stages in a hierarchical review
of code for unit balance and automatic unit conversion. To
foster rapid evolution of the model code, stage 0 would be to
allow compilation without checking for unit balance; this
should be allowed even if units have been provided on all vari-
ables. Stage 1 would be to detect imbalances and report the list
of them and to allow for manual correction before attempting
to recompile. Stage 2 would be to detect and report equations
where unit conversion factors would be applied, so that the
programmer can decide whether or not to assign units differ-
ently. Stage 3 would be to choose automated unit conversion.

Multiscale models are becoming even more abundant as it
becomes necessary to link cellular level models to whole organ
and whole body models. The cardiac models of Hunter and
Noble, the Auckland/Oxford collaboration [32], bring the ion
channel cellular depolarization models together with the whole
organ finite element cardiac contraction models. The cell mod-
els of metabolic reaction sequences in purine nucleosides are
brought together into a whole organ model for regional blood
flows and capillary-tissue exchanges [33]. These two particular
cases are primitive examples (even if they do now represent
tens to hundreds of thousands of ordinary differential equa-
tions) of much larger models to be composed of modules from
subcellular domains to whole-body controllers.

Building upon the work of others is fundamental to progress in
science. Computer modeling and archiving is marvelously effi-
cient for preserving precise descriptions of a current scientific
working hypothesis, subjecting it to repeated evaluation tests and
identifying its shortcomings and alleviating them. For quantitative
integrative multiscale models of complex systems, models so pre-
served are modules to be incorporated into more all-encompassing
models that embrace more phenomena and are tested against larger
numbers of data sets. Guaranteeing balanced units and scale invari-
ance in the reference literature and in models which will become
subsidiary modules of a larger model is therefore a worthy goal.

Acknowledgment
This research has been supported by NIH grants BE1973
(JSim) and HL88516 (tutorial design) and NSF grant 0506477
(multiscale modeling).

Howard Jay Chizeck received his B.S. (1974) and M.S.
(1976) degrees from Case Western Reserve University and
Sc.D. degree (1982) in electrical engineering and computer
science from Massachusetts Institute of Technology (MIT).
From 1981 to 1998, he was at Case Western Reserve Univer-
sity in Cleveland, serving as chair of the Department of Sys-
tems, Control and Industrial Engineering from 1995 to 1998.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MAY/JUNE 2009 57

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 27, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

He was the chair of the Electrical Engi-
neering Department at the University of
Washington (UW) from 1998 to 2003. He
was elected a Fellow of the IEEE in 1999
for contributions to the use of control sys-
tem theory in biomedical engineering. He
is a professor of electrical engineering and
an adjunct professor of bioengineering at

the UW in Seattle. His research interests involve control engi-
neering theory and the application of control engineering to
biomedical and biologically inspired engineered systems.

Erik Butterworth received his B.A. degree
in mathematics from the University of Chi-
cago in 1977. Between 1977 and 1987, he
worked as a computer programmer/analyst
for several small commercial software
firms. Since 1988, he has worked as a soft-
ware engineer on various research projects
at the UW. Between 1988 and 1993, he

developed a real-time data acquisition for the analysis of estua-
rine sediment transport in the Department of Geophysics.
Between 1988 and 2002, he developed I4, a system for the dis-
play and analysis of cardiac positron emission tomography
(PET) images in the Department of Cardiology. Since 1993, he
has worked on physiological simulation systems (XSIM from
1993 to 1999, JSim since 1999) at the National Simulation
Resource Facility in Circulatory Mass Transport and Exchange
in the Department of Bioengineering. His research interests
include simulation systems and medical imaging.

James B. Bassingthwaighte received his
B.A. (1951) and M.D. degrees (1955) from
the University of Toronto and Ph.D. degree
(1964) from the University of Minnesota.
He trained in physiology, biochemistry,
and medicine (University of Toronto);
cardiology (Mayo Graduate School of
Medicine); and physiology (University

of Minnesota). He was on the faculty at Mayo (1964–1975),
heading the Biophysics section of the Department of Physiol-
ogy (1972–1975). He chaired the Department of Bioengineer-
ing at the UW (1975–1980) and established in 1979 a National
Simulation Resource Facility in Circulatory Mass Transport
and Exchange. In 1997, he initiated the Human Physiome
Projects. Being a professor of bioengineering, biomathe-
matics, and radiology at the UW, he conducts research on
quantitative and integrative approaches to cardiovascular,
respiratory, and cellular physiology. He has 260 peer-reviewed
publications and two books. He served as president of the Bio-
medical Engineering Society and the Microcirculatory Soci-
ety, chaired the Cardiovascular Section of the American
Physiological society (APS), and was the editor of the Annals
of Biomedical Engineering. He has received honors from Bio-
medical Engineering Society (BMES), APS, the Netherlands
Biophysical Society, the Cardiovascular Systems Dynamics
Society, the Microcirculatory Society, and McGill University.
He is a member of the U.S. National Academy of Engineering.

Address for Correspondence: Howard Jay Chizeck, Depart-
ment of Bioengineering, University of Washington, Seattle,
WA 98195, USA.

References
[1] Mars orbiter [Online]. Available: http://www.spaceref.com/news/viewpr.html?
pid=2937
[2] A. L. Hodgkin and A. F. Huxley, ‘‘A quantitative description of membrane
current and its application to conduction and excitation in nerve,’’ J. Physiol.,
vol. 117, pp. 500–544, 1952.
[3] G. W. Beeler, Jr. and H. Reuter, ‘‘Reconstruction of the action potential of
ventricular myocardial fibres,’’ J. Physiol., vol. 268, pp. 177–210, 1977.
[4] R. L. Winslow, J. Rice, S. Jafri, E. Marbán, and B. O’Rourke, ‘‘Mechanisms
of altered excitation–contraction coupling in canine tachycardia-induced heart
failure. II. Model studies,’’ Circ. Res., vol. 84, pp. 571–586, 1999.
[5] A. Michailova and A. McCulloch, ‘‘Model study of ATP and ADP buffering,
transport of Ca(2þ) and Mg(2þ), and regulation of ion pumps in ventricular myo-
cyte,’’ Biophys. J., vol. 81, pp. 614–629, 2001.
[6] E. Buckingham, ‘‘On physically similar systems: Illustration of the use of
dimensional equations,’’ Phys. Rev., vol. 4, pp. 345–376, 1914.
[7] L. Wittgenstein, Tractatus Logico-Philosophicus (Transl.: in German by
C. K. Ogden, with an introduction by B. Russell). London: Routledge and
Kegan Paul, 1922.
[8] O. Reynolds, ‘‘An experimental investigation of the circumstances which
determine whether the motion of water in parallel channels shall be direct or sinu-
ous and of the law of resistance in parallel channels,’’ Proc. R. Soc. Lond.,
vol. 35, pp. 84–99, 1883.
[9] S. G. Sterrett. (2002). Physical pictures: Engineering models circa 1914 and in
Wittgenstein’s Tractatus [Online]. Available: http://philsci-archivepittedu/documents/
disk0/00/00/06/61/PITT-PHIL-SCI00000661-00/Sterrett-UNC-CH-PPTalk2pdf
[10] A. P. Gagge, A. C. Burton, and H. C. Bazett, ‘‘A practical system of units
for the description of heat exchange of man with his environment,’’ Science,
vol. 94, pp. 428–430, 1941.
[11] J. R. Pappenheimer, ‘‘Standardization of definitions and symbols in respira-
tory physiology,’’ Fed. Proc., vol. 9, pp. 602–605, 1950.
[12] J. B. Bassingthwaighte, et al., ‘‘Terminology for mass transport and
exchange,’’ Amer. J. Physiol. Heart Circ. Physiol., vol. 250, pp. H539–H545, 1986.
[13] M. Karr and D. B. Loveman, ‘‘Incorporation of units into programming lan-
guages,’’ Commun. ACM, vol. 21, pp. 385–391, 1978.
[14] T. Gruber and G. R. Olsen, ‘‘An ontology for engineering mathematics,’’ in
Proc. 4th Int. Conf. Principles of Knowledge Representation and Reasoning,
J. Doyle, P. Torasso, and E. Sandewall, Eds. Bonn: Morgan Kauffman, 1994, p. 18.
[15] G. S. Novak, ‘‘Conversion of units of measurement,’’ IEEE Trans. Software
Eng., vol. 21, pp. 651–661, 1995.
[16] F. Chen, G. Rosu, and R. P. Venkatesan, ‘‘Rule-based analysis of di-
mensional safety (RTA 2003),’’ Lect. Notes Comput. Sci., vol. 2706, pp. 197–207,
2003.
[17] CellML [Online]. Available: http://www.cellml.org/workshop/workshop2008/
index_html
[18] A. Cuellar, et al., ‘‘An overview of CellML 1.1, a biological model descrip-
tion language,’’ Simulation, vol. 79, pp. 740–747, 2003.
[19] J. Cooper and S. McKeever, ‘‘A model-driven approach to the automatic
conversion of physical units,’’ Softw. Pract. Exper., vol. 38, pp. 337–359, 2008.
[20] Sytems biology markup language (SBML) [Online]. Available: http://
sbml.org/Main_Page
[21] M. L. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, and
H. Kitano, ‘‘The system biology markup language (SBML): A medium for repre-
sentation and exchange of biochemical network models,’’ Bioinformatics, vol. 19,
no. 4, pp. 524–531, 2003.
[22] G. M. Raymond, E. Butterworth, and J. B. Bassingthwaighte, ‘‘JSim: Free
software package for teaching physiological modeling in research,’’ Exper. Biol.,
vol. 280, no. 5, p. 102, 2003.
[23] www.physiome.org
[24] J. Gosling and H. McGilton. (1996, May). The Java language environment:
A white paper [Online]. Available: http://java.sun.com/docs/white/langenv
[25] T. J. Knopp, D. U. Anderson, and J. B. Bassingthwaighte, ‘‘SIMCON—
Simulation control to optimize man-machine interaction,’’ Simulation, vol. 14,
pp. 81–86, 1970.
[26] R. B. King, E. A. Butterworth, L. J. Weissman, and J. B. Bassingthwaighte,
‘‘A graphical user interface for computer simulation,’’ FASEB J., vol. 9, no. A14,
1995.
[27] NSR units [Online]. Available: http://physiome.org/jsim/docs/MML_Units_
NSR.html
[28] M. L. Neal and J. B. Bassingthwaighte, ‘‘Subject-specific model estimation
of cardiac output and blood volume during hemorrhage,’’ Cardiovasc. Eng.,
vol. 7, pp. 97–120, 2007.
[29] www.physiome.org/model/doku.php?id=Integrative_Physiology:Highly-
integrated_human_with_interventions:model_detail&s=vs001)
[30] Java units specification [Online]. Available:https://jsr-275.dev.java.net/
[31] JWRS online ¼ model database [Online]. Available: http://jjj.biochem.sun.
ac.za/database/index.html
[32] N. P. Smith, D. P. Nickerson, E. J. Crampin, and P. J. Hunter, ‘‘Multiscale
computational modelling of the heart,’’ Acta Numer., vol. 13, pp. 371–431, 2004.
[33] J. B. Bassingthwaighte, G. R. Raymond, J. D. Ploger, L. M. Schwartz, and
T. R. Bukowski, ‘‘GENTEX, a general multiscale model for in vivo tissue
exchanges and intraorgan metabolism,’’ Philos. Trans. R. Soc. A Math. Phys.
Eng. Sci., vol. 364, no. 1843, pp. 1423–1442, 2006.
[34] European Molecular Biology Laboratory, European Bioinformatics Institute
[Online]. Available: http://www.ebi.ac.uk/biomodels-main/

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MAY/JUNE 200958

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 27, 2009 at 18:55 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

