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ABSTRACT An alternative theoretical approach to enzyme kinetics that is particularly applicable to single-molecule enzymology

is presented. The theory, originated by Van Slyke and Cullen in 1914, develops enzyme kinetics from a ‘‘time perspective’’ rather

than the traditional ‘‘rate perspective’’ and emphasizes the nonequilibrium steady-state nature of enzymatic reactions and the sig-

nificance of small copy numbers of enzymemolecules in living cells. Sigmoidal cooperative substrate binding to slowly fluctuating,

monomeric enzymes is shown to arise from association pathways with very small probability but extremely long passage time,

which would be disregarded in the traditional rate perspective: A single enzyme stochastically takes alternative pathways in serial

order rather than different pathways in parallel. The theory unifies dynamic cooperativity and Hopfield-Ninio’s kinetic proofreading

mechanism for specificity amplification.

There is a resurgence of interest in the theory of enzyme ki-

netics due to several recent developments in biochemical re-

search: Foremost is the systems approach to cell biology

which demands quantitative characterizations of cellular en-

zymatic reactions in terms of Michaelis-Menten (MM)-like

kinetics (1–3). Second, recent advances in single molecule

enzymology have generated exquisite information on protein

dynamics in connection to enzyme catalysis (4). And third,

the theoretical advance of our understanding of biochemical

reaction networks in terms of the thermodynamics of open-

system, nonequilibrium steady state (often nowadays abbre-

viated as NESS) (5–7). Single-molecule enzymology and

enzymatic reactions inside cells have shown the necessity of

modeling enzyme reactions in terms of stochastic mathe-

matics (8–13).

The above-mentioned developments have led us to re-

examine the concept(s) of cooperativity in the context of en-

zyme kinetics. Protein conformational changes, especially

those induced by ligand bindings and/or covalent modifica-

tions, are one of the cornerstones of molecular biology that

connect macromolecular physics with cellular biological

functions. Beside allosterism, cooperativity has been studied in

monomeric enzymes with only a single substrate binding site;

this has led to the important concepts of hysteretic behavior and

mnemonic enzymes (reviewed in (14–17)). It is understood that

such cooperativity is a NESS phenomenon. Therefore, it is

fitting to call it dynamic cooperativity (18) in contrast to

equilibrium allosterism. Kinetic cooperative is another term

used in the literature. This work, however, focuses on non-

equilibrium cooperative behavior in steady states rather than on

transient kinetics. A nonequilibrium steady state (NESS) has

constant chemical fluxes in the system, while an equilibrium

state has zero flux in each and every reaction (19).

The early experimental evidence for fluctuating protein

dynamics was provided by Linderstrøm-Lang and his amide

proton hydrogen-deuterium exchange method (20). Dynamic

cooperativity can occurs in enzymes with slow fluctuating

conformational substates within the unbound (E) form. Such

slow fluctuations, also called dynamic disorder, are precisely

what has been firmly established in recent single-molecule

experiments (4,11,13).

On the theory side, an alternative to the MM approach that

is particularly applicable to single-molecule enzyme kinetics

has also emerged. This theory, originated by Van Slyke and

Cullen in 1914 (21), develops enzyme kinetics from a time

perspective rather than the traditional rate perspective. As we

shall show, the time approach, while it is equivalent in prin-

ciple to that of MM, provides a much more intuitive under-

standing of the nature of dynamic cooperativity.

This article is organized as follows.We first establish a single-

molecule perspective for enzyme kinetics in terms of state

probabilities, cycle fluxes, and most importantly, mean first

passage times: This is a new kinetic language that differs from

the traditional one. Using this distinct approach, we present

some of the results well-known in textbooks, specifically the

double reciprocal relation for irreversible enzymes and the

Briggs-Haldane result on reversible enzymes. Stochastic en-

zyme kinetics with more than one, but still a small number of

copies of an enzyme, is studied in the section Single Enzyme

to Small Copy Numbers Inside Cells. This is a realistic situ-

ation for many regulatory reactions inside cells. Small bio-

chemical reaction systems are now routinely modeled by the

chemical master equation (22). We present a novel relation-

ship between the theory of single molecules and the quasi-

steady-state analysis of the chemical master equation of

enzyme kinetics recently developed by Rao and Arkin (23).

The section FluctuatingEnzymes andDynamicCooperativity

introduces dynamic cooperativity, which appears as sigmoi-

dal behavior, as it emerges inmonomeric, single-site enzymes

with conformational fluctuations in the unbound state. Two

necessary conditions for suchbehavior are established, namely,
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slow conformational fluctuations and a NESS driven by the

substrate turnover reaction. The Cooperativity and Specific-

ity section discusses cooperativity and specificity, e.g., sen-

sitivity to substrate concentration and to affinity, as two

manifestations of a single theory. Both dynamics coopera-

tivity and the Hopfield-Ninio’s kinetic proofreading mecha-

nism for specificity amplification (24,25) exhibit a square-law

effect. A summary and a brief outlook are provided in the last

section.

MICHAELIS-MENTEN-BRIGGS-HALDANE

KINETICS REVISITED

The year 2002 marked the 100th anniversary of V. Henri’s

original theory of enzyme kinetics (26), which was redis-

covered some 11 years later, in 1913, by Michaelis and

Menten (27) in Germany; their names are now permanently

associated with one of the most celebrated mathematical

equations in biochemistry. Enzyme kinetic theory, together

with concepts such as ‘‘rapid equilibrium’’ and ‘‘quasi-steady-

state,’’ are taught in almost every biochemistry class. What is

less known is the work of van Slyke and Cullen (21) that

appeared in 1914 in the U.S. and which contains an approach

based on enzyme cycle time rather than reaction flux. (The

article contains a discussion of Henri’s work. This approach

had been in the literature, but to my knowledge it was only

fully developed in 1987 by Ninio (28).) The latter approach is

particularly apt for analyzing stochastic data from studies of

single enzyme molecules one at a time.

This alternative formulation differs significantly from that

of the classic MM kinetic theory. What has been discovered

is that the classic results can be derived in a muchmore natural

and fundamental way through a single-molecule perspective.

It provides the necessary bridge between the study of the rich

dynamics of single enzyme molecule, both in vitro and in

situ, and the classic kinetic parameters such as the Michaelis

constants and maximal velocities.

The simplest enzyme kinetic model assumes one enzyme-

substrate complex,ES, as the intermediate state in the transition

from the substrate S to product P (Fig. 1 A). The traditional

language for enzyme kinetics is based on concentrations and

rates. Studying enzyme kinetics in terms of single enzyme

molecules, however, requires a different way to think about the

problem and to look at the data. One no longer deals with de-

terministic concentrations of a substrate [S](t) or a product

[P](t), but ratherwith the stochastic numbers ofmoleculesNS(t)

or NP(t). While the stochastic observations NS(t) and NP(t) are

not themselves reproducible in repeated measurements, their

statistical behavior is. Hence, instead of asking ‘‘what is the

concentration of the product at time t,’’we shall nowask ‘‘what

is the probability of having number n of product molecules at

time t,’’ that is,PP(n, t)¼Pr fNP(t)¼ ngwhere n takes positive
integer values and PP(n, t) is between zero and unity.

It turns out that the probability of ‘‘having a number n of the

product molecules at time t’’ is precisely the probability that

‘‘the nth product molecule arrives before time t and the (n 1

1)th arrives after time t,’’ i.e., Pr fNP(t) ¼ ng ¼ Pr fTn # t,

Tn11 . tg where Tn is the arrival time of the nth product

molecule, that is, the time for the enzyme to complete n cycles.

Since the enzyme returns to its unbound state after each cat-

alytic cycle, the difference (Tn11 – Tn) is the waiting-time for

the nth individual turnover; note that it is statistically identical

to and independent of (Tn – Tn–1). Therefore, single-molecule

enzymology for irreversible enzymes focuses on the statistical

distribution of individual enzyme cycle times (4). (For re-

versible enzymes, the argument is more complex, see below.)

If the substrate-to-product transition has one single rate-

limiting step, then NP(t) and Tn are known to be Poisson

processes (29). Most enzymatic reactions are multistep reac-

tions, however. Hence the study of the Poisson process has to

be generalized to what is known as renewal processes in the

theory of probability (30). Simply put: the repeated irrevers-

ible enzyme cycles with random duration can be modeled as

one might for the repeated changing of light bulbs. If the

enzyme reaction is reversible, then one needs to consider both

the waiting-time distributions for forward and backward cy-

cles. I first carried out such analysis for single-enzyme ki-

netics in the context of single motor proteins (ATPase) and

MM kinetics (8,31). More extensive recent development can

be found in the literature (32–34).

Lineweaver-Burk double reciprocal relation:

a single-molecule derivation

As we have discussed, from the perspective of the single

enzyme the substrate turnover kinetics in Fig. 1 A are inti-

mately related to the cycle kinetics of the enzyme as shown in

Fig. 1 B. Thus, one naturally seeks to compute the steady-

state cycle flux. The steady state is sustained by a constant

provision of the substrate and removal of the product. For a

laboratory system with a single molecule, this requires either

a regenerating system or substrate/product in excess. The

FIGURE 1 The simple, classic enzyme kinetic scheme in panel A corre-

sponds to a cyclic reaction of a single enzyme in panel B. It is easy to obtain

the steady-state probability for E and ES, namely, pE ¼ (k–1 1 k2)/(k1[S] 1

k–1 1 k2 1 k–2[P]) and pES ¼ (k1[S] 1 k–2[P])/(k1[S] 1 k–1 1 k2 1 k–2[P]),

and the steady-state cycle flux ¼ k1[S]pE – k–1pES ¼ k2pES – k–2[P]pE. If

[P] ¼ 0, we have Eq. 1.
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steady-state probabilities for a single enzyme are found

to be

PE ¼
kÿ1 1 k2

k1½S�1 kÿ1 1 k2
; PES ¼

k1½S�

k1½S�1 kÿ1 1 k2
; (1)

while the steady-state cycle flux, i.e., the velocity of the

enzymatic reaction, is

V
ss
¼ k2PES ¼

k1k2½S�

k1½S�1 kÿ1 1 k2
¼

Vmax½S�

KM 1 ½S�
; (2)

where the MM constant and maximal velocity are KM ¼
(k2 1 k–1)/k1, Vmax ¼ k2.

The mean waiting time, or mean first passage time, ÆTæ, can

also be obtained as well. Decomposing the overall reaction of

converting one S to one P, there is first, the binding step

taking mean time 1/(k1[S]); then there is the dwell time in the

state ES, 1/(k–1 1 k2); and finally the S molecule either be-

comes a P or returns back to S, which means arrival or an

additional time ÆTæ with corresponding probabilities k2/

(k–11 k2) and k–1/(k–11 k2). Hence, in total, we find (21,28):

ÆTæ ¼
1

k1½S�
1

1

kÿ1 1 k2
1

k2

kÿ1 1 k2
01

kÿ1

kÿ1 1 k2
ÆTæ

� �

: (3)

By rearranging we see that the equation for ÆTæ can be written

as a1ÆTæ¼ 1/(k1[S])1 a2 in which a1 and a2 are independent

of [S]; indeed, by solving Eq. 3 for ÆTæ explicitly, we obtain

ÆTæ ¼
kÿ1 1 k2

k1k2½S�
1

1

k2
: (4)

On comparing this with Eq. 2, we see that 1/ÆTæ ¼ V ss: the

flux per enzyme is precisely the inverse of the mean time per

turnover.

One immediate insight from the above derivation is that no

matter how complex the enzymatic reaction mechanism is,

including protein dynamic disorder, as long as there is only

one unbound form of the enzyme, E, the mean waiting time

always has a term associated with the time for binding (} 1/

(k1[S])) and a term independent of [S]: This implies a straight

line in the Lineweaver-Burk double-reciprocal plot (2,3), an

alternative way of saying, MM hyperbolic kinetics.

The probability distribution for the waiting time T can also

be calculated (4); the result is

fTðtÞ ¼
l1l2

l2 ÿ l1

ðe
ÿl1 t ÿ e

ÿl2 tÞ; (5)

where l1;2¼1=2ðk1½S�1kÿ11k26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk1½S�1kÿ11k2Þ
2ÿ4k1½S�k2

q

Þ:
It is easy to verify, through a little calculation, that the mean

waiting time, ÆTæ ¼ (l1 1 l2)/(l1l2), which agrees with Eq.

4. The distribution is not exponential but rather peaks at t*¼
1/(l1 – l2) ln(l1/l2). For an experimentalist who measures

fT(t), its shape thus contains valuable information regarding

enzymatic mechanism.

Reversible reactions, nonequilibrium steady

state, and the Haldane relation

We now turn to the simplest reversible enzyme mechanism

for a single enzyme, namely the Michaelis-Menten-Briggs-

Haldane (35) reactions, shown in Fig. 1. One can again obtain

the steady-state cycle flux as above. (Details are available in

Fig. S1 in SupplementaryMaterials, Data S1, Sec. 1.) One can

also analyze the reversible enzymatic reaction in terms of the

cycle times of transforming one S into a P and turning one P to

an S. To do that, we redraw the kinetic scheme in Fig. 1 A as

E
ÿ
)

kÿ1
ES

ÿ



k2

kÿ2 ½P�
E


k1 ½S�

kÿ1

ES
1
/

k2
E

1
: (6)

To compute the waiting-time distributions for individual

forward and backward cycles, we suppose that the enzyme

starts in the central E state, and can either bind a substrate and

go forward or a product and go backward. A cycle is completed

when the system reaches either theE1 state or the Eÿ state. The

mean cycle time is then

ÆTæ ¼
k1½S�1 kÿ1 1 k2 1 kÿ2½P�

k1k2½S�1 kÿ1kÿ2½P�
¼

1

V
1
1V

ÿ; (7)

where V1 and Vÿ are forward and backward fluxes with V1 –

Vÿ¼ Vss. (see Eq. S3 in Data S1) The difference between the

forward flux and backward flux is not because a difference in

cycle times; instead, it arises because the probabilities of

cycling forward and backward are different, namely,

p
1
¼

k1k2½S�

k1k2½S�1 kÿ1kÿ2½P�
; p

ÿ
¼

kÿ1kÿ2½P�

k1k2½S�1 kÿ1kÿ2½P�
; (8)

respectively. Hence, in the steady state we have Vss ¼ V1 –

Vÿ¼ p1/ÆTæ – pÿ/ÆTæ, while the chemical driving force of the

biochemical reaction is DGPS ¼ RT ln([S]Keq/[P]) ¼ RT

ln(V1/Vÿ). This relation between the ratio of V1/Vÿ and Keq

is known as the Haldane equation (3). Note that Vss
3 DG is

the amount of heat dissipated from the biochemical reac-

tion per unit time when the reaction is in a nonequilibrium

steady state. The fact Vss 3 DGPS is never negative is a conse-

quence of the Second Law of Thermodynamics (2,3). It is

analogous to the equation in electrical circuit theory: current3

voltage ¼ power dissipated.

One can also compute the distributions for the forward

and backward cycle times separately. It comes as a surprise

that the two distributions are identical (see Sec. 2 in Data S1).

However, a more careful study shows that this equality is a

generalization of the Haldane relation (36). Furthermore, the

Haldane relation and its generalization are consequences of the

principle of detailed balance in enzyme kinetics (34,37–39).

FROM SINGLE ENZYME TO SMALL COPY

NUMBERS INSIDE CELLS

When there are not just one but rather a few copies of an

enzyme, as inside a cell (40), the kinetics needs to take into

12 Qian
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account the stochastic numbers of enzymes in the states E and

ES, etc. Themathematicalmodel for this type of kinetic system

the chemical master equation which embodies the so-called

Gillespie algorithm (22). (See (2) for an introductory account

of the stochastic, chemical master equation modeling.) When

the number of substrate molecules is much greater than the

number, m, of the enzyme molecules, the stochastic, quasi-

steady-state approximation developed by Rao and Arkin (23)

applies and shows that the arrivals of the product of an irre-

versible enzymatic reaction follow a Poisson process with an

exponential waiting time distribution. Specifically, one has the

distribution Vssexp(ÿVss
t ), where V

ss is the traditional steady-

state velocity Vmax(n 1 1)/(KM 1 n 1 1), in which n is the

number of substrate molecules while Vmax is proportional to

the total number of enzyme molecules, m.

How does this result relate to Eq. 5 for a single enzyme,

where, as seen, the waiting time distribution is not a simple

exponential when m ¼ 1? Fig. 2 shows the waiting-time

distribution for product arrival with a single enzyme mole-

cule (m¼ 1), as well as withm¼ 3 and 10 enzymemolecules.

Evidently with increasing m, the distribution approaches a

simple exponential, as depicted by the straight line in the

semilog plot. This agrees with the predictions of Rao and

Arkin (23). (Also see Sec. 3 in Data S1 for a proof.) Clearly,

the more detailed kinetic information contained in the wait-

ing-time distribution of a single enzyme is rapidly averaged-

out with increasing m.

FLUCTUATING ENZYMES AND

DYNAMIC COOPERATIVITY

The cycle time approach to MM kinetics has clearly shown

that if an enzyme has a single well-defined unbound state E,

then no matter how complex is the ES state, the MM hy-

perbolic kinetics results. The recent single-molecule mea-

surements, however, show convincingly that many enzymes

have slow conformational dynamics in their bound, as well as

unbound, states (4). One therefore naturally seeks the be-

havioral and functional consequences of such dynamic

characters of enzymes.

The simplest kinetic model, beyond that in Fig. 1, which

considers conformational fluctuations in E is presented in

Fig. 3 A. A model similar to this was first studied by Wong

and Hanes in 1962 (42). Enzymes with slow E1
E2 dy-

namics have long been suggested to possess cellular regu-

latory functions. Frieden, in fact, had introduced the concept

of hysteretic enzyme as early as 1970 (43), and since then a

very sizable literature on such enzyme behavior has grown.

Yet, the true roles of hysteretic enzymes in cellular regula-

tions has been elusive. Ricard and Cornish-Bowden (16) and

Cornish-Bowden and Cárdenas (17), following the lead of

Rabin (44) and Ainslie et al. (45), have championed the

concept of mnemonic enzymes. As we shall show, while both

hysteretic and mnemonic enzymes are consequences of slow

conformational disorder, they are in fact saying something

FIGURE 2 Waiting time probability distributions for product arrivals as

functions of the number of enzyme molecules,m. For an irreversible enzyme

reaction with a single enzyme (m¼ 1), k1[S]¼ 0.667, k–1 ¼ 0.083, and k2 ¼

0.75, the expected waiting time distribution is shown by the open squares

(simulation) and dashed line: (eÿt/2 – eÿt) (Eq. 5 with l1 ¼ 1, l2 ¼ 0.5). It

has a mean waiting time ÆTæ ¼ 3 (Eq. 4). The solid squares and open circles

are the waiting time distributions, from simulations, for three (m¼ 3) and ten

(m ¼ 10) enzyme molecules, respectively. For large m, the waiting time

distribution becomes exponential with a mean time ÆTæ/m (30,41); the solid

line represents 3.33eÿ(10/3)t.

FIGURE 3 (A) The simplest kinetic model with two unbound enzyme

states that exhibits dynamic cooperativity. One can simplify the notation by

taking k3 ¼ kÿ11ko3 and k4 ¼ kÿ21ko4 : (B) Assuming k4 � k3 in panel A,

and under the condition k1[S]� b� k2[S]� a, the steady-state probability

of ES, pES, is proportional to [S]
2. (C) The steady-state velocity for the enzymatic

reaction in panel B, with k1¼ 100, k2¼ 0.01,a¼ 0,b¼ 1, and k3¼ 100, shows

a sigmoidal shape. Note that Vmax ¼ ko3 :

Enzyme Cooperativity and Specificity 13
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different: One concept emphasizes transient kinetics and the

other relates to a driven NESS.

Steady-state cycle flux of a fluctuating enzyme:

rapid exchange and quasistatics

The kinetic scheme in Fig. 3 A, although look formidable, can

be simplified: Let us first put k3 ¼ kÿ11ko3 and k4 ¼ kÿ21ko4:
Then the steady-state probabilities and cycle flux of the re-

action triangle can be obtained by either the method of King-

Altman (2), or by using Mathematica (Wolfram Research,

Champaign, IL). One finds:

We shall first discuss two limiting cases that are particu-

larly instructive:

1. Rapid exchange equilibrium between E1 and E2. In this

case, the overall rate of E / ES is r1 ¼ (ak1 1 bk2)[S]/

(a 1 b), while the overall rate of ES / E is rÿ ¼ k3 1

k4. Therefore, the steady-state probability for the ES is

pES ¼
r
1

r
1
1 r

ÿ ¼
ðak1 1bk2Þ½S�

ðak1 1bk2Þ½S�1 ða1bÞðk3 1 k4Þ
; (10)

while the overall velocity is Vss ¼ (k3 1 k4)pES. One can

verify these results by working with Eq. 9, and letting a and b

both become much greater than any other terms. Therefore,

under rapid equilibrium, E1 and E2 are really a single kinetic

state and MM behavior is expected.

2. Quasistatic, nonexchanging E1 and E2, i.e., a ¼ b ¼ 0. In

this case, instead of computing the rates of the turnovers,

we compute the average time for each turnover. The time

needed for ES / E is tÿ ¼ 1/(k3 1 k4), while the time

for E / ES is the average of, first, t11 ¼ 1=ðk1½S�Þ for

E1 / ES and, second, t12 ¼ 1=ðk2½S�Þ for E2 / ES,

with corresponding probabilities p1 ¼ k3/(k3 1 k4) and

p2 ¼ k4/(k3 1 k4); overall we thus obtain

t
1
¼

p1

k1½S�
1

p2

k2½S�
; V

ss
¼

1

t
1
1 t

ÿ ¼
k1k2ðk4 1 k4Þ½S�

k1k2½S�1 k1k4 1 k2k3
:

(11)

Again, one can check this easily from Eq. 9 with a ¼ b ¼ 0.

An insight from the above two analyses is that sometimes

thinking in terms of rates is simpler, while other occasions

considering times is simpler. The difference depends on

whether the kinetic processes are in parallel or in serial. In the

former, one sums the rates, while for the latter, one sums the

times. The two approaches are, of course, equivalent. In fact,

one can derive Eq. 9 using exactly the methods developed

in Michaelis-Menten-Briggs-Haldane Kinetics Revisited,

above. With nonzero a and b, the mean first passage times to

ES, starting at E1 and E2, are

t
1

1 ¼
a1b1 k2½S�

ðak1 1bk2Þ½S�1 k1k2½S�
2;

t
1

2 ¼
a1b1 k1½S�

ðak1 1bk2Þ½S�1 k1k2½S�
2; (12)

respectively. Again, since the probabilities of E1 and E2 are

p1 and p2 as given above, we have t
1 ¼ p1t

1

1 1p2t
1

2 while Vss

in Eq. 9 becomes 1/(t1 1 tÿ).

Enzyme-substrate binding in equilibrium

The square-law dependence on [S] in the denominators of

Eq. 12 for t11; 2 is interesting because it indicates the possi-

bility of positively cooperative, sigmoidal behavior in the

enzyme substrate binding. To explore this, we first note that if

k3/k4 ¼ k1a/(k2b), there will be no steady-state flux between

E1 and E2. (See Secs. 4 and 5 in Data S1.) In this case, one can

verify that t1 ¼ (a1 b)/f(k1a1 k2b)[S]g ¼ 1/r1 so that the

quadratic dependence on [S] disappeared. Therefore, having

a nonequilibrium steady-state flux between E1 and E2 is a

necessary condition for dynamic cooperativity. Such a flux is

present when an enzyme is operating inside a cell, with

sustained substrate and product concentrations.

Sigmoidal behavior and positive cooperativity

Knowing that a NESS flux between E1 and E2 is necessary,

we now study the particular model shown in Fig. 3 B, with

k4� k3. Fig. 3 C shows one example of the behavior. In fact,

the general condition to observe a sigmoidal curve is that

k4 � k3, and k1[S] � b � k2[S] � a. We see that the

conditions b � k1[S] and a � k1[S] mean that conforma-

tional fluctuations between E1 and E2 are much slower than

the rates of substrate binding.

What is the origin of the [S]2 dependence? We can answer

this question by considering t11 as given inEq. 12a. Since k4 has

been set to zero, p2 ¼ 0 and t1 ¼ t11 : Under the condition

k1[S]� b� k2[S]� a, we get t11 ¼ b=ðk1k2½S�
2Þ: The value

of t11 arises from two pathways: E1 / ES (Path I) and E1 /

E2/ES (Path II).The time for Path I is 1/(k1[S]),while for Path

II is 1/b1 1/(k2[S])� 1/(k2[S]). The probability of taking Path

II, however, is very small:b/(b1 k1[S])�b/(k1[S]). Therefore

we see that t11 is determined by the very low probability Path II

which has an extremely long mean transit time! The time for

Path I, 1/(k1[S]), is negligible in comparison.

V
ss
¼

ðk3 1 k4Þ½ðak1 1bk2Þ½S�1 k1k2½S�
2
�

ðak1 1bk2Þ½S�1 k1k2½S�
2
1 ðk2k3 1 k1k4Þ½S�1 ða1bÞðk3 1 k4Þ

: (9)
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How can the very small probability Path II be dominant?

This seems to be counterintuitive. The answer resides in the

conventional thinking about kinetics in terms of flux. When

applied to multiple pathways in parallel, clearly the small

probability, low flux pathways are negligible. However, the

nature of the slow conformational fluctuations between E1

and E2 indicates that such an enzyme goes through several

catalytic cycles via Path I, before taking the Path II occa-

sionally. The overall time should, thus, be determined by the

average time, which is dominated by Path II. This difference

is illustrated in Fig. 4.

To understand dynamic cooperativity in terms of molecular

interactions, the most illuminating way is again to consider

only one enzyme. In this case, the cooperativity is not in the

occupation of one enzyme by its substrate influencing the oc-

cupation of another enzyme: that would be the allosteric co-

operativity. Rather, more substrate molecules will increase the

probability of Path I, as well as decrease the time for Path II.

Hence the origin of substrate-substrate interaction is through

competitions for the sites and paths of enzyme molecules (46).

COOPERATIVITY AND SPECIFICITY

Square-law effect in dynamic cooperativity and

specificity amplification

As we have shown, dynamic cooperativity arises from the

[S]2 dependence of pES and Vss in a monomeric single-site

enzyme. Now, imagine that we have two competing sub-

strates S and S9 at equal concentration. Substrate S, however,

has a higher affinity for the enzyme via its on-rate, k1/k91 ¼
k–2/k9–2 ¼ u . 1, where the k values are the corresponding

association rate constants for S9. All the other rate constants

are the same for S and S9. Then the same dynamic coopera-

tivity mechanism leads to the of enzyme-substrate complex

probability ratio

pES

pES9

¼
k1k2½S�

2

k91k92½S9�
2 ¼ u

2
: (13)

In other words, the specificity of the enzyme E for its

substrates is amplified in the NESS kinetics.

If the different affinities between S and S9 arise from their

off-rates rather than from the on-rates, i.e., k–1/k9–1¼ 1/u, then

specificity amplification can be accomplished if there is a

slow isomerization in the ES state. With the same algebra,

one can show that the binding affinity ratio u is amplified to

u
2 (6). (See Sec. 6 in Data S1.) This last result is in fact the

celebrated Hopfield-Ninio kinetic proofreading mechanism

for high fidelity in protein biosynthesis and DNA replications

(24,25). An important element of the Hopfield-Ninio mech-

anism is that the kinetics have to be coupled to driven co-

factors so that the enzyme is operating under a NESS. In

protein biosynthesis the coupled reaction is GTP hydrolysis;

in DNA replication, the coupled reaction is the dNTP hy-

drolysis carried out by 39-59 exonuclease.

It is satisfying to see that the quadratic term in sigmoidal

dynamic cooperativity is in fact intimately related to the

square-law effect of kinetic proofreading. As we have stated,

the cooperative binding with respect to substrate S represents,

in fact, the same mechanism for specificity amplification re-

siding in the on-rates. It has been shown that the square-law

effect is only a limitation of single kinetic cycle. For multiple

kinetics cycles, i.e., multiple E1
E1 � � � 
EN; the cooper-

ativity (and specificity amplification) can bemuch greater (47).

Mnemonic and hysteretic enzymes

The term ‘‘mnemonic’’ has been used to represent dynamic

cooperativity (16,17). Hysteretic behavior, on the other hand,

is usually represented by bursts and lags in the transient en-

zyme kinetics (14). Neet and Ainslie have carefully discussed

the distinctions between these two aspects of slow confor-

mational fluctuations (15). In the context of single-molecule

enzyme kinetics, the enzyme reaction time is represented by

the arriving time distribution fT(t) for E 1 S / E 1 P. The

lags (and bursts) are a feature of fT(t) near t¼ 0, and dynamic

cooperativity is related to a long-tail of fT(t) for large t (small

probability with very long time). Both bias fT(t) toward larger

time; i.e., slower dynamics, but they emphasize different

aspects of fT(t).

In this review, we focused completely on the steady state

of a driven enzyme with slow conformational fluctuations.

We believe that one has to understand the nonequilibrium

steady state of a biochemical reaction system before one

can truly understand its dynamics in terms of its hysteretic

behavior.

SUMMARY

The classic Michaelis-Menten (MM) theory can be reformu-

lated in terms of single enzyme cycle kinetics. With sustained

FIGURE 4 Schematic plots illustrating the dynamical difference between

slow and rapid fluctuating states E. In the former, the enzyme substrate

associations occur in serial order (A), while in the latter, they are in parallel.

The overall association is determined by the average time in panel A but

average rate in panel B.
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substrate and product concentrations, the steady-state cycle

flux precisely equals the reciprocal of the mean cycle time,

which agrees with the canonical MM velocity, i.e., a linear

relation in the Lineweaver-Burk double reciprocal plot. The

MM theory can be reformulated in terms of a time per-

spective rather than the customary rate perspective: Instead

of computing the rates, one calculates the mean passage

times.

In single-molecule enzymology, the kinetics of the ca-

nonical reversible enzyme mechanism E1S
ES
E1P is

completely characterized in terms of two quantities: the

cycle-time distribution fT(t) and the probability p1 of a for-

ward cycle.

The single-enzyme cycle time fT(t) has been measured in

the laboratory (4). In general it is not a single exponential.

However, if there are several enzyme molecules at work

(say .10), then the time interval between product arrivals

quickly approaches an exponential distribution.

The time perspective provides a better understanding for the

cooperativity in monomeric enzymes that exhibit sigmoidal

substrate dependence. It is shown that the [S]2 dependence

arises frompathways for catalysis with very small probabilities

but extreme long passage times; hence, the mean passage time

is dominated by the path of low probability. Furthermore,

dynamic cooperativity occurs only when the enzyme confor-

mational fluctuations are slow compared to catalysis.

Finally, we have demonstrated that dynamic cooperativity

in monomeric enzymes, which is characterized by [S]2 de-

pendence on substrate concentration, shares the same mo-

lecular mechanism as kinetic proofreading, first proposed by

Hopfield and Ninio (24,28) for explaining the high fidelity of

protein biosynthesis and DNA replication. The kinetic

proofreading mechanism is capable of amplifying specificity

in nonequilibrium steady state (NESS) (7,47).

Enzyme cooperativity is one of the significant paradigms in

molecular biology (48). Its importance in biochemical pro-

cesses is derived from its nonlinear behavior and its connection

to decision-making in cellular biology. In the past, the theory

of enzyme cooperativity has been dominated by equilibrium,

allosteric regulation in multisubunit enzyme complexes. This

theory shows that, in a living biochemical system, enzyme

cooperativity can also occur in monomeric enzymes. Such

enzymes, however, have to be coupled to a substrate catalytic

cycle. Indeed, cellular signal transduction has to have an en-

ergy cost (7). Although we know that cellular energy drives

biosynthesis and cell motility, and sustains biochemical gra-

dients, we do not currently know how much energy is utilized

in cellular information processing.

There is a growing interest in extending the static view of

proteins which holds that the three-dimensional structures are

the sole molecular basis to protein dynamics. But what is

protein dynamics? Recent single-molecule experiments have

shown that many proteins are dynamically fluctuating, with a

range and a rate. In the past, the function of enzyme fluctu-

ations was mainly discussed in the context of ‘‘the role of the

protein matrix as a local solvent for the bound chemical

subsystem of the enzyme-catalyzed reaction’’ (49). For ex-

ample, an entire volume (49) has been devoted to this line of

inquiry. Such studies focus only on isolated enzymes and

their catalysis (50).

Dynamic cooperativity as discussed in this review is a

consequence of slow conformational fluctuations. But it

transcends individual macromolecules and enters the realm

of protein substrate reaction networks in NESS. We would

like to borrow a statement that cogently describes central

tasks ahead (49): ‘‘Enzymes are biological entities first, and

isolated object of physiochemical analysis second. . . . The

natural habitat of many enzymes in the living cell is far dif-

ferent from that in bulk aqueous solution in vitro.’’

SUPPLEMENTARY MATERIAL
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Sec. 1 Reversible enzymatic reactions

In Fig. 1, the concentrations of substrate S and product P are maintained at constant levels. The steady-state proba-

bilities are

PE =
k−1 + k2

k1[S] + k−1 + k2 + k−2[P ]
, PES =

k1[S] + k−2[P ]

k1[S] + k−1 + k2 + k−2[P ]
(S1)

while the steady-state cycle flux, i.e., the net velocity of the enzymatic reaction, is

V ss = k1[S]PE − k−1PES =
k1k2[S]− k−1k−2[P ]

k1[S] + k−1 + k2 + k−2[P ]
(S2)

= V + − V − =
(V +

max/KS
M)[S] − (V −max/KP

M )[P ]

1 + [S]/KS
M + [P ]/KP

M

(S3)

where the MM constants and maximal velocities for both forward and reverse reactions are

KS
M =

k2 + k−1

k1
, V +

max = k2, KP
M =

k2 + k−1

k−2
, V −max = k−1. (S4)

These results are exactly as in the standard textbooks, except in the Vmax expressions the enzyme concentration is

taken as [E] = 1 for single enzyme. The Vmax in this case is the maximal velocity of a single enzyme molecule. The

Haldane relation,
V +

max/KS
M

V −max/KP
M

=
k1k2

k−1k−2
= Keq, (S5)

is readily obtained from Eq. (S4). The equilibrium constant between S and P is independent of the enzyme’s mecha-

nism.

2



Sec. 2 Forward and backward dwell time symmetry

The kinetic diagram for solving the mean cycle times as well as the probability distributions for the cycle times is

displayed in Eq. (6). The basic equations are

d

dt
PE− = k−1PES− (S6a)

d

dt
PES− = −(k−1 + k2)PES− + k−2[P ]PE (S6b)

d

dt
PE = −(k1[S] + k−2[P ])PE + k2PES− + k−1PES+ (S6c)

d

dt
PES+ = −(k−1 + k2)PES+ + k1[S]PE (S6d)

d

dt
PE+ = k2PES+ (S6e)

with initial condition PE−(0) = PES−(0) = PES+(0) = PE+(0) = 0 and PE(0) = 1.
Eqs. (S6b) and (S6d) can be solved to yield

PES−(t) = k−2[P ]

∫ t

0

e−(k
−1+k2)(t−τ)PE(τ)dτ, (S7a)

PES+(t) = k1[S]

∫ t

0

e−(k
−1+k2)(t−τ)PE(τ)dτ, (S7b)

where PE+(t) and PE−(t) are the cumulative probabilities of the enzyme completing the forward cycle and backward
cycle at time t, respectively. Note that PE+(∞) = p+ and PE−(∞) = p− are the ultimate probabilities for forward

and backward cycles (see Eq. 8), respectively. By definition the probability density function for the forward turnover

time is

fT+(t) =
1

PE+(∞)

d

dt
PE+(t), (S8)

and for backward turnover,

fT−(t) =
1

PE−(∞)

d

dt
PE−(t). (S9)

Therefore, we have the symmetry

fT+(t) = fT−(t). (S10)
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Sec. 3 Superposition of renewal processes

Let there be m identical, independent enzyme molecules catalyzing the irreversible reaction in Fig. 1 (k−2 = 0). The
steady-state distributions for an enzyme in the states E and ES are given in Eq. (1). Randomly pick a time, and let

T ss be the waiting time for the next arrival of the product. Then T ss is known as stationary residual time in renewal

theory. Its distribution is different from fT (t) in Eq. (5). In fact, one has

Pr{Tss ≤ t} =

∫ t

0
dsPr{T > s}

E[T ]
= 1−

λ2
2e
−λ1t − λ2

1e
−λ2t

λ2
2 − λ2

1

. (S11)

The probability density function for T ss in the steady-state is

fT ss(t) =
λ1λ2

λ2
2 − λ2

1

(
λ2e

−λ1t − λ1e
−λ2t

)
. (S12)

The cumulative probability distribution for the waiting-time of the arrival of the next product molecule when m
identical, independent enzymes operate is the minimum of the waiting-times of all the enzymes, including the one

that just delivered a product molecule, namely:

1−

(∫
∞

t

fT (x)dx

)(∫
∞

t

fT ss(x)dx

)m−1

= 1−

(
λ1e

−λ2t − λ2e
−λ1t

λ1 − λ2

)(
λ2

1e
−λ2t − λ2

2e
λ1t

λ2
1 − λ2

2

)m−1

.

If we rescale t = τ/m, in the limit ofm → ∞ we obtain

1−

(
λ2

1e
−λ2τ/m − λ2

2e
λ1τ/m

λ2
1 − λ2

2

)m−1

≈ 1−

(
1−

λ1λ2τ

(λ1 + λ2)m

)m−1

→ 1− e
−

λ1λ2τ

λ1+λ2

= 1− e−
nλ1λ2t

λ1+λ2 .

The exponential waiting-time distribution in the limit of m → ∞ is known to mathematicians [41]. A more general

theory of superposition of renewal processes can be found in [30].
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Sec. 4 Fluctuating enzyme with detailed balance

If one has αk1k4/(βk3k2) = 1, known as the condition of detailed balance, then we have

pE1
=

k3

k1[S]

1 + k3

k1[S] + k4

k2[S]

, (S13a)

pE2
=

k4

k2[S]

1 + k3

k1[S]
+ k4

k2[S]

, (S13b)

pES =
1

1 + k3

k1[S] + k4

k2[S]

. (S13c)

It is easy to show that in this case, βpE1
− αpE2

= k2[S]pE2
− k4pES = k3pES − k1[S]pE1

= 0. That is the steady
state flux is zero.
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Sec. 5 Analysis of dynamic cooperativity

The enzyme in Fig. 3A catalyzes the reaction S ⇀↽ P , whose equilibrium constant Keq is related to the rate constants

Keq =
k1k

o
3

k−1k−3
=

βk2k
o
3

αk−2k−3
. (S14)

When one solves the Michaelis-Menten-Briggs-Haldane kinetics for the reaction scheme in Fig. 4, Eq. (S14) guaran-

tees the Haldane relation. It also implies that
αk1k−2

βk−1k2
= 1. (S15)

This is the well-known detailed balance relation whose validity in enzyme kinetic models is generally agreed upon

[14, 17]. It is in fact a consequence of energy balance in the chemical reaction system [7].

However, many enzyme reactions, either in test tubes or in cells, have [P ]/[S] 6= Keq. Most single enzyme mea-

surements are also carried out under a NESS. The consequence of this is clear: Recall that the free energy difference

between the S and P :

∆GPS = ∆Go
PS + RT ln

[S]

[P ]
= RT ln

(
Keq[S]

[P ]

)
6= 0. (S16)

In other words, steady state enzyme kinetics are driven by a sustained chemical force, ∆GPS .

We now show that a breakdown of detailed balance in the substrate binding “network” is necessary for the coop-

erative behavior in a monomeric enzyme. We us the the simplest kinetic scheme in Fig. 3 as an example. A more

general proof will be published elsewhere. To focus on the substrate binding part of the enzyme reactions, we let k3

and k4 be zero. Furthermore, we assume that some of the k’s contain concentration terms for cofactors. Then the

detailed balance condition in Eq. (S15) holds true only when all the cofactors are at chemical equilibrium.

The steady state probability for the enzyme-substrate complex is given in Eq. (9) without the (k4 + k4):

PES =
(αk1 + βk2)[S] + k1k2[S]2

(k−1 + k−2)(α + β) + (αk1 + βk2 + k−1k2 + k1k−2)[S] + k1k2[S]2
, (S17)

which has the form
(c1 + c2[S]) [S]

c3 + c4[S] + c2[S]2
, (ci ≥ 0, 1 ≤ i ≤ 4). (S18)

We shall denote γ = αk1k−2/(βk−1k2). It is then easy to verify that if γ = 1, then Eq. (S17) is reduced to

αk1[S]

k−1(α + β) + αk1[S]
, (S19)

which has MM hyperbolic dependence on [S]. On the other hand, if k3 and k−3 are very large, than again, Eq. (S17)

is reduced to
αk1+βk2

α+β
[S]

(k−1 + k−2) + αk1+βk2

α+β [S]
. (S20)

In this case, rapid fluctuations between E1 and E2 make them kinetically a single state, and again we have the MM

expression. Therefore, both dynamic disorder and the breakdown of detailed balance are necessary for a monomeric

enzyme to show more interesting behavior in NESS.

Cooperative behavior means that d2PES/d[S]2 > 0 at [S] = 0. The condition for this is c2c3 > c1c4, which yields

(γ − 1)(k2 − k1) >
(αk1 + βk2)

2

k−1k2β
, (S21)

Therefore, if k1 = k2, there really is no kinetic difference between the two unbound enzyme states, and Eq. (S17) can

be again simplified into the MM expression

k1[S]

k−1 + k−2 + k1[S]
. (S22)
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On the other hand if E1 and E2 are not kinetically identical, say k1 > k2, then Eq. (S21) dictates that γ < 1. Thus
a flux in a counter-clockwise direction in Fig. 3B becomes necessary. In other words, one has to have a counter-

clockwise kinetic cycle in order to exhibit dynamic cooperativity.
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Figure S1: The Hopfield-Ninio kinetic proofreading mechanism for specificity amplification. The kinetic scheme

in Fig. 3 has pES ∝ k1k2[S]2. This gives rise to the dynamic cooperativity with an [S]2 dependence. Dynamic

cooperativity can also be understood as pES being proportional to the square of the on-rate for the enzyme substrate

association. The scheme here, under the condition Eq. (S24), gives pE2S ∝ [S]/(k−1k−2), i.e., proportional to the
square of the off-rate for the enzyme substrate complex.

Sec. 6 Hopfield-Ninio kinetic proofreading

Specificity amplification also can be accomplished if there is a slow isomerization in the ES, as shown in Fig. S1.
The ratio of probabilities is given by

pE2S

pE
=

β(ko
1 + ko

2) + k−1k
o
2

αk−1 + k−1k̂−2 + βk̂−2

[S], (S23)

where k̂−2 = k−2 + k4. Under the condition of

k−1 ≫ β, k−2 ≫ α, k−2 ≫ k4, and ko
1β ≫ k−1k

o
2, (S24)

then the ratio in Eq. (S23) becomes βko
1 [S]/(k−1k−2). Note that k−1 ≫ β and k−2 ≫ α indicate that the conforma-

tional fluctuations between E1S and E2S are slow.

If there are two substrates S and S′ with different affinities via their off-rates rather than on-rates, i.e., k−1/k′
−1 =

k−2/k′
−2 = 1/θ > 1, and all the other rate constants being equal, then

(pE2S/pE)

(pE2S/pE)
′

=
k′
−1k

′

−2[S]

k−1k−2[S′]
= θ2 . (S25)

This is the celebrated Hopfield-Ninio kinetic proofreadingmechanism for high fidelity in DNA replications and protein

biosynthesis [24, 25]. An important implication of the conditions in Eq. (S24) is that ko
1βk−2 ≫ k−1αko

2. This means

the kinetics has to be coupled to driven cofactors. In protein biosynthesis, the coupled reaction is GTP hydrolysis:

E1S + GTP ⇀↽ E2S + GDP , with α = αo[GDT ] and β = βo [GTP ]. In DNA replication, the coupled reaction is

the dNTP hydrolysis carried out by 3′-5′ exonuclease.
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