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ABSTRACT

The empirical mode decomposition (EMD) has seen widespread use
for analysis of nonlinear and nonstationary time-series. Despite some
practical success, it lacks a firm theoretical foundation. This work
addresses this. The original EMD algorithm is slightly modified, in
a way that facilitates its analysis. For stationary, band-limited sig-
nals the convergence and time scale separation of the algorithm are
proved.

Index Terms— Empirical Mode Decomposition, Time Scale
Separation, Signal Representation

1. INTRODUCTION

There are many ways to represent a given signal, in terms of other
component signals. The empirical mode decomposition (EMD) [1],
is an adaptive (data based) signal decomposition method developed
for use on nonstationary time-series data from nonlinear systems.
The component signals are known as intrinsic mode functions (IMF).
They are determined from the original signal, rather than selected
from some pre-defined set. The EMD algorithm iteratively extracts
the IMFs (described in detail below). At each iteration a new IMF
is found, and the difference between the sum of the IMFs and the
original signal yields a residual which is used to extract the next
IMF.

One interpretation of what the EMD algorithm is doing is that it
decomposes the original signal into component signals having suc-
cessively slower time scales. In this work the EMD algorithm is
slightly modified, to facilitate its analysis. The key modification is
to use trigonometric interpolation, instead of cubic splines, in the
extraction process. This modification allows comparisons to Fourier
analysis. For a class of stationary, band-limited signals the conver-
gence, the representation and time scale separation properties of the
modified EMD algorithm are established.

2. NOTATION

The following notation will be used: let Z be the set of all zeros of
the signal x(t). Let Zc ⊂ Z be the set of purely complex zeros,
Zr ⊂ Z be the set of purely real zeros, hi(t) be the ith IMF, and
ri(t) be the ith residual. Let Z(fi), Zc(fi), and Zr(fi) be the sets
of all zeros, complex zeros, and purely real zeros of function fi(t),
respectively. Let the first IMF be zero (h0(t) = 0), and let the
first residual be the signal (r0(t) = x(t)). Let the last residual be
(hM (t) = rM−1(t)); it is not formally an IMF in general.
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3. BACKGROUND

3.1. The Empirical Mode Decomposition

The EMD was originally developed to represent oscillations present
in a signal in a way amenable to spectral analysis using the Hilbert
transform. The intrinsic mode functions were defined to meet re-
quirements of Hilbert spectral analysis.

In Huang et al [1], the IMFs are defined as follows:

Definition 1 (Intrinsic Mode Function). An intrinsic mode function
satisfies two conditions:

1. In the whole data set the number of extrema and the number
of zero crossings differ by at most one.

2. The local mean is zero. Specifically, the average of the upper
envelope (defined by the local maxima) and the lower enve-
lope (defined by the local minima) is pointwise equal to zero.

The upper and lower envelopes are derived by fitting a cubic
spline through the local maxima and minima, respectively, with the
added requirement that the signal lies between these envelopes. The
first IMF is determined from envelopes of the original signal. The
IMF is subtracted from the signal, yielding the residual. The resid-
ual is essentially a slowly varying portion of the signal. Then this
process is repeated (using the residual instead of the original signal),
to obtain the second IMF. The process is repeated until the residual
meets some specified criterion.

The decomposition is thus an iterative algorithm (called sifting
in [1]) that operates on a signal to refine and extract the IMF. In
detail,

Definition 2 (EMD Sifting Procedure). Given a signal x(t), the pro-
cedure begins by letting r0(t) = x(t) and setting i = 0.

1. Let c0(t) = ri(t), set j = 0.

2. Identify the maxima and minima of cj(t), set j = j + 1.

3. Fit an upper envelope uj(t) through the maxima, and a lower
envelope lj(t) through the minima.

4. Compute the envelope mean, mj(t) = 1
2
(uj(t) + lj(t)).

5. Compute a candidate IMF. cj(t) = cj−1(t)−mj(t).

(a) If cj(t) meets the definition of an IMF, set i = i+1, let
hi(t) = cj(t), ri(t) = ri−1(t)− hi(t). Go to step 1.

(b) Else go to step 2.

6. This procedure continues until no more IMFs can be extracted.
For example, if ri(t) is a constant amplitude sinusoid then it
is also an IMF; if not, it is a constant.



3.2. Related Work

Since its inception the EMD has been applied to many and varied
data sets. However work on the theoretical basis underlying the
EMD has been relatively limited.

Flandrin and Rilling [2] have provide insight into the properties
of the EMD. They address the affects of sampling on the decompo-
sition, which is continuous time in its definition yet discrete time in
its computer implementation.

Huang and coworkers have recently made several contributions
regarding the theory of the EMD. In Chen et al [3] they develop the
EMD using B-splines for the interpolation and analyze its properties
under the Hilbert transform, deriving a recursive formula that may
be computationally useful in this setting. In Kizhner et al [4] they
provide partial answers to long standing questions regarding the con-
vergence of the sifting procedure and the scale decomposition for the
cubic spline based EMD.

Deléchelle et al [5] defines the EMD using a fourth order par-
abolic partial differential equation to find the envelope mean, rather
than cubic spline interpolation [5]. This formalism still requires sift-
ing, but it does not require definition of envelopes; the local mean
is defined directly from the local extrema of the signal. The result
still employs interpolation by piecewise cubic polynomials, how-
ever, which explains why their results are similar to the original cu-
bic spline EMD.

Sharpley and Vatchev [6] provide some analysis of the IMFs.
They assume that all of the IMFs are each expressable as a cosinu-
soid with time-varying amplitude and phase. Using this represen-
tation they analyze the properties of this class of functions and, in
particular, their Hilbert transforms.

4. EMD WITH TRIGONOMETRIC INTERPOLATION

4.1. Definitions

Here we modify the EMD sifting procedure (definition 2) as defined
by Huang et al by using trigonometric interpolation instead of cubic
splines. The formula we use requires an odd number of interpolating
points per period and provides a unique solution. The interpolating
points (tk, xk) are determined from the extrema of the signal and
xk = x(tk) k = 0, ..., 2n.

f(t) =

2nX
k=0

xk

2nY
j=0,j 6=k

sin 1
2
(t− tj)

sin 1
2
(tk − tj)

(1)

To apply this formula to problems with even numbers of inter-
polating points (such as the example shown here) we add an average
point to the set between actual points, e.g. ti = (ti+1 + ti−1)/2 and
xi = (xi+1 + xi−1)/2; in practice this average point has a minor
effect on the shape of the interpolating function. How to select this
point, such that none of the conditions that we give for convergence
are violated, is an open question.

This interpolation guarantees that the envelopes will pass through
the required points, but does not require u(t) ≥ x(t) ≥ l(t), or
u(t) > l(t) at any time t.

4.2. Results

Using this trigonometric interpolation method to obtain the envelopes,
the following properties of the resulting EMD can be derived.

Lemma 1 (Frequency content of signal envelopes). If there are an
odd number of interpolating points (N ) to define the upper envelope

using trigonometric interpolation, then the upper envelope will con-
sist of a sum of integer frequency sinusoids and cosinusoids from 0
to N−1

2
.

Proof. It is easy to see by viewing Equation 1 in exponetial form
(the equivalence is shown in [7]). The interpolation requires an odd
number of points N = 2n+ 1, where n is the maximum frequency
of the trigonometric polynomial.

The procedure we have described above guarantees an odd num-
ber of interpolating points, so the lemma holds for our analysis. The
same argument holds for the lower envelope and the signal’s minima.
Based on the frequency limit of the upper and lower envelopes we
have a similar bound on the envelope meanm(t), because adding the
two envelopes and dividing by two cannot add frequency content.

This next theorem ensures that the result will have equal num-
bers of zero crossings and extrema, as required by the definition of
IMF.

Theorem 1 (Effect on signal extrema and zero crossings). Assuming
the EMD procedure defined above, if u(t) > l(t) ∀t then any local
maxima (tk) of the signal below the real line (x(tk) < 0) will be
moved such that they are above the real line (though located at a
different time tk) by the EMD sifting procedure.

Proof. By definition the envelope meanm(t) will always be halfway
between the upper and lower envelopes. If u(t) > l(t) we are guar-
anteed l(t) < m(t) < u(t) and m(t) will have to pass through
x(t) below the maxima and above the minima of the signal. This
guarantees that m(t) intersects the signal once on either side of an
extremum. The intersections are the zero crossings (real zeros) of
the candidate IMF and the portion of x(t) > m(t) will be above the
real line and similarly the portion x(t) < m(t) will be below.

The frequency limit on m(t) from Lemma 1 ensures that it is
slowly varying relative to x(t), so the subtraction of m(t) from x(t)
will not result in the creation of additional extrema between the in-
tersections, it will only shift the location in time of the extrema.
Therefore after the sifting procedure all maximal lie above the real
line.

The same argument holds for the signal’s minima above the real
line being moved below it as well. Theorem 1 implies that the num-
ber of complex zeros of ri(t) will be greater than or equal to the
number of complex zeros of hi+1(t), |Zc(ri)| ≥ |Zc(hi+1)|.

The following theorem shows that the sifting procedure will con-
verge such that the result will meet the second part of the definition
of an IMF.

Theorem 2 (Convergence of sifting procedure). The trigonometric
EMD sifting procedure converges such that mi(t)→ 0

Proof. The proof is in two parts. First we show the locations of the
extrema to change progressively less as i increases. Second we show
how this implies that mi(t)→ 0 pointwise.

Recall that the next candidate IMF in the procedure is given by:

hi(t) = hi−1(t)−mi(t) (2)

Take the derivative with respect to time and then expand each term
of the right hand side in a Taylor series. Apply the Taylor remain-
der theorem to truncate the series at the quadratic term. Then apply
the mean value theorem for the derivative in the remainder term to
derive:

h′i−1(t
i
k) =

1

2
(h′′i−1(t

i
k) + h′′i−1(t

i−1
k ))(tik − ti−1

k )

m′i(t
i
k) = m′i(t

i−1
k ) +

1

2
(m′′i (t

i
k) +m′′i (t

i−1
k ))(tik − ti−1

k )

(3)



Next we set the derivative of equation 2 to zero and solve for
tik − ti−1

k to derive:

tik − ti−1
k =

2m′i(t
i−1
k )

h′′i (t
i
k) + h′′i (t
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k )
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(4)

We show that this approaches zero by applying the definition of the
derivative and using the uniform continuity of these functions.

lim
δ→0

=
−2δ(hi(t

i−1
k )− hi(ti−1

k + δ))

α

where α = hi(t
i
k)− 2hi(t

i
k + δ) + hi(t

i
k + 2δ)

+ hi(t
i−1
k )− 2hi(t

i−1
k + δ) + hi(t

i−1
k + 2δ)

(5)

The numerator clearly goes to zero as δ → 0. The denominator can
only be zero if between iterations the kth extrema switched from
being a maxima to a minima (or vice-versa) with essentially the same
curvature. This cannot happen by subtraction of mi(t) as defined.

For the second part of the proof we note that tik − ti−1
k → 0

implies that u′i(t)+ l′i(t)→ 0. Considering it an equality for i ≥ N
we integrate to see that ui(t) = −li(t) + c where c is a constant. It
is clear that for large enough i, mi(t) = c

2i−N → 0 as i→∞.

This next result shows the time scales of the signal are separated
by the decomposition procedure.

Theorem 3 (Relation between residual zeros and IMF zeros).

|Z(ri)| = |Z(hi+1)| (6)

|Z(ri)| > |Z(ri+1)| (7)

Proof. By Lemma 1 the Nyquist rates of the envelopes are limited.
This implies a similar limit on the Nyquist rate of the envelope mean,
because adding two signals cannot add frequency content that was
not present in one of the component signals.

Likewise subtracting the envelope mean from the signal will not
add frequency content to the result. Subtracting the envelope mean
leaves frequencies not in m(t) in the IMF and the rest of the fre-
quency components in the residual.

Since the number of zeros (per period) in a signal is equal to
the Nyquist rate, the IMF will have the same number of zeros as the
signal (residual) it was derived from. Thus the resulting residual will
have fewer zeros.

5. EXAMPLE

Here we present an example using the trigonometric interpolation
method. The signal x(t) is a randomly selected seventh-order Fourier
series, x(t) = 1.7204+2.2878 cos(t)−0.33213 cos(2t)+3.7540×
cos(3t)− 3.6664 cos(4t) + 1.8433 cos(5t) + 1.9002 cos(6t)
− 0.56439 cos(7t).

Note the signal, shown in Figure 1, is not an IMF itself. The
local minima at approximately 0.5sec and 5.sec are above the real
line, which is a violation of part one of the definition of an IMF. The
signal is decomposed into three IMFs and a constant residual, as
shown in Figure 2. The IMFs are shown with their upper and lower
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Fig. 1. Signal used in EMD comparison

envelops (dotted lines) and their envelope mean (dashed line). The
intermediate residuals, which the second and third IMFs are derived
from, are also shown.

The signal (x(t)) has also been decomposed using the cubic
spline method as implemented by Rilling [8]. In Figure 3 the IMFs
and residual derived using the spline method are compared with
those of trigonometric interpolation method. The first IMF of both
methods are very similar, but the subsequent IMFs from the spline
based method have a consistently higher number of oscillations. This
indicates that the limit on frequency content of the residuals (as
shown in Lemma 1) is lower for the trigonometric interpolation than
it is for splines.

Another interesting feature in the comparison is that the resid-
uals differ. The residual of the spline method looks like a one Hz
sinusoid, compared to the constant of the trigonometric method. A
sinusoid has the capability to be an IMF so the decomposition proce-
dure should not have stopped at this point given the periodic nature
of x(t). This mistake, when using the cubic spline based EMD, is
due to the assumption that the signal is not stationary. Whereas, the
spline EMD only looks at a window of the signal, the trigonometric
EMD assumes a periodic signal of infinite extent. This suggests that
the trigonometric EMD might be the preferred method for Fourier
analyzable signals.

6. CONCLUSION

Our results reveal the sensitivity of the EMD to interpretation of the
definition of IMF. Specifically, the definition of IMF does not spec-
ify what is required of the upper and lower envelopes. We can meet
the requirements of the IMF definition but produce significantly dif-
ferent results from the original spline version used in [1].

We do not require our envelopes to be greater or less than the
signal, and we have proven that so long as the upper envelope is
strictly greater than the lower envelope we still have an EMD proce-
dure which meets the definitions. How to enforce this condition is
an open question.

In recent work, Frei and Osorio [9] develop another EMD like
algorithm. In this paper they point out that the EMD sifting proce-
dure, distorts the IMFs by moving the locations of the extrema and
reducing differences in the amplitudes of adjacent extrema. They ar-
gue against the use of the sifting procedure on these grounds and note
that with their formulation they satisfy the first part of the definition
of the IMF without sifting, and that the locations of the extrema do
not change. The reason the extrema do not move is that their defini-
tion ensures that the derivative of the IMF is proportional to that of
the signal, and therefore zero at the point of the extrema. We note
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Fig. 2. IMF in solid green, m(t) in dashed blue, u(t) in dotted black,
and l(t) in dotted red.

that our formulation likewise meets the same definition and that we
could modify the trigonometric interpolation formula to allow us to
specify the value of the derivative at certain points1. Constraining
the derivative of m(t) to be equal to zero at tk would prevent this
distoration.

The principal contribution of this work is that the use of trigono-
metric interpolation in place of cubic splines offers improved poten-
tial for analysis. We provide conditions to guarantee the convergence
of the sifting procedure, and that spurious creation of extrema in this
procedure is not possible. We also describe the EMD in terms of its
effect on the zeros of a signal [11, 12].
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