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1 Brief Introduction

This compilation contains four review articles written for four different
groups of audiences. Chapter 2, “Nonlinear stochastic dynamics of meso-
scopic homogeneous biochemical reaction systems — An analytical theory”
was written primarily for applied mathematicians as an invited review in the
IOP journal Nonlinearity. Chapter 3, “Cellular biology in terms of stochastic
nonlinear biochemical dynamics: Emergent properties, isogenetic variations
and chemical system inheritability”, was written for physicists and physi-
cal chemists. It is published in the Journal of Statistical Physics as a part
of a special issue on physics and biology. Chapter 4, “The chemical mas-
ter equation approach to nonequilibrium steady-state of open biochemical
systems: Linear single-molecule enzyme kinetics and nonlinear biochemical
reaction networks” coauthored with my student Lisa Bishop, was written
mainly for computational and theoretical biologists. Chapter 5, “Computa-
tional cellular dynamics based on the chemical master equation: A challenge
for understanding complexity” coauthored with Professor Jie Liang of Uni-
versity of Illinois, Chicago, tries to introduce computational and computer
scientists the new development in computational biology. The latter two
articles were parts of two special issues on Quantitative Modelling in Molec-
ular System Bioenergetics and on Computational Challenges From Modern
Molecular Biology, respectively.

There is no particular logical order for these four chapters. Each was
written as a self-contained piece. Putting together, however, they do form
a more coherent presentation of an emerging theme.

Chapter 3 provides a comprehensive mathematical theory for treating
cellular biochemistry as nonlinear chemical reaction systems in a small vol-
ume, i.e., mesoscopic: The system is very large since it contains millions and
billions of molecules, mainly water, but it is still small enough to observe
significant fluctuations and stochasticity. This part tries to tie the theory
of cellular dynamics with established statistical thermodynamics, nonlinear
physics, and theory of phase transitions on the one hand, and the concepts
and ideas from Darwin’s evolution theory on the other.

Chapter 4 gives detailed description how to develop mathematical models
for specific systems based on the theory. It contains many simple examples;
so it is a good place to learn the mechanics of how the modeling works. It
also tries to present both nonlinear biochemical reaction systems, and the
single-molecule biophysics, a hot subject in the past decade, as an integrated
subject, as they should be.

All the examples in Chapter 4 are toy models. To deal with any real-
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istic biochemical system, even a very simplified one (lambda phage is the
canonical example), one needs to carry out mathematical analysis using
computation. Interestingly the needed computational techniques have not
been developed. So Chapter 5 is an introduction to computational and com-
puter scientists this exciting opportunity. To theoretical minded computer
scientists, Chapter 5 suggests that the mathematical theory of mesoscopic
nonlinear chemical reaction systems, whether it is a good theory for cellular
biology or not, is a great example for studying complexity.

This leads us back to mathematics. In Chapter 2, we argued that non-
linear, stochastic population dynamics in terms of the birth-and-death pro-
cesses is a more realistic and sophisticated approach to model biological
dynamics than the widely used stochastic differential equations, also known
as diffusion processes by probabilists. In fact, the dynamic theory for the
populations of chemical species inside a cell can be applied equally well
to other biological populations: cell and virus populations in immunology,
human populations in demography, and biological species in ecology, for ex-
amples. Treating this theory as a subject of applied mathematics, Chapter
2 presents the Ornstein-Uhlenbeck Gaussian processes as the linear analy-
sis for the general nonlinear dynamics near a fixed point. Because of the
nonlinear nature of the dynamics, this part also emphasize something one
tends to forget: the Law of Large Number does imply that macroscopic
system is deterministic; however, stochasticity does not really disappear,
rather it manifest itself as discrete stochastic jumps on a different time scale!
Transitions among discrete stochastic attractors are rare events, they spend
most of the time in “waiting”, exhibit punctuated equilibria. It argues that
these rare events are rather unruly from either nonlinear deterministic, or
data-driven statistical perspective, the two main devices of current applied
mathematics and engineering.

Stochastic dynamic modeling is indeed a different mathematical ap-
proach to scientific data: It differs from deterministic dynamics by explicitly
considering uncertainties. However, it incorporates randomness at an indi-
vidual, mechanistic level, and relies on mathematical deductions to provide
predictions on a system’s behavior. This is very different from statisti-
cal modeling which works directly with observed data. Stochastic dynamic
modeling is an analytical form of agent based modeling which is now quite
popular in computational sociology. It provides a deeper understanding of
complex, nonlinear dynamical systems.
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1. Introduction

Recent studies of biochemical reaction systems in a mesoscopic volume such as a cell have
firmly established the chemical master equation (CME) as the basis of an analytical theory
for cellular dynamics [1–7]. A system’s volume V is a natural parameter in the theory: an
ideal elementary chemical reaction A + B → C has a rate constant k with the dimension of
[Time]−1×[Concentration]−1. In the CME, the probability of this reaction occurring in an
infinitesimal�t is the dimensionless k(nAnB/V )(�t), when there are nA and nB molecules of
types A and B, respectively. With increasing system size, V , the stochastic dynamics predicted
by a CME has been mathematically shown to approach the deterministic solution of the kinetic
differential equations based on the law of mass action for homogeneous chemical reactions [8].
The CME, therefore, ‘is not an alternative to the deterministic kinetics, it is a more complete
kinetic description which is capable of modelling reactions with and without fluctuations’, for
systems with small and large V [9].

In this review, I would like to take this new perspective a step further. A great many
nonlinear systems of ordinary differential equations (ODEs) one studies describe dynamics
of populations of one type or another. Examples include molecular species in biochemical
reactions, cell and virus populations in immunology, human populations in demography and
biological species in ecology. At the mechanistic level, all these dynamics are concerned with
birth and death of individuals whose basic unit is 1. Therefore, every such dynamic model
based on a nonlinear deterministic ODE system has a corresponding stochastic counterpart
based on a birth-and-death process (BDP). If a nonlinear ODE system is defined on R

n, the
corresponding BDP is defined on Z

n. First-order ODEs correspond to Markov jump processes
with continuous time [10, 11].

Ever since the work of Einstein, Smoluchowski, Langevin, and Kramers, stochastic
differential equations (SDEs), also known as diffusion processes by probabilists [12], have
always been considered as the stochastic counterpart of ODEs [13, 14]. However, as anyone
who has developed an SDEmodel for an applied problem knows, the choice for the coefficient
Γ(x) in an SDE dx(t) = b(x) dt + Γ(x) dW (t) is almost always rather arbitrary. (The
only exception is the guiding principle for fluctuating equilibrium dynamics based on the
fluctuation–dissipation theory which we shall discuss later.) A BDP, however as we shall see,
provides a rather complete stochastic description for the dynamics from mechanisms based on
statistics of an individual’s behaviour. There is no artificial separation of the deterministic b(x)

and stochasticΓ(x)W (t) as in aSDE. (See section 7.3. This is called ‘intrinsic noise’ in cellular
biochemistry.) Evenmore important, aswe shall discuss in section 4.4, is the ‘diffusion theory’s
dilemma’ that invalidates the diffusion-model approach to nonlinear stochastic population
dynamics.

TheBDP theory provides further insights into the theory of nonlinear population dynamics
extensively studied since the 1970s. There is a fundamental concept that does not exist in
the theory of deterministic nonlinear dynamics, the concept of ‘rare events’: something that
occurs with a very small probability, but on an evolutionarily long time scale, it will occur
with probability one! We have recently argued that [15] this emergent stochastic transition
among different attractors, on the time scale beyond the infinity of the deterministic dynamics,
is one of the origins of ‘complexity’ [5]. It is these dynamics that exhibit ‘dynamic symmetry
breaking’ [16] and ‘singular points’ at which the dynamics are truly unpredictable [17], giving
rise to complex dynamics with high information content [16].

It is safe to say that statistical inference is currently one of the key approaches to
complex systems and their dynamics. Bioinformatics and statistical genomics are dominant
applied mathematics in cellular molecular biology. The above nonlinear stochastic dynamic
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Figure 1. A pictorial introduction of the Kramers’ barrier crossing problem in nonlinear, stochastic
dynamics. Deterministic dynamics always go ‘downhill’ toward lower values of E(x). Therefore,
any dynamics with initial positive x(0) < x∗

3 will end at x
∗
1 , and with x(0) > x∗

3 will end at x
∗
2 .

After reaching a stable fixed point, x∗
1 or x∗

2 , there will be no possibility of leaving. However,
with stochastic elements in the dynamics, there are possibilities to go ‘uphill.’ With exceptional
luck, continuous uphill movement leads to a transition between the two domains of attraction.
Exceptional luck means the barrier crossings occur only on an extremely long time scale. x∗

3
has been called the ‘singular point’ by James Clerk Maxwell since ‘influences whose physical
magnitude is too small to be taken account of by a finite being, may produce results of the greatest
importance’ [17].

perspective, however, clearly suggests that statistical approaches, while they can be powerful
in representing data with statistical significance, cannot be useful in understanding the
rare events. In fact, the very existence of multistabilities, i.e. alternative attractors,
cannot be inferred from ‘normal’ statistical data. Mechanistic deterministic models can
predict the existence of alternative attractors. Mechanistic stochastic models can further
estimate the lifetime of an attractor. The actual time of the rare transition, however,
is a random variable with exponential distribution, which is memoryless in defiance of
causality.

Proving global asymptotic stability of a dynamical system, of course, has always been
the ultimate goal of engineering. However, with increasing complexities, this becomes a
less and less feasible task even in traditional engineering. On the other hand, one of the
best understood ‘rare events’ is discrete chemical reactions in terms of Kramers’ theory [18].
Recently in [19] we have shown that the nonlinear bifurcation theory of Thom–Zeeman’s
catastrophe, the phase transition theory from statistical mechanics, and Kramers’ theory of
barrier crossing (also known as decay of metastable states [20, 21]) are three different aspects
(e.g. deterministic, steady state and kinetic) of a rare event. All these classical theories are
called for in BDP dynamics.

Figure 1 shows the canonical pictorial introduction of the problem of ‘barrier crossing’ as
a rare event. From a deterministic nonlinear dynamics standpoint, this system has three fixed
points, two stable (x∗

1 and x∗
2 represented by the filled circles) and one unstable (x

∗
3 represented

by the open circle). Barrier crossing requires movement against the deterministic force (shown
by the arrows) which are low probability events. However, it is the cumulation of these unlikely
events that leads to ‘spectacular’ or ‘disastrous’ phenomena in complex, stochastic nonlinear
dynamical systems.

Our discussion of the nonlinear stochastic dynamics of biochemical reactions is organized
in this paper as follows.
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In section 2, using a simple example from mesoscopic chemical reaction systems, we
introduce the ‘bottom-up’ approach to stochastic population dynamics based on mechanisms
at the individual’s level. The example illustrates how nonlinear, bistable behaviour emerges
from such a dynamical model. The analysis of stochastic dynamics gives rise to the concept
of multiple time scales.

Section 3 provides a systematic treatment of the Ornstein–Uhlenbeck Gaussian process
as the linear stochastic process near a fixed point of a dynamical system. In a nutshell,
the stability, i.e. hyperbolicity, of a fixed point is determined by the stationary probability
distribution f st(x), and the type of a fixed point, i.e. node versus focus, etc, is determined by
the stationary, divergence-free circulation jst(x).

Section 4 presents the widely practiced ‘top-down’ approach based on SDEs and related
diffusion processes. We suggest, however, that when approximating the large, but not infinite,
population limit of a BDP with bistability, diffusion theory encounters a dilemma. It can
provide a faithful representation for either the stationary behaviour or the fluctuating ‘downhill’
dynamics, but not both. We further illustrate the intimate relation of this problem to several
other issues: the Keizer’s paradox [22], Kurtz’s convergence theorem with finite time [8], and
van Kampen’s conditional diffusion equation [23, 24].

Section 5 gives a brief discussion of two types of bistability in a mesoscopic chemical
reaction system: that with amacroscopic, deterministic nonlinear counterpart, and that without.
It is shown that their difference can be understood from the volume dependence of the transition
rates between the two attractors.

In section 6, we show how insights from studying stochastic, nonlinear chemical reaction
systems can be useful to the studies of other population dynamics. We try to establish some
kinetic isomorphism between chemical dynamics and ecological dynamics.

Section 7 concludes the paper with some discussions and outlooks.
In the appendices, we have given some details of the mathematical results used in the main

text. Much of this material is not found in the literature.

2. Nonlinear stochastic population dynamics: the individual-based approach

In this section, we present the theoretical development of stochastic models for nonlinear
chemical reaction dynamics. The approach here is ‘bottom-up’ since we use an individual’s
stochastic behaviour as the starting point, considering one individual molecule at a time.
As we shall see, this approach is in sharp contrast to the ‘top-down’ approach of
section 4.

The approach we advance is general for any chemical and biochemical reaction system.
However, we shall not present the theory in its most general form that often obscures the
insights. Rather, we shall use a simple example to illustrate the theoretical approach. Let us
consider the biochemical reaction system given by

A + 2X
α1�
α2
3X and X

β1�
β2

B. (1)

This nonlinear chemical reaction system is known as the Schlögl model [25, 26]. The
autocatalytic step in fact is widely observed in cellular biochemistry such as Src family kinase
signalling, Rabaptin-5 mediated Rab5 GTPase activation in endocytosis, Xenopus oocyte
maturation via a mitogen-activated protein kinase (MAPK) pathway, and self-regulating gene
networks [4, 5, 27, 28].
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2.1. Analysis of the deterministic dynamics

According to the law of mass action [29, 30], the nonlinear differential equation for x(t), the
concentration of the molecular species X in (1), is [19, 26, 31, 32]

dx

dt
= β2b − β1x + α1ax2 − α2x

3, (2)

where a and b represent the concentrations of chemical species A and B, which are assumed
to be sustained at constant values. Any biochemical system in living organisms has to have
at least one ‘source’ and one ‘sink’ species. This feature has been called an open driven
chemical system. A system in contact with only a single material reservoir is called grand
canonical system according to Gibbs [33, 34]. The latter necessarily approaches a ‘dead’
chemical equilibrium.

Non-dimensionalizing equation (2) with new variables and parameters

z = β1x

β2b
, τ = β1t, σ = α2 (β2b)2

β31
, γ = aα1β1

α2β2b
, (3)

we have
dz

dτ
= 1− z + σ

(
γ z2 − z3

) = f (z). (4)

It is easy to show that for a wide range of parameter values, f (z) = 0 has three positive roots,
corresponding to dz

dτ = f (z) having two stable fixed points and one unstable fixed point. See
figure 2(a).

Equation (4) exhibits bistability when the parameter pair (σ, γ ) is in the region bound by
the curve in parametric form with

σ = z − 2
z3

and γ = (2z − 3)z
z − 2 . (5)

Figure 2(b) shows that the region in which bistability exists has a cusp at σ = 1
27 , γ = 9.

The nonlinear dynamics exhibits the canonical saddle-node bifurcation and Thom–Zeeman’s
catastrophe [29].

2.2. The CME and stochastic models

There are four elementary reactions in system (1). In an aqueous solution, the occurrence
of a reaction is a random event with exponentially distributed waiting time. The stochastic
dynamics of the number of molecule X, n(t), therefore, is a one-dimensional BDP. As a
continuous-time Markov process, the BDP has its Kolmogorov forward equation, the CME,
in the form [7, 26]

d

dt
p(n, t) = p(n − 1, t)μn−1 − p(n, t) (μn + λn) + p(n + 1, t)λn+1, (6)

in which

μn(V ) = α1an(n − 1)
V

+ β2bV and λn(V ) = α2n(n − 1)(n − 2)
V 2

+ β1n, (7)

are the birth and death rates of the process. Note both are functions of the system’s size V .
For this simple system, it is not difficult to show heuristically that in the limit of V → ∞

and n → ∞, but n/V → x, the stochastic dynamics following the BDP becomes the solution
to the ODE

dx

dt
= μ(x) − λ(x), (8)
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Figure 2. Nonlinear chemical reaction system (1) can exhibit bistability. (a) Fixed points of
the ODE in equation (4), z∗, are obtained from f (z) = 0, as a function of σ with λ = 20:
σ = (z∗ − 1)/(γ − z∗)/z∗2. (b) The region of parameter space (σ, λ) in which the ODE is bistable
has a cusp at σ = 1

27 , γ = 9. In the statistical physics theory of phase transition, the cusp is also
known as a critical point [19].

with

μ(x) = lim
n→∞

μn(n/x)

n/x
= α1ax2 + β2b and λ(x) = lim

n→∞
λn(n/x)

n/x
= α2x

3 + β1x.

Equation (8) is exactly equation (2). See [8] for a rigorous, general proof of the important
limit theorem that connects the BDP following the CME and the ODE according to the law of
mass action. Also see [35] for an alternative proof.

Because the problem is one-dimensional, the stationary probability distribution to
equation (6) is readily obtained:

pst(n; V ) = pst(0)
n∏

k=1

μk−1(V )

λk(V )
, (9)

where pst(0) is determined by normalization of the probability distribution.
The distribution (9) has several important properties:

(i) Its extrema are located at n∗ where μn∗−1 = λn∗ . An extreme corresponds to, therefore, a
fixed point of the ODE, where μ(x) = λ(x).

(ii) One can obtain an asymptotic expansion when V, n → ∞ and n/V → x:

pst(n; V ) −→ f st(x; V ) = e−V φ(x), where φ(x) =
∫ x

0
ln

[
λ(v)

μ(v)

]
dv. (10)

Note that when V → ∞, the f st(x, V ) converges to the global minimum of φ(x).
(iii) The function φ(x) is a Lyapunov function for the ODE (8):

dφ(x(t))

dt
= dφ(x)

dx

dx

dt
= {μ(x) − λ(x)} ln

(
λ(x)

μ(x)

)
� 0. (11)

The rhs is equal to zero iff μ(x) = λ(x). While this result might not be too surprising
in the case of one-dimensional dynamics, differentiable φ(x) can be obtained for many
higher dimensional chemical reaction systems without detailed balance. φ(x), known as
the large deviation rate function in the theory of probability, is a Lyapunov function for
the ODEs from the mass-action law! [36, 37]
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For the non-dimensionalized Schlögl model, one has

φ(z) =
∫ z

0
ln

(σu2 + 1)u

σγ u2 + 1
du = z ln

(σz2 + 1)z

σγ z2 + 1
+
2√
σ
arctan

(√
σz
)

− 2√
σγ

arctan
(√

σγ z
)− z. (12)

(iv) The two basins of attraction should be understood as two states of the chemical reaction
system (1). They are the ‘emergent properties’ of the stochastic nonlinear population
dynamics. For a given system, one could be in one of the states for a very long time. Still,
the elementary operations at the individual level dictate the existence of the other state.
This is a perspective that one cannot gain from pure statistical inference.

While the ODE predicts the existence of bistability, it cannot provide an estimation for
the stability of the states. The stability can be obtained from the BDP by computing the
mean first passage times (MFPTs). For the simple one-dimensional system, let n∗

1 and n∗
2

be the two peak positions and n∗
3 the trough position of p

st(n), then [24]

Tn∗
1→n∗

2
=

n∗
1∑

n=0

n∑
m=n∗

1+1

pst(n)

λmpst(m)
+

n∗
2−1∑

n=n∗
1+1

n∗
2∑

m=n+1

pst(n)

λmpst(m)
. (13)

In the case of V → ∞, equation (13) becomes (appendix B.2)

Tx∗
1→x∗

2
≈ 2πeV (φ(x∗

3 )−φ(x∗
1 ))

λ(x∗
3 )
√−φ

′′
(x∗
1 )φ

′′
(x∗
3 )

. (14)

This time grows exponentially with system size V . Transitions between the two domains
of attraction (DoA) are rare events.

(v) A comprehensive theory emerges from analysing this simple model. There are three
different time scales in the nonlinear, stochastic population dynamics: (1) the time scale
of individual reactions, the α’s and β’s, which we call the molecular signalling time scale
tms in the context of cellular biochemistry, (2) the time scale of nonlinear network dynamics
tnd and (3) the time scale on which the transitions between the DoA occurs, i.e. Tx∗

1→x∗
2

and Tx∗
2→x∗

1
, which we call cellular evolution tce. In nonlinear deterministic dynamics, a

long time means t � tnd but it is still	 tce. On this time scale, a system settles into one
attractor depending on the initial state. However, on the time scale t � tce, the system
will establish a probability distribution between the two DoA.

(vi) There is a great separation of time scales between tnd and tce for a system with large
populations. In this case, on the time scale � tnd but 	 tce, the system’s behaviour
is captured by a bifurcation diagram, such as that in figure 2(a). However, on the time
scale � tce, the stationary probability distribution given in equation (10) shows that the
global minimum of φ(x) will have probability of almost 1, while other minimum will
have only probability ∝ e−cV where c is a positive constant. Therefore, for large systems
with t � tce, the bifurcation diagram in figure 2(a) has to be modified by the Maxwell
construction [19, 32]. This is the subject of phase transition theory in statisticalmechanics.

3. Ornstein–Uhlenbeck processes: linear analysis of stochastic dynamics

One very useful method for analysing nonlinear dynamical systems is the local, linear analysis
of fixed points. For nonlinear stochastic dynamics, the corresponding linear analysis is the
theory of Gaussian–Markov processes, also known as Ornstein–Uhlenbeck processes. The
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subject has been extensively studied by physicists such as Einstein, Chandrasekhar, Ornstein–
Uhlenbeck–Wang, Onsager–Machlup, Lax, Keizer, Fox, and many others [13, 38, 40, 41].
Recent work has paid particular attention to the issue of time irreversibility and the breakdown
of detailed balance in Gaussian processes [42, 43].

We consider linear SDE in the vector form

dx(t) = Bx(t) dt + Γ dW (t), (15)

in whichB andΓ are n×n constant matrices and x andW are n-dimensional column vectors.
W (t) contains n independent standard Brownian motions.

SDE (15) can be analysed by using several different methods, including the direct method

x(t) = eBt

(
x(0) +

∫ t

0
e−BsΓ dW (s)

)
, (16)

and the Fourier transform method

− iωx̃(ω) = Bx̃(ω) + Γ̃ξ(ω), (17)

in which

x(t) =
∫ ∞

−∞
x̃(ω)e−iωt dω and

dW (t)

dt
=
∫ ∞

−∞
ξ̃(ω)e−iωt dω. (18)

The Fourier transform of independent white noise satisfies〈
ξ̃

∗
(ω)̃ξ

T
(ω)
〉 = I, (19)

the identity matrix, where 〈· · ·〉 is the ensemble average.
The stationary x(t) has a multivariate Gaussian distribution

f st(x) = 1

(2π)n/2 det
1
2 (Ξ)

exp

(
−1
2
xTΞ−1x

)
(20)

in which the symmetric matrix Ξ is the covariant matrix satisfying the Lyapunov matrix
equation [44]

BΞ + ΞBT = −A with A = ΓΓT. (21)

3.1. Power spectrum of a stationary OU process with circulation

A stationary x(t) has not only a distribution, given in equation (20), but also temporal
correlation. One way to characterize the temporal dynamics is by the power spectrum. From
equation (17) we have [45]

x̃∗(ω) = [iωI − B]−1 Γ̃ξ
∗
(ω) and x̃T(ω) = −ξ̃

T
(ω)ΓT [iωI +B]−T . (22)

Thus, we have the power spectra for a multi-dimensional, stationary OU process

Θ(ω) �
〈
ξ̃

∗
(ω)̃ξ

T
(ω)
〉 = − [iωI − B]−1 A [iωI +B]−T . (23)

In other words,

Θ−1(ω) = BTA−1B + ω2A−1︸ ︷︷ ︸
symmetric

+iω
(
A−1B − BT A−1)︸ ︷︷ ︸

anti-symmetric

. (24)

In [42], it was shown that a stationary OU process is time-reversible iffA−1B = BTA−1,
and furthermore Ξ = 1

2B
−1A. Therefore, a time-reversible OU process has

Θ(ω) = [B2 + ω2I
]−1

A. (25)
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We see that, in this case, the power spectraΘ(ω) is a real symmetricmatrix and has a Lorentzian
form with its peak located at ω = 0 [46, 47].

When A−1B 
= BTA−1, the anti-symmetric term in equation (24) indicates that the
stationary x(t) has a circular motion [48]. This circular motion can be best illustrated by
considering the stationary Fokker–Planck equation (FPE) for the SDE (15):

∂f (x)

∂t
= ∇ ·

(
1

2
A∇f (x) − Bxf (x)

)
= 0. (26)

Integrating equation (26) once,

1
2A∇f st(x) − Bxf st(x) = −jst(x) with ∇ · jst(x) = 0. (27)

This can be rewritten as

1
2∇ ln f st(x) − A−1Bx = −A−1jst(x)f −1(x). (28)

Symmetry,A−1B = BTA−1, meansA−1Bx is a gradient force. Then by the uniqueness
of the solution to the linear elliptic equation, jst = 0 and ln f st(x) = xTA−1Bx+const. That
is 2Ξ = B−1A.

IfA−1B 
= BTA−1, then jst 
= 0. In fact,

jst(x) = (B + 1
2AΞ−1)xf st(x). (29)

The divergence-free jst(x) represents certain circular motion, which occurs only when a vector
field is non-gradient.

It is easy to verify that the jst(x) and ∇ ln f st(x) are orthogonal to each other [43]:

∇ ln f st(x) · jst(x) = xTΞ−1 (B + 1
2AΞ−1)xf st(x)

= 1
2x

T
(
Ξ−1B − BTΞ−1)xf st(x) = 0. (30)

3.2. The Green–Kubo–Zwanzig relation

Because the SDE in (15) is linear, it is also easy to obtain

Ex0 [x(t)|x(0) = x0] = eBtx0, (31)

where Ex0 [· · · |x(0) = x0] is the conditional ensemble average with given initial x(0) = x0.
Then the stationary time correlation function matrix is, for t � 0,

Est
[
Ex0 [x(t)|x(0) = x]xT

] = Est
[
eBtxxT

] = eBtΞ. (32)

Therefore,

Gxx(t) = 〈x(τ )xT(τ + t)〉 =
{
ΞeB

Tt t � 0,
e−BtΞ t � 0.

(33)

We note that

Gxx(−t) = GT
xx(t). (34)

For time-reversible processes, BΞ = ΞBT. Hence,Gxx(−t) = GT
xx(t) = Gxx(t) [49].

The Green–Kubo–Zwanzig formula concerns the mathematical relation between the
transport coefficients and the integrals of the time-correlation function of the velocity [46, 50].
In the case of multi-dimensional Gaussian processes, the velocity is simply v(t) = Bx(t) and
〈v(τ )vT(τ+t)〉 = BGxx(t)B

T, where the correlation functionmatrixGxx(t) = 〈x(τ )x(τ+t)〉
is the Fourier transform ofΘ(ω). Assuming all the eigenvalues ofB have negative real parts,
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the integral of the time-correlation function is the spectrum value of the process at ω = 0.
Therefore, from equation (23) we have∫ ∞

−∞
〈v(τ )vT(τ + t)〉 dt = B

(∫ ∞

−∞
Gxx(t) dt

)
BT = BΘ(0)BT = A. (35)

Note that in this version, the Green–Kubo–Zwanzig formula requires no time-reversibility. It
is a consequence of a linear stochastic dynamical system.

However, if one considers only t � 0, then∫ ∞

0
〈v(τ )vT(τ + t)〉 dt = −BΞB−TBT = −BΞ. (36)

In this case, the rhs is 12A if and only ifB−1A is symmetric, i.e. the Gaussian process is time
reversible.

3.3. Gaussian processes in a plane

In nonlinear dynamical systems, local linear stability analysis near a fixed point in a plane has
provided great insights into the nature of fixed points. In this section, we shall carry out a
similar analysis for Gaussian OU processes in a plane.

We consider the two matrices

B =
(

b11 b12

b21 b22

)
, A =

(
a11 a12

a12 a22

)
, (37)

whereA is positive definite. Solving theLyapunovmatrix equation (21)we have the covariance
matrix

Ξ = − 1

2(b11 + b22) det(B)
×

⎛⎜⎜⎝
(b11b22 − b12b21 + b222)a11 −b21b22a11 + 2b11b22a12
−2b12b22a12 + b212a22 −b11b12a22

−b21b22a11 + 2b11b22a12 b221a11 − 2b11b21a12
−b11b12a22 +(b211 + b11b22 − b12b21)a22

⎞⎟⎟⎠ .

(38)

Thus,

Ξ−1 = − 2

(b11 + b22)(det(A) + δ2)

×

⎛⎜⎜⎝
b221a11 − 2b11b21a12 b21b22a11 − 2b11b22a12
+(b211 + b11b22 − b12b21)a22 +b11b12a22
b21b22a11 − 2b11b22a12 (b11b22 − b12b21 + b222)a11

+b11b12a22 −2b12b22a12 + b212a22

⎞⎟⎟⎠ , (39)

in which

δ = b11a12 + b12a22 − b21a11 − b22a12

b11 + b22
.

Note that −(b11 + b22) > 0 for a stable fixed point.
What is the relationship between theB, the linear stability matrix, and theΞ−1, the inverse

of covariance matrix, that constitutes the quadratic form 1
2x

TΞ−1x? We make the following
observations:

(a) The determinants of B and Ξ−1 have same sign:

det
(
Ξ−1) = 4 det(B)

det(A) + δ2
. (40)
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(b) The hyperbolicity of the fixed point of ẋ = Bx is in agreement with the quadratic function
φ(x) = 1

2x
TΞx = − ln f st(x) + const. This can be shown from

ẋT · ∇φ(x) = xTBTΞ−1x = − 1
2x

TΞ−1AΞ−1x � 0. (41)

However, the nature of a stable fixed point, i.e. being a node or a focus, is determined by
the sign of the discriminant

Tr2(B) − 4 det(B). (42)

This information is not contained in the symmetric Ξ−1 whose discriminant is always
greater than zero. To see whether the eigenvalues of B are complex, we turn to the
divergence-free jst(x).

(c) jst(x) = 0 ⇐⇒ A−1B = BTA−1.
(d) Since A is positive definite, we have a real, symmetric matrix A

1
2 . If B has a pair of

complex eigenvalues, then A− 1
2BA

1
2 has a pair of complex eigenvalues, and therefore

A− 1
2BA

1
2 
=
(
A− 1

2BA
1
2

)T
= A

1
2BTA− 1

2 . That is,A−1B 
= BTA−1. If the fixed point
is a focus, then the Gaussian process is time-irreversible for any A.

(e) IfB has all real eigenvalues and is diagonalizable, then ∃Q such thatQ−1BQ is diagonal:
Q−1BQ = QTBTQ−T. One can choose A = QQT and have A−1B = BTA−1. If the
fixed point is a node, then ∃A such that the Gaussian process is time-reversible.

(f) For an irreversible stationary process, its power spectrum can exhibit a peak at ω > 0,
indicating inherent frequency [51]. Spectral peaking, however, is only a sufficient
condition for irreversibility, but a not necessary condition. For planar Gaussian processes,
we have from equation (23)

Θ(ω) = B−1AB−T + iωB−1 (B−1A − AB−T)B−T

− ω2
(
B−3AB−T − B−2AB−2T +B−1AB−3T) +O

(
ω3
)
. (43)

Therefore, a condition for�11(ω) having an off-zero peak is its curvature at ω = 0 being
positive

d2�11(0)

dω2
= ((b12b21 − 2b222 − 2b11b22

)
b12b21 − b422

)
a11

+
(
b211 + b222 + 2b21b21

) (
2b12b21a12 − b212a22

)
� 0. (44)

The rhs can be rewritten as

− (b21, −b12) A

(
b21

−b12

)
︸ ︷︷ ︸

positive

(
b211 + b222 + 2b12b21

)

+ a11 (b11b22 − b12b21)
2 + a11

(
b221 − b222

) (
b211 + b222 + 2b12b21

)
. (45)

We see that the second term in (45) is positive since a11 > 0. If b12 and b21 have opposite
signs, and

(
b211 + b222

)
+b12b21 < 0, then the first term in (45) also becomes positive. But under

this condition,

Tr2(B) − 4 det(B) < − 2b11b22 + 3b12b21 � 2|b11b22| + 3b12b21
�
(
b211 + b222

)
+ 3b12b21 < 0.

We shall show next, however, that it is actually possible to find anA such that for aB with
a node, the corresponding OU stationary process has a power spectrum with its peak at ω > 0.
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Figure 3. A planar linear dynamical system with a stable node (eigenvalues −2 and −3), when
coupled to a white noise, becomes a time-irreversible OU Gaussian process exhibiting strong
rotational motion. The power spectrum �11(ω), adopted from [45], shows an off-zero peak.
(Figure provided by Dr Jia-zeng Wang.)

3.4. Noise-induced strong circular motion in a plane: an example

A Gaussian process is time irreversible iff jst(x) 
= 0. A non-zero jst indicates a certain kind
of circulation in the dynamics of x(t). Power spectral peaking is only a sufficient but not
necessary condition for the circulation. Only when the circular motion is sufficiently ‘strong’
will its power spectrum exhibit an off-zero peak [51].

The presence of noise can induce strong circulation in an ODE system with only a node
and no hint of any circular motion in the deterministic dynamics. We borrow the example
given in [45], considering

B =
(−4 1

−2 −1
)

and A =
(
1 0
0 1

)
. (46)

The two eigenvalues of B, −2 and −3, are both real. However, the curvature of �11(ω) at
ω = 0 according to equation (44) is 10. Figure 3 shows the power spectrum.

Noise-induced circulations, or oscillations, have been extensively studied in the past
in connection with the phenomena called stochastic resonance and coherence resonance.
See [51–53] for studies from the perspective of irreversible stationary stochastic processes.
The example in (46) and figure 3 is perhaps the most elementary version of this interesting
phenomenon.

4. Diffusion theory of nonlinear population dynamics with fluctuations

The SDE,

dx(t) = b(x) dt + Γ(x) dW (t), (47)

and the diffusion process it defines, is widely used to represent stochastic dynamics of natural
and engineering systems [10, 13, 14, 24]. This is a much researched mathematical subject in
both pure and applied mathematics.
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Dynamics with fluctuations have been extensively studied in statistical physics, ever since
the work of Einstein, Smoluchowski and Langevin, respectively, in 1905, 1906 and 1908. But
it was mathematician K Itô who finally unified the mathematics of Einstein and Smoluchowski
in terms of partial differential equations, and Langevin’s approach in terms of SDEs (47). The
description of the stochastic dynamics by diffusion processes is universal forMarkov processes
with continuous paths [14].

Still, one should note that the diffusion theory was conceived, in physics, as a ‘correction’
to deterministic dynamics. It is a phenomenological approach to stochastic fluctuations with
a clear ‘top-down’ characteristic. When modelling with a diffusion process, it is almost
always the case that one is uncertain about how to choose the Γ. It is worth noting that
when modelling an equilibrium process in physics and chemistry, this problem was solved by
the so called fluctuation–dissipation theory [45]. The Γ is not determined from the physical
mechanism of the problem, but rather from requiring the stationary process to agree with
known physics—Boltzmann’s law, Onsager’s regression hypothesis and time reversibility.

With such a rich history, it is natural for one to be interested in representing the dynamics
of large, but not infinite, populations with diffusion processes [54, 55]. In particular, one may
ask if the diffusion process description, which has enjoyed great successes in physics, can be
the appropriate model for the CME in macroscopic volume with fluctuations? The answer
turns out to be a surprising ‘no’ [56, 57]. The diffusion processes can fail to provide a global
approximation for the nonlinear stochastic dynamics of a bistable population with birth and
death [22, 26, 56, 57]. The crux of the matter turns out to rest precisely with the rare events. A
rare event occurs with exponentially small probability e−cV and exponentially long time e+cV ,
where c > 0 and V is the system’s size. The diffusive stochastic processes with continuous
trajectories are not accurate enough global representations [58].

As a mathematical result, this has been known for a long time. Kurtz’s 1971 limit theorem
is only valid for finite time due to precisely this problem [8]. van Kampen has repeatedly
emphasized that a diffusion approximation can only be obtained for master equations with
small individual jumps [23, 24]. He actually developed a sophisticated treatment of diffusion
approximations for the master equation, order-by-order, called system-size expansion [24,
chapter 10]. This theory provides a satisfying approximation for the stochastic relaxation
in the limit of large V . It is shown that the only mathematically valid diffusion process
one can derive from a CME is a Gaussian process conditioned on a given deterministic
solution to the corresponding ODE (see appendix A). Both excluded the rare jumps between
multiple nonlinear attractors. This approach, thus, does not address how to obtain a stationary
distribution with multistability.

In the present review, we shall revisit this problem from a different perspective. From
Kurtz’s theorem and van Kampen’s system-size expansion, we know that in the limit of
large system size, one can obtain a diffusion approximation near a fixed point, as we
have done in section 3. This approximation, however, underestimates the time for barrier
crossing (see equation (63)). On the other hand, it is also possible to obtain a different
diffusion approximation which gives the correct, global stationary distribution. But this one
misrepresents the downhill dynamics. We call this ‘diffusion theory’s dilemma’ [58].

4.1. A simple example

We again use the example of a one-dimensional BDP in equation (6), which resembles a
difference scheme of a diffusion equation of Fokker–Planck type:

∂f (x, t)

∂t
= 1

2

∂2

∂x2
(A(x)f (x, t)) − ∂

∂x
(b(x)f (x, t)) . (48)
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If we identify x = n/V , and dx = 1/V , then the Kramers–Moyal expansion [10, 24, 40],
truncated at the second-order, yields

A(x) = μ(x) + λ(x)

V
and b(x) = μ(x) − λ(x). (49)

Since the A(x) term is on the order of 1
V
, equation (48) can also be written as

∂f (x, t)

∂t
= ∂

∂x

(
μ(x) + λ(x)

2V

∂f

∂x
− (μ(x) − λ(x))f (x, t)

)
, (50)

with the divergence form for the diffusion. The difference is in the b(x) term on the order of
O(1/V ), which is negligible.

The stationary distribution to equation (50) is readily obtained as

f̃ st(x) = e−V φ̃(x), where φ̃(x) = 2
∫ x

0

λ(v) − μ(v)

λ(v) + μ(v)
dv. (51)

Now comparing the φ̃(x) with the φ(x) in equation (10), we see that they are not identical.
However, both have the same extrema x∗

d

dx
φ̃(x∗) = d

dx
φ(x∗) = 0 at μ(x∗) = λ(x∗). (52)

In fact, both have identical curvature near an extreme

d2

dx2
φ̃(x∗) = d2

dx2
φ(x∗) = 1

μ(x∗)

(
dλ(x∗)
dx

− dμ(x∗)
dx

)
. (53)

This means both have identical linear Gaussian dynamics near a fixed point. Equation (50) is
a good approximation for the local dynamics.

φ̃(x) and φ(x) can have very different global behaviour [26, 56]. To illustrate this, let us
consider the particular example where

μ(x) = α1ax2 + β2b and λ(x) = α2x
3 + β1x (54)

with α1 = 6, α2 = 1.2, β1 = 5.37, β2 = 0.25, a = 1 and b = 1.4. Figure 4 shows φ(x) as
a solid blue line and φ̃(x) as a dashed orange line. The two functions are indeed very similar
(figure 4(a)); however, a careful inspection shows that the φ(x∗

1 ) < φ(x∗
2 ) but φ̃(x∗

1 ) > φ̃(x∗
2 )

(figure 4(b)). Therefore, when V → ∞, the f st(x) → δ(x − x∗
1 ) but f̃

st(x) → δ(x − x∗
2 ).

4.2. Keizer’s paradox

The disagreement between φ̃(x) andφ(x) in figure 4 illustrates that a naive, truncatedKramers–
Moyal expansion of the BDP (6) in the form of FPE (50) yields good local approximations
near every fixed point, but cannot provide a globally satisfying approximation for sufficiently
long times with uniform convergence of V → ∞ with respect to ∀t . This failure is intimately
related to the rare events that connect the bistability of the corresponding ODE.

The issue can be further elucidated by an even simpler model. Keizer [40] discussed the
autocatalytic reaction system with

A +X
α1�
α2
2X and X

β−→ B. (55)

The ODE following the law of mass action is

dx

dt
= α1ax − α2x

2 − βx. (56)
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Figure 4. A comparison between the φ(x) = −(1/V ) ln f st(x), in solid blue, obtained from
equation (6) in the limit of large volume, given by equation (10), and the φ̃(x) = −(1/V ) ln f̃ st(x),
in dashed orange, obtained from the diffusion approximation of theCME(6). For theSchlöglmodel,
even though these two functions can be quite similar as shown in (a), a careful inspection in (b)
shows that their global minima are different. It is at the left well for φ(x) and at the right well
for φ̃(x). This difference in the infinite-volume limit becomes very significant: the probability
approaches to 1 at the global minimum.

For parameters α1a − β > 0, this is in fact the celebrated logistic equation in population
dynamics, with growth rate α1a − β and carrying capacity x∗ = α1a−β

α2
. The ODE has two

fixed points: unstable x = 0 and stable x∗.
In the chemical reaction context, Keizer observed that the ODE’s stable steady state is

inconsistent with the stationary distribution of the CME model for the reaction system (55).
The CME is again a BDP with

μn = α1an and λn = α2n(n − 1)
V

+ βn. (57)

Because μ0 = 0, the n = 0 is an absorbing state of the BDP, and its stationary distribution
has probability 1 for n = 0, i.e. extinction. But the x = 0 is an unstable fixed point of
the ODE!

The resolution to these seemingly paradoxical results is simple [22, 40]. As indicated in
section 2.2, system (55) again has a separation of the nonlinear network dynamics time scale
tnd and the cellular evolution time scale tce. The fixed point of the ODE is for t � tnd, but
it is still t 	 tce. For t � tce, the system will be n = 0 with probability 1. However, for
tnd 	 t 	 tce, the system has a quasi-stationary distribution centred around the non-zero
x∗. One can obtain this distribution as the eigenfunction associated with the largest non-zero
eigenvalue of the CME. The eigenvalue, which∝e−cV (c > 0), gives the time scale for reaching
extinction.

Noting that fromKramers’ theory, all barrier crossing rare events involve an exponentially
slow ‘climbing’ to a saddle point and then a rapid ‘descending’ afterward (see appendix B).
Keizer’s paradox, therefore, is also at the root of the failure in section 4.1. The ODE predicts
an infinitely long time for the climbing, but the FPE (50) predicts a time that is too short for
the climbing.
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4.3. The tale of two diffusion equations

Hänggi et al [56] proposed a different FPE that gives the correct stationary distribution

∂f (x, t)

∂t
= 1

V

∂2

∂x2

(
μ(x) − λ(x)

lnμ(x) − ln λ(x)
f

)
− ∂

∂x
((μ(x) − λ(x)) f ) . (58)

It is not difficult to show that the stationary solution to equation (58) is the same as that in
equation (10).

The ‘physics rationale’ for equation (58) is based onOnsager-type transport law as follows.
First, the stationary distribution for the CME (6), in the limit of large V , is

pst(x) = exp

{
−V

∫ x

ln

(
λ(z)

μ(z)

)
dz

}
. (59)

The stochastic potential for the system is φ(x) = −(1/V ) lnpst(x) and the thermodynamic
force is F(x) = −dφ(x)/dx = ln(μ(x)/λ(x)). The macroscopic ODE should be velocity ×
frictional coefficient = force,

dx

dt
= μ(x) − λ(x) = η−1(x)F (x). (60)

Therefore, this yields

η−1(x) = μ(x) − λ(x)

lnμ(x) − ln λ(x)
. (61)

And the diffusion coefficient ∝ η−1(x). This relation ensures the logarithm of the stationary
distribution being∝ −φ(x). This approach, therefore, amounts to enforcing the deterministic
kinetics and the stationary distribution. In a one-dimensional system, these two constraints
essentially determine a FPE.

The twodiffusion equations in (50) and (58) have the samedriftb(x)given in equation (49),
but different diffusion coefficients,

AKM(x) = μ(x) + λ(x) and AHGTT(x) = 2(μ(x) − λ(x))

lnμ(x) − ln λ(x)
, (62)

where subscriptsKMandHGTTstand forKramers–Moyal and the authors of [56], respectively.
The two diffusion coefficients are the same near x∗ where μ(x) = λ(x), i.e. the fixed

point of the b(x):

μ − λ

ln(μ/λ)
≈ λ

[
1 +

(μ/λ) − 1
2

− (μ/λ − 1)2
12

+ · · ·
]

≈ μ + λ

2
. (63)

However, away from the fixed point of b(x), HGTT’s diffusion coefficient is always smaller
than that of Kramers–Moyal’s.

The HGTT diffusion, unfortunately, is not the full solution to the problem. First, it is not
clear how to generalize this approach to higher dimensional problems. More importantly, it
actually poses a dilemma. As an approximation to the CME, the Kramers–Moyal’s diffusion
gives the same finite time dynamics as the CME with large V , but a wrong stationary
distribution. On the other hand, the HGTT diffusion gives the correct stationary distribution,
but awrong conditional diffusion equation for thefinite timedynamics, as shown in appendix A.
The HGTT diffusion does give the correct mean time for downhill dynamics, as does the KM
diffusion, since the mean time for downhill is independent of diffusion (see equation (B.3)).
However, the variances and distributions of the downhill times are different from the correct
KM diffusion.

Therefore, no diffusion processes, with any possible A(x) and b(x), will give a satisfying
representation of the dynamics predicted by a CME with bistability in the limit of V → ∞.
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The origin of this difficulty is the tremendous separation of time scales in the ‘uphill’ and
‘downhill’ motion. For a unistable system, uphill motion will only lead to an exponentially
small probability which can be safely neglected. However, for systems with multi-stability, the
exponentially small probability is responsible for establishing the correct probability between
the two stochastic attractors. This difficulty renders the diffusion theory not capable of
reasonably representing nonlinear stochastic population fluctuations. Rather, a hybrid model
that combines continuous diffusion with discrete Markov jump processes is required.

4.4. Diffusion theory’s dilemma

The problem can be evenmore tellingly stated as follows. According to the standard derivation
of the diffusion equation from a discrete state and discrete time Markov chain with forward
probability p, backward probability q = 1− p, spacing δ and time step τ [59],

D = p + q

2

δ2

τ
and b = (p − q)

δ

τ
. (64)

Or

p = Dτ

δ2
+

bτ

2δ
and q = Dτ

δ2
− bτ

2δ
. (65)

We see that if both the diffusion coefficientD and the drift rate (bias) b exist, then in the limit
of τ and δ → 0, p/q → 1. In other words, diffusion theory assumes that in the very small
spatial and temporal scale, the motion is purely random without bias. This feature, as we shall
see, is inconsistent with the CME in the limit of V → ∞.

If the p and q (
= p) exist, then in the limit of τ and δ → 0, we have D/b → 0. The
diffusion is negligible. This is Kurtz’s theorem [8].

It seems to us that the stochastic trajectory of theCME in the thermodynamic limit, depends
on one’s perspective. It is either a smooth, deterministic function of time, or a discontinuous
stochastic function of time. There is really no diffusion process like behaviour. Thus we
coined the term ‘diffusion theory’s dilemma.’

4.5. Diffusion theory’s dilemma and exponentially small asymptotics

The discussion so far has explained why the CME in general does not converge to a proper
diffusion. As in the law of large numbers, the proper limit is a system of deterministic
ODEs [8]. To have a proper diffusion, one has to ‘eliminate’ the ‘mean value.’ The situation is
completely analogous to the sum of N identical, independently distributed random variables,
YN = X1 + X2 + · · · XN . There is simply no way to capture both the mean value and the
variance of YN with a single scaling. The scaling for the law of large numbers is N−1, while
for the Central Limit Theorem it isN−1/2. This is precisely the idea behind the van Kampen’s
system-size expansion, order-by-order [23, 24].

However, we still need to explain why the asymptotic form of the FPE with 1/V diffusion
coefficient gives an erroneous stationary distribution. The insights from the present work
point to this. The asymptotic order in the equation is singular. The stationary solution contains
exponentially small asymptotics e−cV (c > 0). This is thewell-understood singularly perturbed
linear two-point boundary value problem [60].

To give a better feel for the exponentially small asymptotics, let us consider the master
equation with μn = μ and λn = λ. Then the MFPT from n to zero, with reflecting boundary
at n, is [10, 24]

Tn = 1

μ − λ

(
1− (λ/μ)n

(λ/μ)n − (λ/μ)n+1

)
+

n

λ − μ
. (66)
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Figure 5. Comparison between the MFPTs in a BDP with constant birth and death rates, μ and λ,
and corresponding Brownian motion with a constant driftD = (μ+λ)δ2/2 and V = (μ−λ)δ. Tn

is obtained from the discrete model and T̃n is obtained from the corresponding diffusion process
with x = nδ. θ = λ/μ < 1 indicates the process to the absorbing state 0 is ‘uphill.’ With longer
and longer ‘climbing’, i.e. larger n, the two times diverge exponentially.

Now if we consider the distance between n to n + 1 being δ, and let δ → 0 and n → ∞, but
nδ → x, then we have a FPE,

∂f (x, t)

∂t
= D

∂2f

∂x2
− V

∂f

∂x
, (67)

where D = (μ + λ)δ2/2 and V = (μ − λ)δ. The corresponding MFPT for this problem
is [10, 24]

Tx = 1

V

[
D

V

(
e

V
D

x − 1
)

− x

]
. (68)

To compare the two results in equations (68) and (66), we rewrite equation (68) using x = nδ

to obtain

T̃n = (μ + λ)

2(μ − λ)2

(
e
2(μ−λ)n

(μ+λ) − 1
)
+

n

λ − μ
. (69)

Comparing T̃n and Tn in equations (69) and (66) we have

Tn

T̃n

=
(

1−θn

θn−θn+1

)
− n

(1+θ)

2(1−θ)

(
e
2(1−θ)n

(1+θ) − 1
)

− n
, (70)

where θ = λ/μ. We then have

lim
n→∞

Tn

T̃n

=
{∞ θ < 1,
1 θ � 1.

(71)

We note that θ > 1 means the motion from positive x to zero is downhill. θ < 1 means the
motion from positive x to zero is uphill. The diffusion approximation for the master equation
breaks down for the uphill dynamics! Figure 5 shows the ratio Tn/T̃n as a function of θ and
finite n.

We see that for the case of downhill dynamics (θ > 1), both Tn and T̃n approach n/(λ−μ),
where λ − μ is the velocity. For the case of uphill dynamics (θ < 1), both ∼ecn, but with
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different, positive c’s. In fact we have

lim
n→∞

1

n
ln

Tn

T̃n

= − ln θ − 2(1− θ)

1 + θ
> 0. (θ < 1). (72)

We see the two expressions in equation (63) appear again here.
When θ � 1, we indeed have that Tn/T̃n converges with order 1/n:

lim
n→∞ n ln

Tn

T̃n

=
{
1 θ = 1,
1
2 θ > 1.

(73)

This is at the heart of both examples. The stationary probabilities between two peaks are
determined by the ratio of two exponentially long times to transition (back and forth), or two
rare events with exponentially small probabilities. In other words, if an approximation can
not give the ‘exponent’ correctly, then it is not a meaningful ‘approximation"! In probability
theory, this is the domain of the large deviation theory [19, 61].

4.6. The Delbrück–Gillespie process versus the Wright-Fisher model

The dynamic model for a mesoscopic, homogeneous chemical or biochemical reaction system
is a stochastic process with birth and death. Any stochastic Markov process has two different
mathematical representations: its stochastic trajectories and its time-dependent probability
distribution following a Kolmogorov forward equation. In the context of the present review,
they are the Gillepie algorithm [2] and the CME [62], respectively. While these two views of a
stochastic process are mathematically equivalent, each only gives a partial understanding. For
this reason, we would like to introduce the term Delbrück–Gillespie to refer to the stochastic
process itself.

Tan [54, p 271] extensively discussed the conditions for a valid diffusion approximation
(48) of finite BDPs like (6). A similar analysis is presented in appendix C. It showed that the
necessary condition for a master equation to converge to a non-degenerate diffusion is

ln

(
μn−1(V )

λn(V )

)
∼ O

(
1

V

)
= dx. (74)

This form yields a stationary probability density f st(x) which is properly supported on all x.
When this condition is not met, as in the CME, one has

ln

(
μn−1(V )

λn(V )

)
=
(

V ln
μ(x)

λ(x)

)
dx.

The V on the rhs gives rise to the form f st(x) = e−V φ(x), which in the limit of V = ∞ will
have x only supported at the global minimum of φ(x).

The population genetic models, on the other hand, have long enjoyed their fruitful
relationship with the diffusion processes [54, 55, 63]. There is indeed a significant difference
between the chemical reaction system and the genetic system. The random sampling in discrete
genetic models is equivalent to a long-range diffusion, not just among the nearest neighbours.
Hence it has a valid diffusion equation in the limit of large sample size, with both diffusion
and drift terms being finite. This suggests in the infinite population size, deterministic limit,
its nonlinear dynamics for the number density has the form dx/dt = b1(x)V + b0(x), where
the term b1(x)V means the individual reaction is aware of the size of the entire system. This
is a volume-dependent rate.

This is indeed the case for the discrete population genetic drift model of Wright and
Fisher [54, 55, 63]. But it does not arise from chemical kinetics in an ideal solution. The
issue is as follows. In population genetic models, the conditional variance of an individual
step is much greater than that in a Delbrück–Gillespie process. It is on the same order as the
conditional expectation. In a chemical reaction, the former is a higher order infinitesimal.
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5. Nonlinear and stochastic bistabilities

A basin of attraction around a stable fixed point in a deterministic nonlinear dynamical system
corresponds to a peak in its stochastic counterpart. The converse is not necessarily true. A
stochastic CME can have peaks that do not correspond to fixed points in the deterministic
system of ODEs. We call the latter stochastic stability and the former nonlinear stability.

Consider the following autocatalytic reaction system [4, 5]

E + χE∗ k1−→(χ + 1)E∗ and E∗ k2�
k3

E, (75)

in which χ can be either 1 or 2. This model resembles Keizer’s logistic system in equation (55)
and the Schlögl system in equation (1). Assuming the system’s volume is V and there are N

total number of E and E∗ molecules, the stationary probability distribution for the number of
E∗, pn, satisfies the steady-state CME [4, 19, 27]

(N − n + 1)

(
k1(n − 1) · · · (n − χ)

V χ
+ k3

)
pn−1

−
[
(N − n)

(
k1n · · · (n − χ + 1)

V χ
+ k3

)
+ k2n

]
pn + k2(n + 1)pn+1 = 0.

(76)

Solving the equation yields

pn = p0

n−1∏
�=0

(N − �)

(� + 1)

(
k1� · · · (� − χ + 1)

k2V χ
+

k3

k2

)
, (77)

where p0 is a normalization factor. Let x = n/N be the fraction of E∗ among E and E∗. The
probability distribution can be written as

lnp(x) = lnp0 +
x−δ∑

z=0,δ
ln

[
(1− z)(θz · · · (z − χδ + δ) + η)

(z + δ)

]
, (78)

where η = k3/k2, δ = 1/N , and θ = (k1/k2)(N/V )χ .
When the system size tends to infinity,V andN → ∞,N/V tends to a finite concentration

Et , and δ → 0, we have an integral expression of the probability distribution

ln f (x) = const +N

∫ x

0
ln

[
(1− z) (θzχ + η)

z

]
dz, (79)

with continuous x ∈ [0, 1], The distribution f (x) has its extrema at the roots of the equation

(1− x) (θxχ + η)

x
= 1. (80)

The extrema of f (x)match precisely with the macroscopic steady states from the law of mass
action

dx

dt
= (k1(Etx)χ + k3) (1− x) − k2x = 0. (81)

Equation (80) gives only monostability for χ = 1 and the possibility of bistability for χ = 2.
This is the macroscopic behaviour of the chemical reaction system in (75). However, for
smaller system sizes, the distribution in equation (77) can in fact have two peaks even for
χ = 1, if δ > η. In this case, the peak locations of the distribution pn are at n∗

1 = 0 and at n∗
2,

the larger root of the quadratic equation

θ
(
n∗
2

)2 − N(θ − 1− η)n∗
2 + (N − N2η) = 0. (82)
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Figure 6. − lnpn (the ordinate) as a function of n (the abscissa) and δ. (a) χ = 1, θ = 1.5,
η = 0.0001. The peak locations, the smaller root of equation (82), are at z = 0.002, 0.0008, and
0.0001 for δ = 0.001, 0.0005, 0.00015, respectively. (b) χ = 2, θ = 10, η = 0.001. The peak
locations are at z = 0.14, 0.125, and 0.114, respectively. With increasing system’s size, i.e., δ → 0,
the lifetime of the state in (a) decreases while in (b) it increases. (a) is called stochastic bistability
and (b) is called nonlinear bistability.

Figure 6(a) shows the − lnpn for three different values of δ. We see that the stability of the
‘energy well’ at n = 0 decreases when δ tends to zero. The well disappears when δ < η. In
contrast, for χ = 2, figure 6(b) shows the stability of the energy well at n = 0 increases when
δ tends to zero.

The distinction between nonlinear and stochastic bistabilities is related to the concept
of ‘enthalpic barriers’ in the Arrhenius theory of the chemical reaction rate [64], k =
e−�H 1/kBT +�S1/kB in which �H 1 and �S1 are called activation enthalpy and entropy,
respectively. With decreasing temperature, i.e. decrease the thermal randomness, the rate
of crossing an enthalpic barrier decreases exponentially if �H 1 > 0 but increases if
�H 1 < 0.

6. Kinetic isomorphism and general population dynamics

While we have so far focused on biochemical reaction kinetics, the theory of nonlinear,
stochastic multi-dimensional BDPs we developed in the present paper could and should
be applied to many other population dynamics [65]. In this section, we shall establish a
kinetic isomorphism between chemical reaction systems and general population dynamics
such as predator-and-prey, competition, and cannibalism. By doing so, our understanding
and development of the stochastic, nonlinear biochemical dynamics can be easily transferred
to the studies of many other population systems in ecology, infection epidemics, and
sociology1.

1 It seems to us that a distinct feature of sociological dynamics is the possibility of ‘volume-dependent rate’ discussed
in section 4.6, due to the rapid information exchange and government control in modern society.
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6.1. The three types of predation functional responses

In mathematical ecology [66], the predation functional response characterizes the rate of prey
consumed as a function of the density of the prey population under a constant environment
including the predators. There are three widely used types of functional responses. Let r be
the rate and x be the prey population density, then the three types are

r1(x) ∝ x, r2(x) ∝ x

a + x
, and r3(x) ∝ xn

an + xn
(n > 1). (83)

The most important distinction between type I and types II and III is that the latter have a
saturation effect. When there is a sufficiently large population of prey, more than enough for
all the predators, the rate of consumption of the prey levels off.

These three different types of functional responses in equation (83) can be precisely
represented by the following three types of chemical reactions, respectively:

X + A
α→ B, X + A

α
�
β

XA
δ→ B, and nX + A

α
�
β

XnA
δ→ B, (84)

with the corresponding ODEs according to the law of mass action

dx

dt
= −αax,

dx

dt
= − δax(

β+δ
α

)
+ x

, and
dx

dt
= − δaxn(

β+δ
α

)
+ xn

, (85)

where a is the total concentration of molecular species A, which is kept constant in the
reaction. The derivation for the expressions in equation (85) from chemical kinetic schemes
in equation (84) involves singular perturbations and can be found in many enzyme kinetic
textbooks [7].

It is interesting to note the correspondence between type III response and the molecular
cooperativity. In ecological systems, type III response is associated with learning, that is,
the natural improvement of a predator’s searching and attacking efficiency as prey density
increases.

6.2. Birth and death rates in multi-prey predation

Let us now consider the case of one predator population Y who has n different possible prey
species Xi , 1 � i � n. Let the consumption rate of Xi , per Y , in the absence of all the other
Xj ’s (j 
= i, 1 � j � n) be type II functional response,

aixi

1 + aiτixi

,

where ai is the attack rate and τi is called handling time. In the presence of all the Xi , one
then has ([67], section 7.2)

dxi

dt
= −xi

(
aiy

1 +
∑n

j=1 aj τjxj

)
and

dy

dt
= y

( ∑n
i=1 eiaixi

1 +
∑n

i=1 aiτixi

)
, (86)

where ei is known as consumer efficiency. The first equation is the death rate of the prey
population Xi caused by the predator, and the second equation is the birth rate of the predator
with multiple preys.

In biochemical reaction terms, the predator Y is an autocatalytic enzymewhich transforms
the various Xi into Y , where

Xi + Y
αi�
βi

XiY
κi→ A + Y and Xi + Y + A

φi�
ψi

XiYA
δi→ Xi + 2Y. (87)
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If we set the concentration of A, a = αi

βi
× ψi

φi
, and assume the binding steps are in rapid

equilibrium, then the chemical kinetic equations for the concentrations of Xi and Y are

dxi

dt
= −

κi

(
αi

βi

)
xiy

1 +
∑n

i=1
αi

βi
xi

and
dy

dt
= y

⎛⎝∑n
i=1 δi

(
αi

βi

)
xi

1 +
∑n

i=1
αi

βi
xi

⎞⎠ . (88)

Comparing equation (88) with equation (86), we have

αi

βi

= aiτi, κi = 1

τi

, δi = ei . (89)

6.3. Four planar population systems

Here we consider the dynamics of two interacting populations is a planar nonlinear system and
give the chemical kinetic equivalences of several well-known examples. Almost all textbooks
on differential equations and in mathematical biology discuss such systems [29, 66].

Lotka–Volterra’s predator–prey model. The widely studied model for predator and prey
dynamics was originally developed as a system of chemical reactions containing autocatalysis,

A
k1→ X, Y

k2→ B and X + Y
k3→ 2Y. (90)

The corresponding ODEs from the law of mass action are given in equation (92) with
k̃3c = k4 = k3. In ecological terms, X and Y are the prey and predator, respectively. The
prey is the sole food of the predator, and it has a linear grow rate of k1a in the absence of the
predator. In the absence of the prey, the predator has a death rate of k2.

In an ecological context, there is no fundamental reason for the two xy terms in
equation (92) to be equal. Hence, the faithful chemical reaction representation for the predator–
prey model is

A
k1→ X, Y

k2→ B, X + Y + C
k̃3→ X + 2Y and X + Y

k4→ D + Y. (91)

With the concentrations for chemical species X, Y, A, B, C being x, y, a, b, c, we have

dx

dt
= (k1a) x − k4xy and

dy

dt
= −k2y +

(̃
k3c
)
xy. (92)

See [68, 69] for a recent study of a generalization of the Lotka–Volterra systemwith a chemical
perspective, which yields new insights to the classic problem.

Competition model. The second widely studied type of planar population dynamics involves
a competition between two species. In chemical kinetic terms,

A +X
k1→ 2X, X +X

k2→ C, X + Y
k3→ Y + E,

B + Y
k4→ 2Y, Y + Y

k5→ D, X + Y
k6→ X + F. (93)

The mass-action kinetic equations for dynamicalX and Y , with constant populations ofA and
B, are

dx

dt
= (k1a) x − k2x

2 − k3xy and
dy

dt
= (k4b) y − k5y

2 − k6xy. (94)

Both X and Y , in the absence of the competition, have logistic growth. Species X has a linear
growth rate of k1a and carrying capacity of

k1a
k2
, and species Y has k4b and

k4b
k5
. Equation (94)

is precisely the equations in section 3.5 of [29].
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Mutualism or symbiosis. Murray [29] also presented a model for symbiosis in which species
X and Y are in cooperation. In this case, the signs of the xy terms in equation (94) are positive
rather than negative. The chemical reaction system that yields such dynamics is

A +X
k1→ 2X, X +X

k2→ E, X + Y + C
k3→ 2X + Y,

B + Y
k4→ 2Y, Y + Y

k5→ F, X + Y +D
k6→ X + 2Y. (95)

The corresponding ODEs are

dx

dt
= (k1a) x − k2x

2 + (k3c) xy and
dy

dt
= (k4b) y − k5y

2 + (k6d) xy. (96)

Models of cannibalistic demography. Asingle populationwith cannibalismcanbe ‘modelled’
by the following chemical reaction system, known as energy relay [70],

2X + E
k1→ X + E∗, A + E∗ k2→ X + E∗, E∗ k3→ E. (97)

Let the concentrations for X and E∗ be x and e∗, and the total E and E∗ together is a constant
et . Then, the law of mass action gives us

dx

dt
= −k1(et − e∗)x2 + k2ae∗ and

de∗

dt
= k1(et − e∗)x2 − k3e

∗. (98)

Treating E and E∗ as an ‘enzyme’ following the Michaelis–Menten kinetics, we have
dx

dt
= (k1et ) (k2 − k3)

k1x2 + k3
x2. (99)

A juveniles and adults two-age model with cannibalism of juveniles by adults [71] can be
understood as a predator–prey system (adult as predator, juvenile as prey) with a population
transfer from juveniles to adults, such that

A
k1→ X, Y

k2→ B, X + Y + C
k3→ X + 2Y,

X + Y
k4→ D + Y and X

k5→ Y, (100)

in which X and Y are the juveniles and adults. Therefore, we have

dx

dt
= (k1a) x − k4xy − k5x and

dy

dt
= k5x − k2y +

(̃
k3c
)
xy. (101)

7. Discussion and outlook

7.1. Nonlinear, stochastic biochemical dynamics as a new paradigm

Currently, there are mainly two mathematical approaches to biological systems and
phenomena. One is based on principles and mechanisms and the other is based on data.
Research on protein molecular dynamics and on the Hodgkin–Huxley equation of excitable
cells belongs to the the first kind, while statistical research on bioinformatics, ecology,
economics, etc belong to the second kind. In between, there are modellers who struggle
to develop mathematical principles from the data. Mathematical biologists are a large group
of modellers. Accordingly, modelling of biological dynamics has been roughly divided into
deterministic and statistical approaches. The study of cellular biochemical dynamics, as a
paradigm, offers a new perspective on biological dynamics.

The nonlinear, stochastic cellular biochemical dynamics offers a new mathematical
framework for dynamics that encompasses both deterministic and statistical aspects of
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modelling. The benefits go further than this. Perhaps one of the most important insights
is the emergence of rare events which has infinitesimal probability to occur in a regular time
scale, but it will occur with probability 1 on an evolutionary time scale. Rare events can be
understood by neither classical deterministic mathematics nor normal statistics. The only tool
we know of is mechanistic stochastic modelling.

Cancers, ecological catastrophes, stock market crashes, and sociopolitical revolutions are
all rare events. It is these rare events that are truly unpredictable in the classical sense, giving the
appearance of free will [16]. John Hopfield called it dynamic symmetry breaking. James Clerk
Maxwell has said, ‘It is manifest that the existence of unstable conditions renders impossible
the prediction of future events, if our knowledge of the present state is only approximate, and
not accurate. At these (unstable) points, influences whose physical magnitude is too small to
be taken account of by a finite being, may produce results of the greatest importance. All great
results produced by human endeavour depend on taking advantage of these singular states
when they occur.’ [17]

7.2. Stochastic dynamics in terms of multi-dimensional BDPs and diffusion processes

Stochastic processes have gradually become an indispensable and powerful mathematical
description of biological dynamics, from cellular biochemical to ecological systems. Yet,
comparedwith the understanding of nonlinear deterministic dynamical systems, our current in-
depth knowledge of applied stochastic processes are still rather limited. This is particularly true
for stochastic processes with time-irreversibility. Time-reversible processes are appropriate
models for equilibrium dynamics. Stochastic dynamics of living systems have to be time-
irreversible [33, 34, 48].

The interaction between the stochastic aspect and the nonlinear aspect of dynamics creates
complex behaviour. This is a subject that is yet to be fully explored. Markov processes, the
stochastic counterpart of first-order ordinary differential equations, have two equally valid
mathematical representations, the trajectories and the Kolmogorov forward equations. For
diffusion processes that have beenwidely employed in physics and chemistry, these correspond
to SDEs and the FPE [72]. For multi-dimensional BDPs, they correspond to the Lebowitz–
Gillespie algorithm [2, 73] and master equations, respectively.

The Delbrück–Gillespie process is the stochastic counterpart of the deterministic mass-
action kinetics. It is a full range analytical theory of dynamics of homogeneous chemical and
biochemical reaction systems. It is more than either the wildly popular Gillespie algorithm
or the CME alone. It has an emergent nonlinear differential equation system as well as the
emerging stochastic jump dynamics on an evolutionary time scale [5].

Since the pioneering work of Einstein, Smoluchowski, Langevin and Kramers, the
diffusion process, with its continuous but everywhere non-differentiable trajectory, has become
the dominant mathematical theory for stochastic processes. The physicists’ approach to
stochastic dynamics, however, is markedly ‘deterministic centric.’ The entire stochastic
enterprise of statistical physics is to understand macroscopic, deterministic behaviour from
the atomic nature of matters.

The stochasticity has always been considered merely as ‘fluctuations.’ In fact, physicists
have long believed that there is no stochasticity in a macroscopic world. This view, of course,
has been justified by the lawof large number in the theory of probability. This perspective, aswe
have shown in the present paper, needs to be modified to embrace a macroscopic complexity
with variations and stochastic jumps [16]. The law of large numbers, it turns out, requires
an infinitely long time and large system. For mesoscopic systems [74], there are stochastic



R44 Invited Article

dynamics beyond the deterministic limit [15, 19], and for macroscopic systems, stochasticity
occurs on an evolutionary time scale.

Finally, in biological and many other non-mechanical systems, a BDP is a more
fundamental approach to stochastic dynamics than the continuous diffusion. Certainly, it
is more consistent with all the deterministic differential equation models based on number
density, be it individuals, organisms, cells or molecules. The diffusion approach, however,
is only phenomenological. It has to rely on additional information to specify the diffusion
coefficient. This is why the fluctuation–dissipation relations are so essential in equilibrium
statistical physics.

7.3. Intrinsic and extrinsic fluctuations: stochastic processes versus random dynamical
systems (RDSs)

According to van Kampen [24], ‘internal or intrinsic fluctuations are caused by the fact that
the system itself consists of discrete particles; it is inherent in the very mechanism by which
the system evolves.’ External or extrinsic noises, on the other hand, often reside in systems’
parameters or environments. The distinction between these two types of randomness in a
dynamic process can be best illustrated if one considers two trajectories with different initial
conditions, and asks if the two dynamics utilize two different, independent sequences of
realizations of random events, or the same sequence. In the theory of RDSs [75], it is the
latter. A SDE can be interpreted as both. However, a Delbrück–Gillespie (DG) process does
not fit the RDS perspective. The random process underlying a DG process is a time-changed
Poisson process. To consider two DG processes with same realization of a Poisson process
can only come from a globally synchronized clock [5]. Therefore, the fluctuations in the DG
process are due to intrinsic noise. There is no separation between the deterministic nonlinear
dynamics and the stochastic fluctuations.
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Appendix A. Conditional diffusion equation

Let us consider the SDE

dXt = b(Xt) dt + ε
√

A(Xt) dBt, X0 = x0. (A.1)

Let ξ(t) be the deterministic solution to the ODE

dξ(t)

dt
= b(ξ(t)), ξ(0) = x0. (A.2)

Then we can consider

Yt = Xt − ξ(t)

ε
, Y0 = 0. (A.3)

which satisfies the SDE

dYt = b(εYt + ξ(t)) − b(ξ(t))

ε
dt +
√

A(εYt + ξ(t)) dBt . (A.4)
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The probability density function for Yt satisfies the time-inhomogeneous FPE

∂

∂t
fY (y, t) = 1

2

∂2

∂y2
(A(εy + ξ(t))fY ) − ∂

∂y

(
b(εy + ξ(t)) − b(ξ(t))

ε
fY

)
. (A.5)

For small ε, equation (A.5) can be approximated as

∂

∂t
fY (y, t) = A(ξ(t))

2

∂2fY

∂y2
− b′(ξ(t))

∂ (yfY )

∂y
. (A.6)

In particular, if the deterministic solution to (A.2) asymptotically approaches a fixed point
x∗, and if we choose X0 = x∗, then equation (A.6) is simplified to the FPE for an Ornstein–
Uhlenbeck Gaussian process,

∂

∂t
fY (y, t) = A(x∗)

2

∂2fY

∂y2
− b′(x∗)

∂ (yfY )

∂y
. (A.7)

Appendix A.1. Gaussian solution to the conditional diffusion

To solve equation (A.6), we introduce

〈Yt 〉 =
∫ ∞

−∞
yfY (y, t) dy, 〈Y 2t 〉 =

∫ ∞

−∞
y2fY (y, t) dy, (A.8)

then we have
d

dt
〈Yt 〉 = b′(ξ(t))〈Yt 〉, 〈Y0〉 = 0,

d

dt
〈Y 2t 〉 = A(ξ(t)) + 2b′(ξ(t))〈Y 2t 〉, 〈Y 20 〉 = 0,

〈Yt 〉 = 0,

〈Y 2t 〉 =

⎧⎪⎪⎨⎪⎪⎩
b2 (ξ(t))

∫ t

0

a (ξ(s))

b2 (ξ(s))
ds, ξ ′(t) 
= 0

A(x∗)
2|b′(x∗)|

(
1− e−2|b′(x∗)|t

)
, ξ(t) ≡ x∗, b′(x∗) < 0.

(A.9)

It is easy to verify that the solution to equation (A.6) is

fY (y, t) = 1√
2π〈Y 2t 〉

exp

(
− y2

2〈Y 2t 〉
)

. (A.10)

Appendix A.2. Linear fluctuation theory according to conditional diffusion

If the ξ(t) is near a stable fixed point of the b(x), then ξ(t |x0) = x∗ + (x0 − x∗)e−βt where
β = |b′(x∗)|. Furthermore, b(ξ(t)) ≈ −β(x0 − x∗)e−βt . Then equation (A.9) gives

〈Y 2t 〉 = A(x∗)
2β

(
1− e−2βt

)
. (A.11)

And the autocorrelation function for the stationary process is

〈XτX0〉st =
∫ ∞

∞
dx0f

st(x0)x0ξ(τ |x0)
= 〈X〉stx∗ (1− e−βτ

)
+ 〈X2〉ste−βτ . (A.12)

Therefore,

〈�Xτ�X0〉st = 〈(�X)2〉ste−βτ . (A.13)
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These results have been obtained many times in the theory of stochastic linear relaxation, in
the work of L Onsager, M Lax, T L Hill and J Keizer. We see that the conditional diffusion
shares the same principle. The stochastic dynamics is a ‘correction term’ to the deterministic
behaviour.

Appendix B. The mean first passage time (MFPT)

Appendix B.1. MFPT for a 1D diffusion process

The MFPT T for a diffusion process with diffusion coefficient A(x)/2 and drift b(x), from x1
to x2, satisfies [10, 14, 24]

d

dx

A(x)

2

dT (x)

dx
+ b(x)

dT (x)

dx
= −1, dT (x1)

dx
= 0, T (x2) = 0, (B.1)

Tx1→x2 =
∫ x2

x1

e−φ(x) dx
∫ x2

x

eφ(y) 2dy

A(y)
, φ(x) = −

∫ x 2b(x)

A(x)
dx. (B.2)

If interval (x1, x2) contains an energy well at x∗
1 , b(x∗

1 ) = 0, b′(x∗
1 ) < 0, and an energy barrier

at x∗
3 , b(x∗

3 ) = 0, b′(x∗
3 ) > 0, then one can use Laplace’s method to simplify equation (B.2) to

Tx1→x2 = 4πeφ(x∗
3 )−φ(x∗

1 )

A(x∗
3 )
√|φ ′′

(x∗
1 )φ

′′
(x∗
3 )|
+
∫ x2

x∗
3

2 dx

A(x)|φ ′
(x)| . (B.3)

The second term is for downhill relaxation. In fact,A(x)|φ ′
(x)|/2 = |b(x)|. Thus the downhill

time is essentially determined by the drift b(x), independent ofA(x). The first term is the time
for barrier crossing. The inverse of this expression is known as Kramers formulae for reaction
rate. For a barrier crossing problem, the second term can be neglected.

Appendix B.2. MFPT for a 1D BDP

A same calculation can be carried out for a BDP [10]. For a one-dimensional CME with birth
rate μn and death rate λn, in the limit of large V , μxV → μ(x)V , λxV → λ(x)V , and one
obtains [64]

Tx1→x2 = 2πeV (φ(x∗
3 )−φ(x∗

1 ))

λ(x∗
3 )
√|φ ′′

(x∗
1 )φ

′′
(x∗
3 )|
+
∫ x∗

2

x∗
3

1

λ(y)|φ ′
(y)| dy, (B.4)

in which

φ(x) =
∫ x

ln

[
λ(z)

μ(z)

]
dz. (B.5)

Note that at fixed point x∗
3 , λ(x∗

3 ) = μ(x∗
3 ), which corresponds to A(x∗

3 )/2. Hence the first
terms in equations (B.3) and (B.4) are completely identical. The detailed φ(x) and A(x)

between x∗
1 and x∗

3 do not matter to the barrier crossing time.
The downhill time, however, is significantly different from that of diffusion theory. Using

either A(x) = μ(x) + λ(x), as in the Kramers–Moyal expansion, or A(x) = 2(μ(x) −
λ(x))/(lnμ(x) − ln λ(x)), as in Onsager’s theory, gives the same result in equation (B.7),

diffusion :
∫

dx

μ(x) − λ(x)
, (B.6)

CME :
∫

dx

λ(x) (lnμ(x) − ln λ(x))
. (B.7)

These are the different predictions based on the diffusion theory and on the CME.
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Appendix C. Master equations with and without diffusion limit

Let us consider the canonical FPE for diffusion processes,

∂f

∂t
= ε

2

∂2

∂x2
(A(x)f ) − ∂

∂x
(b(x)f ) . (C.1)

If we discretize the x in terms of a uniform interval δ, we have

df (x, t)

dt
=
[
εA(x − δ)

2δ2
+

b(x − δ)

2δ

]
f (x − δ)

−
[(

εA(x)

2δ2
+

b(x)

2δ

)
+

(
εA(x)

2δ2
− b(x)

2δ

)]
f (x)

+

[
εA(x + δ)

2δ2
− b(x + δ)

2δ

]
f (x + δ). (C.2)

Therefore, if the birth and death rates of a master equation, μn(V ) and λn(V ), are in the
forms of

μn = V

[
εA(n/V )

2δ
+

b(n/V )

2

]
and λn = V

[
εA(n/V )

2δ
− b(n/V )

2

]
, (C.3)

then we have the master equation in (6). Note that both μn and λn have to be non-negative.
This is guaranteed by the δ being sufficiently small. We see that if ε is smaller, the δ has to be
smaller as well.

The stationary distribution of the master equation is readily obtained, such that

pstn = p0 exp

[
n∑

k=1
ln

μk−1
λk

]
(C.4)

and

f st(x)

V
= p0 lim

V →∞
exp

[
xV∑
k=1
ln

A
(

k−1
V

)
ε
δ
+ b
(

k−1
V

)
A
(

k
V

)
ε
δ

− b
(

k
V

) ] , (C.5)

which yields

f st(x) dx = A exp

[
V

∫ x

0
ln

(ε/δ)A(x) + b(x)

(ε/δ)A(x) − b(x)
dz

]
. (C.6)

Note that if we consider ε and δ → 0, but ε/δ → ν, then we have

f st(x) dx = A exp

[
−ν

ε

∫ x

0
ln

νA(x) − b(x)

νA(x) + b(x)
dz

]
. (C.7)

The ln f st(x) has its extrema at x∗ with b(x∗) = 0. Furthermore, the curvature at x∗ is
2b′(x∗)/(εA(x∗)), which is independent of ν.

More interestingly, if ν = 1, we have

f st(x) dx = A exp

[
−1

ε

∫ x

0
ln

A(x) − b(x)

A(x) + b(x)
dz

]
. (C.8)

This is the case of the CME in whichμn and λn have the form ofμn = μ(x)V and λn = λ(x)V

as in equation (C.3).
If, however, ν = ∞,

f st(x) dx = A exp

[
1

ε

∫ x

0

2b(z)

A(z)
dz

]
. (C.9)
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Only equation (C.9) recovers the correct stationary distribution to the FPE in (C.1). One can
not have ν → 0 because of the discussion following equation (C.3).

Equations (C.9) and (C.8) are precisely the correct and wrong stationary distributions
according to [56] and Kramers–Moyal’s diffusion equations, respectively. Their difference is
exactly the two expressions on the lhs and rhs of equation (63).
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Abstract Based on a stochastic, nonlinear, open biochemical reaction system perspective,
we present an analytical theory for cellular biochemical processes. The chemical master
equation (CME) approach provides a unifying mathematical framework for cellular mod-
eling. We apply this theory to both self-regulating gene networks and phosphorylation-
dephosphorylation signaling modules with feedbacks. Two types of bistability are illustrated
in mesoscopic biochemical systems: one that has a macroscopic, deterministic counterpart
and another that does not. In certain cases, the latter stochastic bistability is shown to be a
“ghost” of the extinction phenomenon. We argue the thermal fluctuations inherent in mole-
cular processes do not disappear in mesoscopic cell-sized nonlinear systems; rather they
manifest themselves as isogenetic variations on a different time scale. Isogenetic biochem-
ical variations in terms of the stochastic attractors can have extremely long lifetime. Tran-
sitions among discrete stochastic attractors spend most of the time in “waiting”, exhibit
punctuated equilibria. It can be naturally passed to “daughter cells” via a simple growth and
division process. The CME system follows a set of nonequilibrium thermodynamic laws
that include non-increasing free energy F(t) with external energy drive Qhk ≥ 0, and total
entropy production rate ep = −dF/dt + Qhk ≥ 0. In the thermodynamic limit, with a sys-
tem’s size being infinitely large, the nonlinear bistability in the CME exhibits many of the
characteristics of macroscopic equilibrium phase transition.

Keywords Biochemistry · Cell biology · Chemical master equation · Evolution ·
Nonequilibrium · Nonlinear dynamics · Stochastic processes · Thermodynamics

1 Introduction

From an evolutionary biology standpoint, Kirschner and Gerhart have argued that a cen-
tral task of cellular and organismal biology is to provide phenotypic variations with mole-
cular mechanisms that connect genome to life [1]. Molecular mechanisms demystify the
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biological variations upon which Darwin’s natural selection occurs, thus giving the “plausi-
bility of life”.

Biochemistry and molecular genetics/genomics are the two foundations of cellular mole-
cular biology [2]. According to the Modern Synthesis School of population genetics [3] and
its genomic interpretations [4], the molecular basis of biological variations is coded in the
DNA sequence, which is inheritable via Mendelian genetics and Watson-Crick base-pairing.
Biochemistry, on the other hand, has long been considered as a deterministic mechanics that
executes the instructions in the DNA [5, 6].

Continuous theoretical investigations [7, 8] and recent experimental demonstrations of
stochastic gene expression in single cells, however, have transformed the genomic mono-
play of biological variations [9, 10]. Stochasticity has risen rapidly to prominence in cellular
molecular biology [11–13]. Isogenetic biochemical variations are now widely considered as
mechanisms for “novelty” in cellular processes ranging from cell differentiation to oncoge-
nesis [14–16].

It is against this backdrop that statistical physics and physical chemistry have a defining
role to play in complementing the yet descriptive cellular molecular biology with a first-
principle based analytical theory. Stochastic fluctuations in atomic and molecular processes
have been the rule in our fields; it is the emergent macroscopic deterministic behavior that
begs for explanations. However, as we shall show, there are emergent biochemical variations
from stochastic molecular systems with nonlinearity. Stochastic variations do not disappear
in mesoscopic molecular systems; they simply emerge on a different, much longer “evolu-
tionary” time scale [17, 18].

We shall also discuss statistical thermodynamics. By thermodynamics, we mean one is
interested in a system’s organizing properties such as entropy and energy, and their interre-
lations. It turns out, thermodynamics, at least the isothermal part, is a general mathematical
law of any stochastic system endowed with a Markovian dynamics [19]. The concept of “en-
tropy” in the classical thermodynamics was defined empirically via the quasi-static process.
Therefore, there is a feeling that one can only work with this concept in systems at, or
near, equilibrium. As we shall demonstrate, however, that one can introduce a mathematical
concept of entropy for any stochastic dynamics that follows a Markov process. Therefore,
the Gibbs entropy, the relative entropy, and their time derivatives (see (36)–(38)) can all be
defined for a system at any give time, near or far from equilibrium, in stationarity or in a
transient. When applying the “thermodynamics” to biological systems, the real question is
the validity of a stochastic Markovian description of the Nature. If that is valid, so is the
application of the thermodynamic and the entropy theory [20].

In the approach we take in the present work, the origin of the stochasticity is due to the
“intrinsic noise” of molecular collisions [9]. It is interesting to point out that a distinction
between intrinsic and extrinsic noises can be made if one considers simultaneously two
stochastic trajectories with different initial conditions. The former assumes the two with
different stochastic realizations, while the latter assumes the two with a same realization.
The “extrinsic noise”, thus, is more consistent with the random dynamical systems (RDS)
approach which regards the origin of temporal stochasticity being in a system’s parameters
[21], while intrinsic noise is more consistent with the stochastic processes approach which
considers one initial condition at a time. See [22] for an example of applying RDS models in
neural biology. While a stochastic differential equation with multiplicative Browian motion
can have both interpretations, a birth-and-death process can not have a RDS interpretation.1

1This statement is not strictly true: In the random time-change Poisson representation of a birth-and-death
process, one can have a RDS interpretation. However, this seems to pin the stochasticity entirely on the flow
of a global time.
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2 Stochastic Chemical Dynamics

Two papers published in 1940 have laid the theoretical foundation of stochastic chemical
dynamics that connects statistical physics to cellular biology.

H.A. Kramers’ paper “Brownian motion in a field of force and the diffusion model of
chemical reactions”, which was published in that April [23], has shown us how to compute
the rate constant for a discrete, individual chemical reaction in aqueous solution, such as
X + Y → Z or A → B , in terms of atomic coordinates and molecular energy functions.
In a nutshell, Kramers’ theory connected chemistry to physics by understanding chemical
reactions using the mechanics of molecular particles and their interactions. This approach,
together with Smoluchowski’s earlier work on diffusion-controlled chemical reactions and
their later synthesis [24, 25], is now one of the main areas of theoretical chemistry [26].

Figure 1 shows the stochastic transitions between two conformations A and B of a single
molecule in terms of an energy function. Kramers’ theory predicted that the rate constant
follows the Arrhenius’ law k1 ∝ e−�G‡/kBT . More importantly, the reaction time is spent in
waiting, which is random and exponentially distributed, while the actual transition time is
instantaneous. This feature is general for any “barrier crossing” process in stochastic, non-
linear systems. Stochastic trajectories of single molecule conformational transitions under
room temperature were not observed experimentally until 1990s [27].

In the same year, the January of 1940, Max Delbrück published an equally ground-
breaking paper, though with much less fanfare in the subsequent fifty years [28]. While
Kramers’ Brownian motion is in the “configuration space”, Delbrück’s birth-and-death
process is in the “copy number space”. This theory, now under the name of the chemi-
cal master equation (CME) and more popular Gillespie algorithm [29, 30], has recently
emerged as a main workhorse in computational systems biology [31]. In a nutshell, the
CME connected cell biology to chemistry by understanding cellular phenotypes and their
evolutions in terms of nonlinear biochemical networks in a mesoscopic reaction volume on
the order of hundred femtolitres, the size of a cell (1 femtolitre = 1 µm3).

Kramers’ theory and the CME clearly marked two complementary domains of physical
chemistry. The former computes the rate constant of a individual chemical reaction based on
the molecular structures, energy functions, and the solvent environment, while the latter de-
scribes the dynamic behavior of a chemical reaction system, assuming that the rate constants
are given for each and every reaction within.

Fig. 1 Kramers 1940 theory connects the chemical reaction kinetics to the stochastic motions crossing an

energy barrier. It is shown that the reaction rate constant k1 ∝ e−�G‡/kBT . The stochastic dynamics spends
most of the time in “waiting” while the actual transition is instantaneous. The waiting times are random and
exponentially distributed. Barrier-crossing is a generic feature of any stochastic, nonlinear dynamical system
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2.1 The Chemical Master Equation (CME)

Birth-and-death processes, to which the CME belongs, are a very special class of dis-
crete state, continuous time, Markov processes. The discrete states are non-negative inte-
gers forming a lattice Z

N . Consider a system of N chemical species Xi (i = 1,2, . . . ,N )
with M chemical reactions, with the j th chemical reaction being represented by a set of
stoichiometric coefficients ν

j

i and μ
j

i (the superscript being reaction and the subscript being
species):

ν
j

1 X1 + ν
j

2 X2 + · · · + ν
j

NXN

kj−→ μ
j

1X1 + μ
j

2X2 + · · · + μ
j

NXN, (1)

in which some of the integers ν’s and μ’s can be zero (j = 1,2, . . . ,M). If ν
j

� = μ
j

� �= 0 for
a particular �, the corresponding X� is called a catalyst for the reaction j . If μ

j

� > ν
j

� > 0,
then X� is an autocatalyst.

The state of the chemical reaction system at time t is characterized by the set of N inte-
ger n(t) = (n1(t), n2(t), . . . , nN(t)), i.e., a grid point on the Z

N lattice, which specifies the
copy number of Xi being ni(t). The dynamic of the chemical reaction system, thus, is repre-
sented by a trajectory in the copy number space Z

N . The stochastic dynamics, according to
Lebowitz-Gillespie’s algorithm [30, 32], runs as follows: each of the M reactions by itself,
say reaction j , can occur at a random time T j , very much like the radioactive decay, which
follows an exponential distribution

fT j (t) = λje−λj t , (2)

with the rate

λj = V kj

N∏
i=1

ni(ni − 1) · · · (ni − ν
j

i + 1)

V ν
j
i

. (3)

The parameter V in (3) stands for the volume of the reaction system. It converts molecular
copy number ni to concentration ni/V for species Xi ; all the rate constants in (1) are con-
centration based. Now with the presence of all M reactions in the system, the first one to
occur is at the random time

T ∗ = min{T 1, T 2, . . . , T M}, (4)

which follows again an exponential distribution

fT ∗(t) = λ∗e−λ∗t , λ∗ =
M∑

j=1

λj . (5)

The T ∗ determines the time for the system to move away from the current grid point. The
system then moves randomly to one of the M grid points

(n1, n2, . . . , nN) +
(
μ

j

1 − ν
j

1 ,μ
j

2 − ν
j

2 , . . . ,μ
j

N − ν
j

N

)
, j = 1,2, . . . ,M, (6)

with the probability λj/λ∗.
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The above stochastic dynamics on Z
N lattice can also be described by a probability

distribution p(n1, n2, . . . , nN, t), which satisfies the chemical master equation (CME):

dp(n, t)

dt
=

M∑
j=1

[
λj (n − μj + νj )p(n − μj + νj ) − λj (n)p(n)

]
(7)

where n = (n1, n2, . . . , nN), μj = (μ
j

1,μ
j

2, . . . ,μ
j

N), and νj = (ν
j

1 , ν
j

2 , . . . , ν
j

N ).
Therefore, the CME and the Gillespie algorithm are two different descriptions for the

same stochastic dynamical model of chemical reaction systems in a mesoscopic volume,
parallel to the diffusion (Fokker-Planck) equation and stochastic differential equation ap-
proaches to Brownian motion, developed by Einstein and Langevin respectively in 1905
and 1908.

See [33–35] for several recent reviews on the theory of the CME and [36–38] for its
applications to simple nonlinear chemical reaction systems.

2.2 Nonlinear Chemical Dynamics

The parameter V , the volume of the reaction system, is a crucial parameter of the CME. For
chemical reaction systems with macroscopic volume and Avogadro’s number of molecules,
one can introduce the concentration for species Xi , ui = ni/V . If we let both ni and V → ∞
in the CME, but keep ni/V → ui finite, then it can be mathematically shown that a set of
deterministic, nonlinear kinetic equations arise [35, 39]:

dui(t)

dt
=

M∑
j=1

(
μ

j

i − ν
j

i

)
J j , (8)

in which

J j = kju
ν
j
1

1 u
ν
j
2

2 · · · u
ν
j
N

N = lim
V, n→∞

λj (n)

V
, (9)

where λj (n) is given in (3). We note that the system of kinetic equations (9) is nothing but
the classic Law of Mass Action for the reaction scheme (1)! Therefore, the CME is not an
alternative approach to biochemical kinetics. Rather, the deterministic dynamics based on
the Law of Mass Action is the skeleton of the CME dynamics. A thorough understanding of
any CME, thus, requires a full grasp of the deterministic dynamics from the corresponding
nonlinear differential equation.

In fact, studying the CME, (7), together with its deterministic counterpart, (8), side-by-
side leads to a series of insights into the nonlinear, stochastic chemical kinetics.

Stationary Distribution First, for most biochemical reaction systems, the CME has a
unique stationary probability distribution pss

V (n). Note that this distribution is also a func-
tion of the system’s volume V . As a function of V the pss

V (n) usually has the general form
of the so called WKB (Wentzel-Kramers-Brillouin) expansion:

pss
V (n) = exp (−V φ0(u) + φ1(u) + · · · ) , u = n

V
, (10)

when V → ∞. The function φ0(u) is independent of V . It can be obtained, if it exists, from

φ0(u) = lim
V →∞

− 1

V
logpss

V (V u). (11)
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One of the most important properties concerning the φ0(u) is the equation [40]

b(u) · ∇φ0(u) = − (∇φ0(u))2 , (12)

where the b(u) = du/dt is the right-hand-side of (8). Equation (12) implies that

d

dt
φ0 (u(t)) = ∇φ0(u) · du

dt
= ∇φ0(u) · b(u) ≤ 0. (13)

In other words, the deterministic, nonlinear chemical dynamics given by (8) follow the
downhill of the function φ0(u). The function φ0(u) can and should be considered as a
dynamic landscape. In fact, the stable steady states of (8) are precisely the local minima
of φ0(u).

Maxwell Construction Many nonlinear dynamical systems have multiple, locally stable
steady states. We will see one of such examples in self-regulating gene network in Sect. 3.1.
A deterministic dynamical system approaches one of its stable steady states (or attractors)
and then stays there forever. Which attractor it goes to depends on the initial condition of
the dynamical system. This behavior gives rise to the concept of “basin of attraction”. This
is the picture one obtains from studying chemical dynamics based on (8).

Is one attractor more “important” than another? This question can not be answered under
strictly deterministic dynamics. However, for a dynamical system with stochasticity, dif-
ferent attractors can have different probabilities. In this sense, one attractor can be more
“stable” then another—While jumping among different attractors, the system spends totally
more time in a more stable attractor. This is an insight the CME offers that does not exist in
the deterministic kinetics.

Now let us consider again pss
V (n). Let us assume it has several peaks corresponding

to the stable steady states of the deterministic dynamics. What is its limit when V → ∞?
Noting that pss

V (n) is always normalized, and pss
V (n) ∼ exp(−V φ(u)), we see that the entire

distribution converges to the global minimum of φ0(u) with probability 1. Even though
a φ0(u) can have many local minima, in the limit of V → ∞, all their probabilities are
infinitesimal but one!

All these other local minima are called metastable. If a stochastic dynamics start from
within one of the basins of metastable states, if the V are very large, it will take an extremely
long time, ∼ eαV (α > 0) to exit. This is consistent with the result from the deterministic
dynamics. The “infinite time” in the deterministic dynamics is meant to be much shorter
than these extremely long exit times.

Applying the above discussions to a bistable system which undergoes saddle-node bifur-
cation:

du

dt
= b(u, θ) (14)

where θ is a parameter. The steady state(s) u∗(θ) of the system is obtained from solving
b(u, θ) = 0. The solid line in Fig. 2, the S-shaped curve, is called bifurcation diagram. For
the middle range of the θ value, the system has three steady states, the top and bottom
ones are stable, while the middle one is unstable. The corresponding stochastic dynamics
gives its stationary distribution and corresponding φ0(u, θ) which is also shown in Fig. 2.
The peaks and troughs match the steady states u∗(θ). For each θ , in the limit of V → ∞,
the stationary probability pss

V (u) converges to the global minima of φ0(u, θ). Therefore, the
stochastic dynamics selects only one of the two minima of φ0(u): When θ < θ∗, the lowest
branch and when θ > θ∗, the uppermost branch. The dashed vertical line at θ∗ is known as
Maxwell construction [41].
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Fig. 2 The S-shaped curve u∗(θ) is known as bifurcation diagram for saddle-node bifurcation. It shows
the steady states of a deterministic chemical dynamical system du/dt = b(u, θ) changing with parameter θ .
The system is bistable for the middle ranged value of θ . The corresponding CME gives dynamic landscape
φ0(u, θ), with its peak(s) and trough match the u∗. In the limit of V → ∞, the stationary distribution of the
stochastic dynamics has probability 1 located at the global minimum of φ0(u). Hence when θ < θ∗, it is
located at the lowest branch; and when θ > θ∗ , it is located at the uppermost branch. There is a discontinuity
at θ = θ∗ . The vertical dashed line is known as Maxwell construction

Competition Between Large System Size and Long Time The stochastic CME clearly
shows that there are two very different time scales in the nonlinear chemical dynamics with
multistability. The two time scales are well separated by the exit times from one attractor to
another. In the time scale much shorter than this, the deterministic chemical kinetics rules.
However, in the time scale much longer than this, the system stochastically jumps among
the multiple attractors, as a set of discrete states. The dynamics on this time scale is again
stochastic. The exit time of an attractor depends exponentially on the system’s volume V ,
eαV (α > 0). Hence, the larger a reaction system, the longer one has to wait to observe the
stochastic jumps.

Mathematically, for a chemical reaction system with bistability, exchanging the two lim-
its

lim
V →∞

lim
t→∞pV (n, t) �= lim

t→∞ lim
V →∞

pV (n, t). (15)

The left-hand-side gives probability 1 at the global minimum of φ0(u) independent of the
initial condition; the right-hand-side goes to different local minima of φ0(u) depending on
the initial condition. The inequality in (15) is the origin of T. Kurtz’s convergence theorem
for only finite time [39], as well as the so called Keizer’s paradox [36, 37].

To Kirschner and Gerhart’s thesis, the most important insight from the nonlinear bio-
chemical dynamics is that on an “evolutionary” long time scale, even a simple chemical
reaction system can exhibit stochastic variations. These variations and the stochastic dynam-
ics among them, though deeply rooted in the random fluctuations of molecular reactions as
understood by Kramers, are mesoscopic, or even macroscopic, emergent properties of non-
linear interacting molecular species. Biological variations need not be solely from DNA
sequences; it could come also from isogenetic nonlinear biochemical reaction systems.

There is a crucial conceptual issue to be resolved: From a thermodynamic standpoint,
how can the above mentioned chemical variations, i.e., diversity, be maintained? Should not
all chemical systems approach to equilibrium in the long-time limit?

Indeed, all the above discussed mutistable systems are open chemical systems with sus-
tained external chemical driving force. Therefore, they do not approach to an equilibrium
but rather their respective nonequilibrium steady states [42, 43]. In fact, if one eliminates
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all the chemical driving force on a system, then the CME predicts an equilibrium steady
state in the long-time limit. The pss

V (n) in this case is a simple, Gaussian-like distribution;
all chemical reactions satisfy the principle of detailed balance [44]. The net flux is zero in
each and every reaction in the system.

2.3 Nonequilibrium Steady State (NESS)

The mathematical theory of nonequilibrium steady state in stochastic dynamical systems
represented by master equations and Markov processes has only been established re-
cently [45]. The physics, however, has a long and diverse histories which can be traced
back to H. Haken, T.L. Hill, J. Keizer, M.J. Klein, M. Lax, J.L. Lebowitz, G. Nicolis, I.
Prigogine, J. Ross, to name a few among the many pioneers [46–53]. See [42, 43, 54] for
some recent applications to chemical and biochemical systems.

Conceptually, there are four kinds of mesoscopic chemical kinetic systems: (i) station-
ary systems in chemical equilibrium with equilibrium fluctuations; (ii) systems with time-
dependent transient relaxation to equilibrium; (iii) stationary open chemical systems which
are sustained out-of-equilibrium by a sustained chemical driving force; and (iv) systems with
time-dependent transient relaxation toward the (iii). Nonequilibrium steady state (NESS), or
stationary nonequilibrium state, the (iii), is the most appropriate chemical dynamic model
for a living cell under homeostasis [55].

Equilibrium Stochastic Dynamics and Time Reversibility It is now well understood that
the stochastic fluctuations in an equilibrium, as a function of time, is time reversible. All
statistical properties of a forward stochastic trajectory can not be distinguished from its time
reversal. In fact, any sequence of events that occur will have equal probability to occur in
reverse—thus nothing can be accomplished in an equilibrium dynamics. There is no energy
conversion from one form to another; or transport materials from one place to another.

Detailed Balance At the chemical reaction level, all reactions are going forward and back-
ward with equal likelihood. The net flux within each and every reaction is zero. This is the
principle of detailed balance [44]. One immediately sees that any chemical kinetic scheme
that assumes irreversible reactions is incompatible with an equilibrium steady state. In fact,
the rate constants of a kinetic scheme for an equilibrium reaction system, or a system ap-
proaching to an equilibrium, have to satisfy the Wegscheider cycle condition [44, 56]. In the
CME formulation, the Wegscheider cycle condition becomes the Kolmogorov cycle con-
dition for reversible Markov processes [45]: each and every cycle in the Z

N satisfies the
detailed balance. In order to distinguish the subtle difference, we have termed the former
chemical detailed balance and the latter mathematical detailed balance [37].

Gardiner [57] has shown that for chemical reaction systems with chemical detailed bal-
ance, not only its CME has mathematical detailed balance, hence its stationary distribution
is solvable, the stationary distribution is also a multivariate Poissonian conditioned on the
conservation laws among molecular species. It has a single peak.

Cycle Flux in NESS Any kinetic model that contains irreversible chemical reactions, there-
fore, implicitly assumes an chemical driving force. In fact, the force is assumed to be infinite.
To have a firm thermodynamic basis, it is advised that one finds out explicitly the source(s)
and sink(s) of the chemical driving force(s) applied to a biochemical system in cellular bio-
chemical modeling. For example, in the stochastic models for motor proteins, the driving
force is from the hydrolysis of ATP → ADP + Pi. Their concentrations are assumed to be
constant in motor protein kinetics.
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With the presence of a sustained chemical driving force(s), the stochastic dynamics ac-
cording to a CME approaches not to an equilibrium, but to a NESS. When a system is in
a NESS, since all the probabilities are no longer changing with time, and since the system
is not detailed balanced, there must be balanced cycle fluxes. This is a simple consequence
of Kirchhoff’s Law. The cycle flux and the landscape φo(u) in a chemical NESS are like
the current and voltage in an electrical circuit with battery. They provide complementary
information on a “living” chemical system [58, 59].

NESS on Different Time Scales The term “nonequilibrium steady state” deserves further
clarification. It seems to have two different meanings in systems with multiple attractors. On
the time scale shorter than the jumping times between the attractors, a NESS corresponds to
a single, average chemical composition with a multivariate Gaussian-like concentration (or
number) fluctuations. In this sense, a nonlinear chemical system can have multiple steady
states. The long-time fate of the system depends on its initial condition. They are the attrac-
tors of deterministic dynamics.

However, on the time scale much longer than the slowest exit time between the attractors,
the term NESS takes another, completely different, meaning. Here a NESS has a stationary
distribution which peaks at every attractors with appropriate weights. The chemical system
jumps continuously among the multiple attractors with ergodicity. In this case, a system has
a unique NESS which has the stationary distribution as the solution to the CME, the pss

V (u).
We should mention that for a chemical reaction system with individual reaction rates on

the order of milli- and micro-seconds, and with a couple of thousand copies of molecules,
the exit time of an attractor can easily be as long as 1011 years. That is an eternity! However,
if the number of molecules is reduced to a few hundreds, then the time is only on the order
of hours.

2.4 Nonequilibrium Phase Transition in the Bistable CME

Multiple steady states, or attractors, and bifurcations upon parameter changes are the essence
of deterministic nonlinear dynamical systems. Since the 1970s, it has long been argued that
cellular and physiological states of biological systems should be understood in terms of the
concept of attractors in nonlinear dynamics [14, 60–63]. The CME approach to the reaction
dynamics of mesoscopic biochemical systems adds a significant mathematical rigor to this
still elusive idea. In particular, the interplay between nonlinearity and stochasticity seems to
provide a deeper understanding of the complexity of real biological systems. The concepts
such as “barrier crossing” and “nonlinear bifurcation” are unified in the CME theory.

In a recent study of the CME of an open, driven biochemical system, the phosphorylation-
dephosphorylation cycle with feedback (see Sect. 3.2), it has been shown that [17] the
bistable system exhibits all the characteristics of equilibrium phase transitions extensively
studied in statistical physics. This includes the Maxwell construction for discontinuity in
the thermodynamic (V → ∞) limit, the Lee-Yang theory of a zero of the partition func-
tion being the origin of non-analyticity, and the terminal critical point in a phase diagram
matching the cusp in nonlinear saddle-node bifurcation. These findings seem to suggest that
isogenetic variations in biochemical systems are intimately related to phase transition.

3 Self-Regulating Genes and Phosphorylation-Dephosphorylation Cycles with
Feedback

We now turn our attention to two concrete biochemical reaction systems, one is the self-
regulating gene network (see (16)) and the other is the phosphorylation-dephosphorylation
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signaling cycle (see (23)). As we shall show, even though they are considered completely
different biochemical entities, their biochemical kinetics are essentially identical. Hence,
their analysis based on deterministic mass-action kinetics and stochastic CME will be car-
ried out in parallel.

3.1 Self-regulating Gene Networks

Self-regulating gene networks have been extensively studied in recent years [64–66]. These
systems can be described in terms of a biochemical kinetic scheme that consists of biosyn-
thesis and degradation of a transcription factor (TF), as well as the TF binding to the DNA
regulatory sequence of its own gene:

transcription factor binding: DNA + χ TF
h
�
f

DNA · (TF)χ , (16a)

TF biosynthesis: DNA
g0−→ TF, DNA · (TF)χ

g1−→ TF, (16b)

TF degradation: TF
k−→ . (16c)

Hornos et al. [65] considered g1 < g0 with χ = 1, i.e., the TF in monomeric form is a
repressor for its own gene expression. Walczak et al. [66] studied g1 > g0 with χ = 2. The
gene product in this case, in dimeric form, is its own transcription enhancer.

The corresponding macroscopic kinetics of gene regulations with feedback, in terms of
the deterministic Law of Mass Action, can be written in ordinary differential equations as

dx

dt
= hyχ(1 − x) − f x,

dy

dt
= (g0(1 − x) + g1x) − ky, (17)

where x is the fraction of the DNA with TF bound (χ = 1,2 for monomer and dimer, respec-
tively), y is the concentration of the TF, the gene product. Figure 3 shows that system (17)
can have unique steady state as well as bistability.

To solve the steady state(s), we introduce nondimensionalization. The two equations
in (17) are then simplified

dx

dτ
= ω

[
θzχ (1 − x) − x

]
,

dz

dτ
= g + (1 − g)x − z. (18)

Fig. 3 The null clines (isoclines) of the system in (17) for negative feedback case (A) and positive feedback
case (B), showing unique steady state and bistability, respectively. For the negative feedback case, g0 > g1
and χ = 1. The two null clines are x = f1(y) = y/(Kd + y) and x = f2(y) = (g0 − ky)/(g0 − g1), where
Kd = f/h. For the positive feedback case, g1 > g0 and χ = 2. The two null clines are f1(y) = y2/(Kd +y2)

and f2(y) = (ky − g0)/(g1 − g0). Parameters used in computations for (A): Kd = 1, k = 0.5, g0 = 1,
g1 = 0.05, χ = 1; and for (B) Kd = 1, k = 0.5, g0 = 0.05, g1 = 1, χ = 2



1000 H. Qian

Fig. 4 Self-regulating gene network with χ = 1. The steady state fraction of gene with TF bound, x∗,
increases with the binding affinity parameter θ = (g1/k)K−1

d
where Kd = f/h. The four curves are for

g = g0/g1 = 0.001,0.1,1.1,10 where g0 and g1 are the TF biosynthesis rates in the absence and presence
of TF binding to DNA. g > 1 corresponds to the TF being a repressor, and g < 1 corresponds to the TF
being an enhancer. For strong enhancer with very small g = 0.001, the TF induced gene expression is highly
cooperative, exhibiting delayed onset

where

z = k

g1
y, τ = kt, θ = h

f

(g1

k

)χ

, ω = f

k
, g = g0

g1
. (19)

The three cases of χ = 0,1,2 yield, respectively, hyperbolic gene activation, delayed onset
(with possible transcritical bifurcation when g = 0, at θ = 1), and bistability with saddle-
node bifurcation.

χ = 0 There is only a single steady state. The fraction of activated gene is x∗ = θ/(1 + θ)

which has a hyperbolic dependence on θ . In the meantime the gene product z∗ = (g +
θ)/(1 + θ).

χ = 1 The quadratic equation (1 − g)x2 − (1 − 2g − 1/θ)x − g = 0 has a unique root
x∗ ∈ (0,1] for θ ≥ 0:

x∗ =
(1 − 2g − 1

θ
) +

√
(1 − 2g − 1

θ
)2 + 4g(1 − g)

2(1 − g)
. (20)

Figure 4 shows that x∗ increases from 0 to 1 when θ increases from 0 to ∞. When g = 1,
there is no self-regulation and x∗ = θ/(1 + θ) which has the standard hyperbolic shape.
When g = 0, i.e., the TF is a strong enhancer, x∗ = 0 for θ ≤ 1 and x∗ = 1 − 1/θ for θ ≥ 1.
There is a transcritical bifurcation at θ = 1. This type of response is called delayed onset.

χ = 2 For the repressor case with negative feedback, i.e., g > 1 in (18), there is no bista-
bility because the null cline for dx/dt = 0 is an increasing function z = (x/(1 − x)/θ)1/2

while the null cline for dz/dt = 0 is a decreasing function z = g − (g − 1)x. For the case
of positive feedback with g < 1, the system (18) can have three steady states in the positive
quadrant, two stable and one unstable. Figure 3 shows the qualitatively different arrange-
ments of the null clines for the two cases.

The condition for the positive feedback case to have bistability is when (θ, g) is in the
cusp region bound by the parametric curve ( 1

z(2−3z)
, z(1−2z)

2−3z
) as shown in Fig. 5.
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Fig. 5 The f1(y) and f2(y) in Fig. 3B has three intersection, corresponding to three steady states for the
ODE system (bistability). The parameter region for the bistability typically has a “cusp”, known as cusp
catastrophe. If we let z = ky/g1, then the two null clines in Fig. 3B become the f1(z) and f2(z) with
θ = (hg2

1/(f k2) and g = g0/g1. To obtain the cusp region, we solve simultaneously f1(z) = f2(z) and
f ′

1(z) = f ′
2(z). This yields the (θ, g) parametrically in terms of z

Adiabatic and Non-adiabatic Limits If ω 
 1 in (18), then the FT binding to DNA is
much faster than its own biosynthesis and degradation. This is known as the adiabatic limit
[65, 66]. In this case, one can first solve the quasi-steady-state for dx/dτ = 0 to obtain
x = θzχ/(1 + θzχ ). Then the system of equations is reduced to a single one:

dz

dτ
= g + θ(1 − g)zχ

1 + θzχ
− z. (21)

On the other hand, if ω � 1, then the FT binding to DNA is much slower than its own
biosynthesis and degradation. This is known as the non-adiabatic scenario [65, 66]. In this
case, one can solve the quasi-steady-state for dz/dτ = 0 to obtain z = g + (1 − g)x. Then
again the system in (18) is reduced:

dx

dτ
= ω

{
θ

[
g + (1 − g)x

]χ
(1 − x) − x

}
. (22)

Strong Enhancer with g = 0 The steady state of the above kinetic system with g = 0 has
been extensively studied in the context of phosphorylation-dephosphorylation cycles with
feedback [17, 41, 67–69]. We now introduce this biochemical signaling system which is
kinetically almost isomorphic to the self-regulating gene network.

We have assumed in (16) a cooperative binding of two copies of TF to the DNA in
the case of χ = 2. It is important to point out that the strong nonlinearity required in the
bistable behavior is not from the cooperativity per se. Rather, it is from the fact that only the
doubly occupied DNA is functional. In this case, the response function is sigmoidal even for
completely independent binding: x2

1+2x+x2 . This response function is in sharp contrast to the

fraction of binding, 1·2x+2·x2

2·(1+2x+x2)
, which is hyperbolic x

1+x
. See [70, 71] for recent experimental

and theoretical studies on the consequences of nonlinearity from time delay and cooperative
binding.
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3.2 Phosphorylation-Dephosphorylation Cycles (PdPC) with Feedback

Phosphorylation-dephosphorylation cycles (PdPC) are biochemical regulatory systems in
cell signaling. They consist of a substrate protein E which can be phosphorylated to become
E∗, catalyzed by a protein kinase K , and protein phosphatase P . In many cases, the kinase
itself can be regulated via binding to the E∗; thus the feedback is in the form of autocatalysis.
For more discussions on concrete biological examples see the Fig. 1 of [69].

The system can be described in terms of biochemical kinetic scheme

kinase regulation via binding of E∗: K + χ E∗ h
�
f

K†, (23a)

protein phosphorylation: E + K
g0−→ E∗ + K, E + K† g1−→ E∗ + K†, (23b)

protein dephosphorylation: E∗ + P
k̂−→ E + P. (23c)

The deterministic kinetic equations for this class of models, according to the Law of Mass
Action, is

dx

dt
= hyχ(1 − x) − f x,

dy

dt
= (g0(1 − x) + g1x) (yt − y) − ky, (24)

where x is the fraction of the kinase in the K† form, y is the concentration of phosphorylated
E∗, k = k̂[P ], and yt is the total concentration of E and E∗. Comparing (24) to (17), we
see that the two systems of equations are essentially the same except the former contains an
extra term (yt −y) on the right-hand-side of dy/dt . When k 
 g0, g1, the former is reduced
to the latter.

If the reaction K + E∗ � K† is fast, y
χ
t � f/h = Kd , and g0 = 0, then one has a quasi-

steady-state for dx/dt = 0 and a simplified equation for u = y/yt ,

du

dτ
= σuχ(1 − u) − u, (25)

in which u represents the fraction of phosphorylated E∗, τ = kt , and σ = g1hy
χ
t /f k repre-

sents the ratio of activities of a kinase to that of a phosphatase.
When χ = 0, the steady state u∗ is a hyperbolic function of σ : u∗ = σ/(1 + σ). When

χ = 1, u∗ = 0 for σ ≤ 1 and 1−1/σ for σ ≥ 1, exhibiting delayed onset. When χ = 2, u∗
1 =

0 is always stable, and when σ ≥ 4, a second stable steady state u∗
2 = (σ +√

σ 2 − 4σ)/(2σ)

appears. u∗
1 and u∗

2 are separated by an unstable u∗
3 = (σ − √

σ 2 − 4σ)/(2σ). See Fig. 6.
The open, driven chemical nature of the PdPC with bistability has been studied in [68]. It

was shown that if the free energy from ATP hydrolysis is below a critical value (this can be

Fig. 6 Steady state(s) of phos-
phorylation-dephosphorylation
cycle (PdPC) with positive
feedback, described by the model
in (25). χ = 0,1,2 represent no-,
monomeric, and dimeric
activations of the kinase,
respectively. Find the equations
for the three curves in the text
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Fig. 7 m = 0 and m = 1 represent the unbound and bound state of the single copy of DNA (gene). � denote
the copy of free TF. Monomeric TF binds DNA with on-rate constant h and off-rate constant f . Binding
reduces the copy number of free TF by 1 (χ = 1). TF biosynthesis rate is g1 and g0 when the gene is bound
and unbound, respectively. TF degradation rate is k

accomplished by either decreasing ATP concentration or increasing ADP/Pi concentrations),
then the bistability disappears all together. Biochemical variations can only be maintained
with an energy expenditure and free energy dissipation.

3.3 Stochastic Dynamics According to the CME

The theory in Sect. 2.2 indicates that for systems with nonlinear, deterministic bistability,
the CME will have its stationary distribution with two peaks located precisely at the two
fixed points; there are two stochastic attractors.

However, it comes as a surprise that the CME of a self-regulating gene network, with
a monomeric repressor (g0 > g1, χ = 1), also exhibits bimodal stationary distribution
[64, 65]. This is not expected from (17), as illustrated in Figs. 3A and 4. In a similar vein,
it has also been discovered that PdPC with feedback, even for χ = 1 and g0 = 0, can have
bimodality [69, 72]. This phenomenon has been called noise-induced bistability.

It turns out, this type of stochastic bistability (to be distinguished from the nonlinear
bistability) is a small copy number effect. In fact, for the self-regulating gene network in a
single cell, there is only one copy of the DNA [64, 65]! In the PdPC system studied, the
copy number is also small, about 30 [69]. The stochastic bistability is intimately related to
the extinction phenomenon [69, 73].

Stochastic Bistability with Slow Fluctuations Stochastic bistability can be best understood
in the single-molecule context with slow fluctuations [73, 74]. Consider the CME for kinetic
scheme in (16) and assuming only a single copy of the DNA, then one has the detailed
kinetics on a lattice, m = 0,1 and � = 0,1,2, . . . , in Fig. 7.

If the rates h and f are sufficiently smaller than g’s and k, then one has a quasi-stationary
Poisson distribution along each line in Fig. 7:

p(�|m = 0) = 1

�!
(g0

k

)�

e−g0/k, p(�|m = 1) = 1

�!
(g1

k

)�

e−g1/k. (26)

The transition rate from m = 0 to m = 1 is given as the average

h = h

∞∑
�=0

� p(�|m = 0) = hg0

k
. (27)

Then the stationary distribution is

pss(�,m) = p(�|m)p(m) =
⎧⎨⎩

f k

f k+hg0

1
�!

(
g0
k

)�
e−g0/k, m = 0;

hg0
f k+hg0

1
�!

(
g1
k

)�
e−g1/k, m = 1.

(28)
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Therefore, if the peak on the m = 1 line, g1/k, and the peak on the m = 0 line, g0/k, are well
separated, then the marginal distribution pss(�) will have two peaks. This is the stochastic
bistability due to slow, non-adiabatic gene regulation.

Adiabatic Limit We now consider the case when the rates h and f are much greater than
g’s and k [65, 74]. We can obtain a quasi-stationary distribution between m = 0 and m = 1
for each and every �. We shall now denote the total copy number of TF by �, so the labels
along the two lines in Fig. 7 match:

p(m = 0|�) = f

�h + f
, p(m = 1|�) = �h

�h + f
. (29)

Then the kinetics are simplified into a 1-dimensional birth-and-death process with birth and
death rates

b� = fg0 + �hg1

f + �h
, d�+1 = (f + �h)(� + 1)k

f + (� + 1)h
. (30)

The marginal stationary distribution for the copy number of total TF is

pss(�) = C

�∏
i=1

bi−1

di

= C

�∏
i=1

[fg0 + (i − 1)hg1][f + ih]
i[f + (i − 1)h]2k

, (31)

where C is a normalization factor. We note that

b� − d� = fg0 + �(hg1 − f k + hk) − �2hk

f + �h
. (32)

The numerator of (32) is only a quadratic function of �. When � = 0 it is positive and when
� = ±∞ it is negative. Therefore, it has only a single zero for positive �. The distribution
pss(�) in (31) can only have a single peak for � > 0. This result agrees with that from the
deterministic kinetics. However, because of the discrete nature of �, the pss(�) can also peak
at � = 0 [69]. The condition for this is pss(0)/pss(1) = d1/b0 > 1. That is,(

f

f + h

)
k

g0
> 1. (33)

In fact, if g0 = 0, then the system has an absorbing state at � = m = 0. Therefore, the sto-
chastic bistability is the “ghost” of the extinction phenomenon.

Mathematically, we note that the χ = 1 case has a quadratic nonlinearity and the χ = 2
case has a cubic nonlinearity. This distinction, leading to stochastic bistability and nonlinear
bistability respectively, has been discussed in the context of PdPC with feedback in [69].

Transition Rate Volume Dependence as an Indicator for Bistability Mechanism How can
one determine whether the bistability in a mesoscopic system is stochastic in nature or non-
linear in nature? We suggest that the volume-dependence of exit rates can be used as an
indicator. By increasing volume and numbers of molecules but keeping their concentrations
invariant, stochastic bistability disappears while nonlinear bistability intensifies. As a func-
tion of the system’s size, the two types of bistability behave differently in a fundamental
way.

In thermodynamics, one investigates the mechanism of chemical and biochemical re-
actions (e.g., protein folding) by measuring reaction rates as functions of temperature and
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plotting the so-called Arrhenius plot with activation enthalpy. The widely practiced ap-
proach does not mean one is interested in a chemical reaction in high temperature or low
temperature, per se. Rather it is understood that temperature dependence provides insights
into the mechanism of a reaction: Is it entropic or enthalpic driven?

An analogue exists for the case of volume dependence of the transition rates between two
stochastic attractors: The rates increase for nonlinear bistability but decrease for stochastic
bistability when the volume decreases.

4 Nonequilibrium Statistical Thermodynamics

We now turn our attention to thermodynamics. Afterall, the initial motivation of statistical
physics is to understand thermodynamics from a molecular perspective in terms of the the-
ory of probability. We now have a probabilistic, stochastic description of the dynamics of
open, driven biochemical reaction systems. Is there an overarching nonequilibrium thermo-
dynamics?

The answer is “yes”. Recently, it becomes known that there is a completely statistical
thermodynamics for Markovian dynamics based on a master equation [19, 75–79]. Ther-
modynamics, it turns out, is a general mathematical law of any Markovian dynamics. The
thermodynamics of molecular systems discovered in thermal physics is simply one special
example.

The Mathematical Theory of Thermodynamics Let us consider a master equation

dpi

dt
=

N∑
j=1

(
pjqji − piqij

)
. (34)

As we have discussed, one needs to assume that qij �= 0 iff qji �= 0 for any i, j in order to be
able to study thermodynamics. For simplicity, we further assume the Markovian system is
irreducible. Hence, it has a unique, positive stationary distribution we shall denote by {πi}:

N∑
j=1

(
πjqji − πiqij

) = 0, πi > 0. (35)

Two thermodynamic quantities will be investigated [19]: The Gibbs entropy

S(t) = −
N∑

i=1

pi(t) lnpi(t), (36)

and the Gibbs free energy

F(t) =
N∑

i=1

pi(t) ln

(
pi(t)

πi

)
. (37)

Applying the chain rule, one has

dS(t)

dt
= ep − hd,

dF (t)

dt
= −fd, (38)
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where the entropy production rate ep , heat dissipation rate hd , and free energy dissipation
rate fd are

ep = 1

2

∑
i,j

(
piqij − pjqji

)
ln

(
piqij

pjqji

)
, (39)

hd = 1

2

∑
i,j

(
piqij − pjqji

)
ln

(
qij

qji

)
, (40)

fd = 1

2

∑
i,j

(
piqij − pjqji

)
ln

(
piπj

pjπi

)
. (41)

One can mathematically show that

S(t) ≥ 0, F (t) ≥ 0, ep(t) ≥ 0, and fd(t) ≥ 0. (42)

More importantly, one can define the so called house keeping heat, originally introduced
by Oono and Paniconi [80] in a phenomenological NESS thermodynamics, to quantify the
driving force applied to the system:

Qhk = ep − fd = 1

2

∑
i,j

(
piqij − pjqji

)
ln

(
πiqij

πjqji

)
≥ 0. (43)

It is also non-negative.
The interpretations of these inequalities are clear: Since the hd can be positive and neg-

ative, there is no guarantee that dS/dt ≥ 0. As it was clear to Gibbs, for canonical systems
it is not the entropy that always increases, but it is the free energy that always decrease:
dF/dt ≤ 0.

Furthermore, we have the decomposition of the entropy production rate

ep = fd + Qhk, in which fd ≥ 0 and Qhk ≥ 0. (44)

Now we see that the total time irreversibility, which is characterized by the entropy pro-
duction rate, ep [45], really comes from two different origins: The fd characterizes the
spontaneous relaxation (or organization) to a system’s stationarity. fd = 0 when a sys-
tem reaches its stationary πi . This irreversibility is Boltzmann’s original thesis. However,
Qhk characterizes irreversibility due to sustained driving, or energy pumping, of the sys-
tem out-of-equilibrium. There is a continuous dissipation even in NESS. As we have dis-
cussed in Sect. 2.3, this driving force is characterized by the breakdown of detailed balance:
πqij �= πjqji . When there is no external driving force, Qhk = 0. This irreversibility has long
been Prigogine’s thesis [49]. For systems without detailed balance, spontaneous approach-
ing to stationary distribution πi is a form of self-organization [49, 51, 63].

Systems with Detailed Balance For systems with detailed balance, which is the subject of
classic statistical mechanics, we have the free energy dissipation precisely equal to entropy
production rate: fd = ep . In fact, we see that in this case, lnπi = −Ei is the energy of the
state i (kBT = 1). Then

F =
N∑

i=1

Ei pi − S = 〈E〉 − S. (45)
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We have recovered the fundamental equation of classical thermodynamics. Furthermore, we
see that if πi = constant, i.e., the system’s equilibrium has an equal probability a priori,
then the S(t) = −F(t)+constant, and dS/dt = −dF/dt ≥ 0. This is in fact Boltzmann’s
statistical mechanics for isolated system with microcanonical ensemble. In this case, the
Second Law states “entropy never decreases”.

The Energy of a Stochastic System The foregoing theory seems to suggest that for any
stochastic dynamical system, with or without detailed balance, one can define a “statistical
energy” as Ei = − lnπi . Combined with the discussion on φ0(u) from Sect. 2.2, it seems to
us that Boltzmann’s law, pi = exp(−Ei/kBT ), might be understood backward and used as
a way to introduce a new form of energy: The energy of stochastic systems [75].

Taking the CME as an example. If one takes φo(u) as the energy function, and takes V

as 1/(kBT ), then one has a “partition function”

Z(V ) =
∫

du e−V φ0(u). (46)

One can in fact develop an entire system of “volumodynamics”. It will be interesting to see
whether this line of inquiry leads to any new insights for analyzing the CME or nonequilib-
rium thermodynamics [81].

5 Summary

There are implications to cellular biological systems from the stochastic, nonlinear chemi-
cal dynamics perspective. But at the onset, we shall first stress that the CME theory we have
discussed assumes a spatially homogeneous chemical reaction system. This is certainly not
true for a real biological cell. The CME is a highly idealized model, just as the Ising model
extensively studied in statistical mechanics. While the Ising model and related interacting
particle systems emphasize spatial aspect of a molecular system, the CME emphasizes com-
positional heterogeneity in biological systems.

The significance of the CME is its richness, depth, and sophistication. It endows a full
range of dynamics from the stochastic mesoscopic scale to the deterministic macroscopic
scale, and beyond. It provides insights into the nature of “thermodynamic limit”.

Furthermore, it gives rigorous distinction between closed systems that approach to equi-
librium and open, driven systems that exhibit spontaneous self-organization. It also allows
for studying the relationship between stochastic dynamics and statistical thermodynamics.
In terms of the CME, investigations into elusive ideas such as “energy cost that sustains
complexity (diversity) measured by entropy” becomes possible.

Last, but not the least, the CME offers an understanding of the interaction between non-
linearity and stochasticity in dynamics. There is no doubt that these two elements are central
to many biological processes.

5.1 Emergent Properties of Stochastic Nonlinear Systems

Emergent properties are central to any complex systems and processes [74, 82]. In nonlinear
dynamics, emergent properties manifest themselves as the existence and locations of multi-
ple attractors with fixed points, periodic oscillations, or chaotic motions. Simple dynamics
are associated with gradient systems in which the attractors are known a priori and are deter-
mined locally; every step of the way, the system is closer to the final destiny. A non-gradient
system has no such certainty.
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A stochastic CME with detailed balance has its dynamics essentially following a gradient
of a function. In protein folding dynamics, the energy landscape is the function. In any study
of protein folding dynamics, an energy landscape is always known a priori; and its gradient
field is the cause of the dynamics.

The φ0(u) as a dynamic landscape, however, has a different characteristics. First, it is
non-local. One requires the dynamics to move over the entire possible space many times in
order to establish it. The φ0(u) is a consequence of the dynamics. It is only known retro-
spectively.

Therefore, in this perspective, the very existence of multistability, and the average time
required to move from one attractor to another, are all emergent properties. They are the
results of the complex dynamics of an open biochemical system as a whole under a particular
given environment condition.

Dynamics as a Sequence of Punctuated Equilibria Dynamics of nonlinear, stochastic sys-
tems with multiple attractors possess certain universal features. As we have said in the be-
ginning, stochastic dynamics jumping among stochastic attractors spend most of the time
in waiting. On an evolutionary time scale, the process exhibits a sequence of punctuated
equilibria (see Fig. 1).

Upon a perturbation, a system’s initial response is always a relaxation back to the fixed
point with nearly deterministic dynamics. This occurs rapidly. The system then settles at
the bottom of the attractor with Gaussian fluctuations. Such a state is often mistaken as an
equilibrium. Then in a much longer time scale, the rare event of barrier-crossing leads the
system to another attractor (see Fig. 8).

Protein folding kinetics is well-known to have this generic characteristic: A folded pro-
tein when immersed in a denaturing solvent, first becomes a “dry molten globule” then un-
folds via a thermal activated process; a unfolded protein when immersed in a native solvent,
first becomes a “wet molten globule” then folds by thermal activation [83]. These molten
globules are folded protein in a denaturant and unfolded protein under a native condition,
respectively.

Fig. 8 A schematics showing the generic features of a nonlinear, stochastic dynamical system with multiple
attractors under perturbation: Immediately after the perturbation, the system is likely residing at the slope of
an attractor. Then (1) relaxation occurs and the system returns to its local steady state. At local steady state (2),
the system fluctuates and spends the time in waiting until a rare event of barrier-crossing (3). The rare event
only occurs in the evolution time scale; and when it occurs, the actual transition is nearly instantaneous. A
rare event usually has an exponential waiting time and the process is “memoryless”. This means it occurs
without any indication
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Other much more complex biological processes seem also to exhibit this feature. For
example, the three Es of cancer immunoediting articulate that an immune system counteracts
tumor growth with three main phases: elimination, equilibrium, and escape [84].

5.2 Isogenetic Variations of Biochemical Dynamics

Two cells with identical genomes are called isogenetic. With exactly same chemical envi-
ronment, two isogenetic cells can have very different chemical compositions represented by
different attractors of the nonlinear biochemical dynamics. Note that by the same chemical
environment, we mean a sustained chemical gradient of certain nutrients and their metabo-
lites. With the same chemical potential, however, the two cells can have different nutrient
influx. Applying this idea specifically to the biochemical network responsible for gene tran-
scriptional regulation, one can easily understand the origin of isogenetic variations in gene
expression [60, 85, 86].

There are growing experimental observations on the multiple steady states of a cell pop-
ulation. The multiple-state nature is most convincing when a cell population is in the middle
of a transition: Two peaks with comparable size rather than one can be observed. For ex-
ample, in Xenopus oocyte maturation induced by hormone progesterone, it had been known
that progesterone treatment leads to an increase in the phosphorylation of mitogen-activated
protein kinase (MAPK). Ferrell and Machleder [87] have shown, however, that the level
of MAPK phosphorylation in an isogenetic Xenopus oocyte population has a bimodal dis-
tribution. Furthermore, the relative heights of the two peaks change but their locations are
invariant with the increasing progesterone. This is the hallmark of a bistable (also known as
two-state, and all-or-none) system under external perturbation.

Similarly, Buckmaster et al. [88], using Raman spectrum as an indicator for DNA frag-
mentation, observed a shift in a bimodal distribution during the apoptosis of DAOY cell line
(human brain tumor medulloblatoma) induced by etoposide, a topoisomerase II inhibitor.

Also in cell line U2OS, a human osteosarcoma, Xu et al. [89] observed a bimodal distri-
bution in the intensity of fluorescein labeled FITC-Annexin V, a protein that preferentially
binds to negatively charged phosphatidylserine (PS). Cell apoptosis involves changes on its
surface with the exposure of PS. Upon irradiation, which induced DNA damage and apop-
tosis in U2OS cells, Xu et al. reported a shift in the relative heights of the two peaks. The
shift is intensified with the presence of PDCD5 (programed cell death 5) protein, which is
known to facilitate apoptosis. Again, the apoptotic process changes the heights of the two
peaks without changing their locations.

Cancer cells are well known to be genomically very unstable and heterogeneous; it is
not known to us whether these tumor cell lines are truly isogenetic. Still, assuming somatic
mutations are rare, these observations strongly suggest nonlinear biochemical multistability
in tumor cells.

It is interesting to note that in the 1970s, the field of protein folding had gone through a
similar stage in demonstrating the two-state nature of protein folding kinetics [90]. The his-
tory of protein science can shed some light on the current development of cellular dynamics.

5.3 Inheritability of Nonlinear Chemical Attractors

DNA in terms of Watson-Crick base-pairing has been considered the only mechanism for
inheritability. However, a biochemical system residing in a nonlinear attractor can also be
“inherited” via cell growth and division. The CME predicts that the concentrations of the
biochemical species are invariant, not their copy numbers. Therefore, if a cell has an au-
tonomous mechanism for increasing its aqueous volume, all the copy numbers will follow
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by keeping the concentrations at the steady state. This process is self-organizing and robust.
Cell division also maintains the concentrations for both daughter cells. By this mechanism,
two isogenetic cells in different biochemical attractors that far apart will go through “growth
and division” with their respective chemical compositions inherited.

Finally, we shall also emphasize that the existence and locations of the stochastic attrac-
tors of a nonlinear biochemical system are dependent upon the environmental biochemical
conditions. Therefore, “mutations” occur upon “environmental” changes in the chemical
context. This possibility provides further insights into the debate on spontaneous versus
adaptive mutations at the cellular biochemical systems level [91–93]. Still, whether and
how such “feedback loops” in cellular evolution leading to genomic innovation is the next
stage of the “plausibility of life”.
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Abstract: We develop the stochastic, chemical master equation as a unifying approach
to the dynamics of biochemical reaction systems in a mesoscopic volume under a
living environment. A living environment provides a continuous chemical energy input
that sustains the reaction system in a nonequilibrium steady state with concentration
fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics,
phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting
oscillations. Emphasis is paid to the comparison between the stochastic dynamics and
the prediction based on the traditional approach based on the Law of Mass Action. We
introduce the difference between nonlinear bistability and stochastic bistability, the latter
has no deterministic counterpart. For systems with nonlinear bistability, there are three
different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics
approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size
of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly
deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network;
We suggest that the (c) is most relevant to major cellular biochemical processes such
as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution
proceeds with transitions among the attractors of (b) in a “punctuated equilibrium” manner.
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1. Introduction

Quantitative modelling in terms of mathematical equations is the foundation of modern physical
sciences. If one deals with mechanical motions or electromagentic issues of daily lives, he/she starts with
Newton’s Second Law or Maxwell’s equations, respectively. For work on the subatomic and molecular
level, we have the quantum mechanics of Heisenberg and Schrödinger for the small things, and Gibbs’
statistical mechanics for large collections of particles. The last theory on the list, Gibbs’ statistical
thermodynamics, has been the foundation of molecular science [1]. Its applications to biological
macromolecules have laid the groundwork for molecular biology [2,3].

However, it has long been recognized that Gibbs’ theory can not be applied to a system outside
chemical equilibrium. In this case, and when the deviations from an equilibrium are linear, Onsager’s
theory provides the unifying approach known as linear irreversible thermodynamics. However, cellular
biologists have long been aware of that most living processes are not near an equilibrium, but far from
it. This begs an answer to the question: What is the theory one should use in modelling a biochemical
reaction system in its living environment?

1.1. The Chemical Master Equation (CME)

Both Gibbs’ and Onsager’s work have pointed to a new type of mathematics: random variables
and stochastic processes. Gibbs’ thermodynamic quantities with thermal fluctuations are random
variables, and Onsager has used extensively Gaussian-Markov processes to describe the dynamics near
an equilibrium [4,5]. This approach can be traced back to the earlier work of Einstein on Brownian
motion and Smoluchowski on diffusion.

Quantitative modelling in chemical engineering has been based on the Law of Mass Action [6]. The
applications of this theory to enzyme kinetics gives rise to the entire kinetic modelling of biochemical
reactions for individual enzymes [7] and for enzymatic reaction systems [8]. However, the theory based
on the Law of Mass Action considers no fluctuations so it sits in an odd position with respect to the more
general theories of Gibbs and Onsager. It does have its strength though, it is a fully dynamic theory,
while the Gibbs’ is not, and it can be applied to system beyond Onsager’s linear irreversibility.

Is there a theory which can embody all the above mentioned theories? It is clear that such a theory,
even very imperfect, can provide great insights into the working of biochemical reaction systems in their
living environment. While a consensus has not been reached, the recent rapid rise of applications of the
Gillespie algorithm seems to suggest an interesting possibility.

It might be a surprise to some, but the Gillespie algorithm (GA) is really an equation that perscribes
the dynamic trajectory of a stochastic process. Mathematical equations can come in many different
forms: differential equations for continuous variables changing with time, stochastic differential
equations (SDE) for the trajectories of continuous random variables changing with time, and the GA
is simply the equation for the trajectory of discrete random variables changing with time. For a random
variable changing with time one can either characterize it by its stochastic trajectories, as by the SDE
and the GA, or one can characterize its probability distribution as a function of time. The corresponding
equation for the SDE is the well-known Fokker-Planck equation, and the corresponding equation for the
GA is called the chemical master equation (CME).
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It has been mathematically shown that the CME approach is the mesoscopic version of the Law of
Mass Action [8]. It is not a competing theory to the Law of Mass Action, rather, it extends the latter to
the mesoscopic chemistry and biochemistry.

We do not expect our readers to have a background in the CME. For a quick introduction see
Appendix. In particular, one should learn to draw the chemical master equation graph. See Chapter
11 of [8] and a more recent [9] for more on the CME. Discussions on the GA can be found in [10].

In this article, we shall follow the CME approach to study biochemical reaction networks. We are
particularly interested in such systems situated in a “living envirnment”. It turns out, one of the precise
defining characteristics of the environment is the amount of chemical energy pumped into the system –
similar to the battery in a radio.

1.2. Nonequilibrium Steady State (NESS)

While the CME approach is a new methodological advance in modelling open (driven) biochemical
systems, a new concept also arises from recent studies on open (driven) biochemical systems: the
nonequilibrium steady state (NESS) as a mathematical abstraction of biochemical homeostasis. In terms
of the CME approach to mesoscopic chemical and biochemical reaction systems there are three, and
only three, types of dynamics [11]:

(1) Equilibrium state with fluctuations which is well-understood according to Boltzmann’s law, and
the theories of Gibbs, Einstein, and Onsager.

(2) Time-dependent, transient processes in which systems are changing with time. In the past,
this type of problems is often called “nonequilibrium problems”. As all experimentalists and
computational modellers know, time-dependent kinetic experiments are very difficult to perform,
and time-dependent equations are very difficult to analyze.

(3) Nonequilibrium steady state: The system is no longer changing with time in a statistical sense,
i.e., all the probability distributions are stationary; nevertheless, the system is not at equilibrium.
The systems fluctuate, but the fluctuations do not obey Boltzmann’s law. Such a system only eixsts
when it is driven by a sustained chemical energy input. Complex deterministic dynamics discussed
in the past, such as chemical bistability and oscillations, are all macroscopic limit of such systems.

To a first-order approximation, one can represent a biochemical cell or a subcellular network in
homeostasis as a NESS. This is the theory being put forward by I. Prigogine, G. Nicolis and their
Brussels group [12]. The NESS theory has recently gone through major development in terms of the
fluctuation theorem in statistical physics, especially the stochastic version of J. Kurchan, J.L. Lebowitz
and H. Spohn [13,14], and irreversible Markov processes in mathematics [15](A deep mathematical
result shows that the arrow of time is a sufficient and necessary condition for the positiveness of an
appropriately defined entropy production rate.). The theory of NESS also has enjoyed great appreciation
through works on molecular motors [16,17].

To have a better understanding of the nature of a NESS, we list three key characteristics of a system
in equilibrium steady state: First, there is no flux in each and every reaction. This is known as the
principle of detailed balance [18]. Second, the system is time-reversible. One can play a “recording
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tape” of the system backward and will find it is statistically equivalent; There is no arrow of time [15].
The logical conseqeunce of the above statements is that any process occurred in an equilibrium system
will have equal probability to run backward. Hence nothing can be accomplished. There is no energy
transduction, and there is no signal processing.

For more discussions on NESS and its applications to biochemical systems and modelling, the readers
are referred to [19,20].

2. The Chemical Master Equation and Its Applications to Kinetics of Isolated Enzyme

Since enzyme kinetics is the workhorse of biochemical reaction networks, let us start with the CME
approach to the standard Michaelis-Menten (MM) enzyme reaction scheme:

E + S
k1


k−1

ES
k2−→ E + P (1)

In the CME approach to chemical and biochemical kinetics, one no longer asks what are the
concentrations of E, S, ES and P , but instead, what is the probability of the system having m number
of S and n number of ES: p(m,n, t) = Pr{NS(t) = m,NES(t) = n} where NS(t) and NES are the
non-negative integer valued random variables, the number of S and ES. As functions of time, both are
stochastic processes.

Assuming that the total number of substrate and product molecules ism0 = NS(t)+NP (t)+NES(t),
and total number of enzyme molecules is n0 = NE(t) + NES(t), we have the CME (See Section 4 for
the details to obtain the equation.)

dp(m,n, t)

dt
= −

(
k̂1m(n0 − n) + k̂−1n+ k̂2n

)
p(m,n, t)

+k̂1(m+ 1)(n0 − n+ 1)p(m+ 1, n− 1, t) (2)

+k̂−1(n+ 1)p(m− 1, n+ 1, t) (0 ≤ m ≤ m0, 0 ≤ n ≤ n0)

+k̂2(n+ 1)p(m,n+ 1, t)

There are three reactions in the kinetic scheme (1), hence there are six terms, three positive and three
negative, in the CME (2). Note that the k̂’s in the above equation are related, but not the same as the rate
constants k’s in Equation (1). The latter is concentration based, and the former is number based:

k̂1 =
k1

V
, k̂−1 = k−1, k̂2 = k2 (3)

2.1. Quasi-stationary approximation of the Michaelis-Menten enzyme kinetics

One of the most important results in deterministic enzyme kinetic theory is the quasi-steady state
approximation leading to the well-known Michaelis-Menten equation for the production of the product
in Equation (1):

d[S]

dt
= −d[P ]

dt
= − k1k2[S]Et

k−1 + k2 + k1[S]
(4)

where Et is the total enzyme concentration. We shall now carry out a parallel analysis for the CME (2).
As pointed out by Kepler and Elston [21], Rao and Arkin [22], and by Qian [16], the quasi-stationary

approximation is best cast in terms of the conditional probability. If the dynamics in Equation (2) is such
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that the changes in n can reach stationarity first, due to n0 � m0, then one can first solve the problem of
steady state conditional distribution p(n|m), then using this to solve the p(m, t). This is done as follows.

In the first step, on a fast time scale for fixed m, the Equation (2) can be written as

dp(n, t|m)

dt
= −

(
k̂1m(n0 − n) + k̂−1n+ k̂2n

)
p(n, t|m)

+k̂1(m+ 1)(n0 − n+ 1)p(n− 1, t|m) (5)

+(k̂−1 + k̂2)(n+ 1)p(n+ 1, t|m) (0 ≤ m ≤ m0, 0 ≤ n ≤ n0)

Here we assumed m− 1 ≈ m. This immdiate gives us the conditional stationary state distribution for n:

pss(n|m) =
n0!

n!(n0 − n)!

(k̂−1 + k̂2)n0−n(k̂1m)n

(k̂−1 + k̂2 + k̂1m)n0

(0 ≤ n ≤ n0) (6)

which yields a mean value for n, with given m:

〈n〉(m) =

n0∑
n=0

npss(n|m) =
k̂1mn0

k̂−1 + k̂2 + k̂1m
(7)

This result agrees exactly with the deterministic model.
Now the second step, let us sum over all the n for the Equation (2). With∑

n

p(m,n, t) = p(m, t) and p(m,n, t) ≈ p(m, t)pss(n|m)

we have
dp(m, t)

dt
= −

(
k̂1m(n0 − 〈n〉(m)) + k̂−1〈n〉(m)

)
p(m, t)

+k̂1(m+ 1)(n0 − 〈n〉(m+ 1))p(m+ 1, t) (8)

+k̂−1〈n〉(m− 1)p(m− 1, t) (0 ≤ m ≤ m0, 0 ≤ n ≤ n0)

Equation (8) is the result of a quasi-statioanry approximation. It should be compared with the
deterministic equation (4). It can be graphically represented as in Figure 1.

Figure 1. Through quasi-statioanry approximation, the CME in Equation (2), represented
by the two-dimensional graph in Figure 6, is reduced to the one-dimensional system shown
here. The corresponding master equation is shown in Equation (8).

m− 1 m m + 1-�-�

k̂−1k̂1mn0

k̂−1+k̂2+k̂1m

k̂1(k̂−1+k̂2)(m+1)n0

k̂−1+k̂2+k̂1(m+1)

k̂−1k̂1(m−1)n0

k̂−1+k̂2+k̂1(m−1)

k̂1(k̂−1+k̂2)mn0

k̂−1+k̂2+k̂1m

We see that at any given time, S can increase or decrease by one. The decrease of one S is from either
ES → E + P or ES → E + S, with probability k̂2

k̂−1+k̂2
and k̂−1

k̂−1+k̂2
, respectively. Hence, the number of

P will increase, at any given time, with the rate of

k̂1k̂2mn0

k̂−1 + k̂2 + k̂1m
(9)
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This is exactly the CME version of Equation (4) [22]. The result shows that the waiting time between
consecutive arrivial of P is exponentially distributed. This surprising result can be best understood from
a mathematical theorem on the superposition of N identical, independent renewal processes [23]. For a
more mathematical discussion on the subject, see [24].

Even when the number of enzymes is not large, the product arrival time distribution contains no
information more than the traditional Michaelis-Menten rate constant. However, this is not the case if
there is truly only a single enzyme. This will be discussed below.

2.2. Single-Molecule Michaelis-Menten Enzyme Kinetics

Now in Equation (2), let us consider n0 = 1. Then the equation is reduced to

dp(m, 0, t)

dt
= −k̂1mp(m, 0) + k̂−1p(m− 1, 1) + k̂2p(m, 1) (10a)

dp(m, 1, t)

dt
= −

(
k̂−1 + k̂2

)
p(m, 1) + k̂1(m+ 1)p(m+ 1, 0) (10b)

This is the CME for a single molecule enzyme kinetics according to the MM in Equation (1). Often,
one is only interested in the conformational states of the enzyme:

pE(t) =

m0∑
m=0

p(m, 0, t), pES(t) =

m0∑
m=0

p(m, 1, t)

Carry out the summation on the both sides of Equation (10), we have

dpE(t)

dt
= −k̂1〈NS〉pE(t) +

(
k̂−1 + k̂2

)
pES(t) (11a)

dpES(t)

dt
= −

(
k̂−1 + k̂2

)
pES(t) + k̂1〈NS〉pE(t) (11b)

where

〈NS〉 =

∑m0

m=0mp(m, 0, t)∑m0

m=0 p(m, 0, t)
, k̂1〈NS〉 = k1cS (12)

cS is the concentration of S. Equation (11) is the stochastic model for a single enzyme molecule
dynamics.

The steady state probability for the single enzyme can be easily obtained from Equation (11):

pssE =
k−1 + k2

k1cS + k−1 + k2

, pssES =
k1cS

k1cS + k−1 + k2

(13)

Then the steady state single enzyme turnover flux is

Jss = k2p
ss
ES =

k1k2cS
k1cS + k−1 + k2

=
VmaxcS
KM + cS

(14)

with kM = K−1+k2
k1

and Vmax = k2. The last expression is precisely the Michaelis-Menten formula.
The single enzyme steady-state flux Jss is exactly the inverse of the mean time duration between two

product arrivials. The time perspective is natural for single-molecule measurements on enzyme turnover
[23]. Not only one can obtain the mean time duration, one can also, according to the stochastic model in
Equation (11), compute the probability density function (pdf) of the time duration between two product
arrivals. The pdf is exponentially distributed if there is a single rate-limiting step with in the enzyme
cycle. In general, however, it is not exponentially distributed.
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2.3. Driven Enzyme Kinetics

We now consider an enzyme kinetic scheme that is a little more complex than that in Equation (1):

E + S
k1


k−1

ES
k2


k−2

EP
k3


k−3

E + P (15)

With concentrations cS and cP for S and P being constant, as many cases in a living cell under
homeostasis, we have the steady state single enzyme turnover flux

Jss =
k1k2k3cS − k−1k−2k−3cP

k2k3 + k−2k−1 + k3k−1 + (k1k2 + k1k−2 + k3k1) cS + (k−1k−3 + k2k−3 + k−3k−2) cP
(16)

The origin of this flux is the non-equilibrium between the chemical potentials of S and P :

∆µ = µS − µP = µoS + kBT ln cS − µoP − kBT ln cP = kBT ln
k1k2k3cS

k−1k−2k−3cP
(17)

We see that when ∆µ > 0, Jss > 0, when ∆µ < 0, Jss < 0, and when ∆µ = 0, Jss = 0. In fact, the
product ∆µ× Jss is the amount of chemical energy input to the single enzyme. If the enzyme does not
do any mechanical work such as a motor protein, then all this energy becomes heat and dissipated into
the aqueous solution in which the enzymatic reaction occurs.

Let us see an example of Jss as function of ∆µ, for ki = λ, k−i = 1, i = 1, 2, 3, and cP = 1 while
changing the cS:

Jss =
λ3cS − 1

(3 + 2λ+ λ2) + (1 + 2λ)λcS
=

λ2
(
e∆µ/kBT − 1

)
(3 + 2λ+ λ2)λ2 + (1 + 2λ)e∆µ/kBT

(18)

Figure 2A shows several curves. We see that their relationship is not linear over the entire range of
∆µ. Only when the ∆µ is very small, there is a linear region Jss = ∆µ/kBT (λ4 + 2λ3 + 3λ2 + 2λ+ 1).
This is the region where Onsager’s theory applies. In fact, the linear coefficient between ∆µ and Jss is
precisely the one-way flux in the equilibrium. To show this, we note from Equations (16) and (17) that
Jss = J+ − J− and ∆µ = kBT ln(J+/J−). Then, when Jss � J−, we have

Jss = J+ − J− = J−
(
e∆µ/kBT − 1

)
=

J−

kBT
∆µ (19)

Note that in equilibrium, J+ = J−. The last equation is known as detailed balance, which plays a
central role in Onsager’s theory.

Therefore, the simple enzyme kinetics is not in the region with linear irreversibility. Onsager’s theory
does not apply. Interestingly, we also note that the nonlinear curves in Figure 2A very much resemble
the curret-voltage characteristics of a semiconductant diode. It will be interesting to further explore the
similarities between driven biochemical and electronic systems [25].
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Figure 2. Simple enzyme kinetic system in Equation (15) exhibits nonlinear flux
(Jss)-potential (∆µ) realtion and oscillatory behavior. The parameters used: k1 = k2 = k3 =

λ, k−1 = k−2 = k−3 = 1, and cP = 1. (A) The steady state flux Jss is given in Equation
(18), and the chemical potential ∆µ is given by Equation (17): ∆µ/kBT = ln(λ3cS). Each
curve is obtained by fixed λ, as indicated, with varying cS . (B) The region of parameter
values for λ and cS in which there are complex eigenvalues is given in Equation (20). The
dashed line represents the equilibrium ceqS , which is outside the oscillatory region.

2.4. Far from Equilibrium and Enzyme Oscillations

In fact, one of the most important results in Onsager’s linear theory is the reciprocal relations [26,27]
which, based on the principle of detailed balance, dictates certain symmetry in the kinetics. One of the
consequences of this symmetry is that chemical kinetics near equilibrium can not oscillate. Oscillatory
kinetics are associated with the complex eigenvalues of the kinetics system. For the scheme in Equation
(15), the imaginary component of its eigenvalues is

√
4∆− Λ2, where

Λ = k1cS + k2 + k3 + k−1 + k−2 + k−3cP

∆ = k2k3 + k−2k−1 + k3k−1 + (k1k2 + k1k−2 + k3k1) cS + (k−1k−3 + k2k−3 + k−3k−2) cP

To see an example, let us again consider k1 = k2 = k3 = λ, and k−1 = k−2 = k−3 = 1, and cP = 1.
Then √

4∆− Λ2 =
√

(3− 4λ) + 2λ(2λ− 1)cS − λ2c2
S

The oscillations exist for

1

λ
< cS <

4λ− 3

λ
, when λ > 1 and

4λ− 3

λ
< cS <

1

λ
when λ < 1 (20)

We see from Figure 2B that in general the cS has to be sufficiently far away from its equilibrium
value in order to have the oscillation. Chemical and biochemical oscillation is a far-from-equilibrium
phenomenon [28,29].
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3. The CME Approach to Nonlinear Biochemical Networks in Living Environment

In a living cell, one of the most important, small biochemical regulatory networks is the
phosphorylation-dephosphorylation cycle (PdPC) of an enzyme, first discovered by E.H. Fischer and
E.G. Krebs in 1950s. It consists of only three players: a substrate enzyme, a kinase and a phosphatase.
The phosphorylation of the substrate protein E, ATP + E

k1−→ ADP + E∗, is catalyzed by the kinase
K, and its dephosphorylation E∗ k2−→ E + Pi is catalyzed by the phosphatase P . Even though it is
traditionally called reversible chemical modification, one should note that these two steps are different
chemical reactions. In fact, a kinase should also catalyze the reaction ADP + E∗

k−1−→ ATP + E, as
should the phosphatase for E + Pi

k−2−→ E∗. These latter two reactions are simply too slow, even in
the presense of the respective enzymes, to be noticed, but they definitely can not be zero. The proof
is that the complete of a PdPC is the hydrolysis of a single ATP to ADP + Pi. This reaction has an
equilibrium constant of 4.9× 105 M [30], which means

k1k2

k−1k−2

= KATP = 4.9× 105 (21)

3.1. Phosphorylation-Dephosphorylation Cycle with Autocatalysis: A Positive Feedback Loop

Many kinase itself can exist in two different forms: an inactive state and an active state. Furthermore,
the conversion from the former to the latter involves the binding of the E∗, sometime one, sometime two.
Hence, we have [31–33]:

K + χE∗
Ka


 K‡ (22)

where χ = 1, 2. We shall call χ = 1 first-order autocatalysis and χ = 2 second-order autocatalysis.
Therefore, if the conversion is rapid, then the active kinase concentration is [K‡] = Ka[K][E∗]χ. Now
combining the reaction in Equation (22) with the PdPC, such a mechanism is called autocatalysis: more
E∗ is made, more K‡, which in turn to make more E∗. Quantitatively, the rate of phosphorylation
reaction catalyzed by the active kinase is:

d[E∗]

dt
= k1[ATP ][K‡][E] = k1[ATP ]Ka[K][E∗]χ[E] (23)

where [X] denotes the concentration of biochemical species X . Note, however, that the same kinase K‡

also catalyzed the reverse reaction of the phosphorylation. Hence, to be more realistic, we have

d[E∗]

dt
= Ka[K][E∗]χ (k1[ATP ][E]− k−1[ADP ][E∗])

= α[E∗]χ[E]− β[E∗]χ+1 (24)

in which
α = k1Ka[ATP ][K] and β = k−1Ka[ADP ][K]

contains the concentration of ATP and ADP respectively. Equation (24) is the kinetic equation for the
phosphorylation reaction catalyzed by a kinase which is activated by binding χ number of E∗.
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Figure 3 shows four, with subtle differences, PdPC with such a positive feedback loop. Biochemical
examples of this type of regulation are MPAK pathway [31], Src Family kinase pathway [32], and
Rabaptin-5 mediated Rab5 activation in endocytosis [33]. We shall now establish the appropriate kinetic
equations for each of these nonlinear biochemical networks.

Figure 3. An assorted variations of the PdPC with autocatalytic feedback. The
phosphorylation of the substrate E to E∗ is catalyzed by an active form of the kinase K‡,
and the dephosphorylation is catalyzed by a phosphatase (P ). The activation of the kinase
involves the binding ofK toE∗. In (A) and (B) the autocatalysis is first order: K+E∗ 
 K‡;
In (C) and (D), it is second order: K + 2E∗ 
 K‡. The nonlinear feedback in the latter is
stronger; thus they exhibit more pronounced nonlinear behavior: bistability and limit cycle
oscillation.

3.2. Stochastic Bistability in PdPC with First-Order Autocatalysis

For the kinetic scheme in Figure 3A, we have χ = 1 and

dx

dt
= αx(xt − x)− βx2 − εx+ δ(xt − x) (25)

here we use x to denote the [E∗], xt = [E] + [E∗]. In the equation

ε = k2[P ] and δ = k−2[P ][Pi]

represent the rates for the dephosphorylation and the rate for its reverse reaction, respectively. Both are
catalyzed by the enzyme phosphatase P . For simplicity, we assume both kinase and phosphatase are
operating in their linear region.

Bishop and Qian [34] have carefully studied Equation (25). While this model is very simple, the
issues arise from the model are important, and have not been widely discussed. It is well-known, and as
we shall discuss in Section 3.4, nonlinear open chemical and biochemical reaction systems can exhibit
bistability, which plays a crucial role in cellular genetic [35] and signal regulations [20,36]. In fact, it
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has been argued that bistability is one of the key origins that generate complex dynamic behavior [37].
Bistable chemical reaction systems have been extensively studied in the past [38]. In fact, it is relatively
easy to theoretically construct reaction schemes that show bistability and bifurcation. Since bistability
mathematically means two stable and one unstable fixed points in the positive quardrant, it is easy to
show, according to the Law of Mass Action, that a tri-molecular reaction (as a reduced mechanism for
multisteps of bimolecular reactions) is necessay.

In [34], however, we discovered a simpler bi-molecular chemical reaction system that possibly
exhibits “bistability”. The bistability is in quotation marks since the mechanism is very different from
that in traditional nonlinear reactions. The system is modelled in terms of a CME, and the bistability and
(saddle-node) bifurcation are purely stochastic phenomenon. They only occur in reaction systems with
small volume and small number of molecules.

3.2.1. Deterministic Kinetics of PdPC with First-Order Autocatalysis and Delayed Onset

Let y be the concentration ratio of x/xt, the fraction of the substrate enzyme in the phosphorylated
state. Also introduce nondimensional variables and parameters

τ = (α + β)xtt, a1 =
αxt − ε− δ
(α + β)xt

, a0 =
δ

(α + β)xt

then Equation (25) can be simplified as

dy

dτ
= −y2 + a1y + a0 (26)

Let

λ1,2 =
a1 ±

√
a2

1 + 4a0

2
(27)

and λ1 be the one of the two roots ∈ (0, 1). Since λ1λ2 = −a0 < 0, λ2 < 0

The solution to Equation (26) is

x(τ) =
λ1(xo − λ2)− λ2(xo − λ1)e(−λ1+λ2)τ

(xo − λ2)− (xo − λ1)e(−λ1+λ2)τ
(28)

in which xo = x(0), x(∞) = λ1

If both phosphorylation and dephosphorylation reactions are irreversible, as usually assumed in
cell biology (When considering kinetics, but not thermodynamics, this is indeed valid for large ATP
hydrolysis free energy in a living cell), then the reaction is simplified to

E∗ + E
α−→ E∗ + E∗, E∗

ε−→ E (29)

where α and ε are proportional the the kinase and phosphatase activity, respectively. The differential
equation in Equation (25) is simplified to

dy

dt
= αxty(1− y)− εy (30)

Its steady state exhibits a transcritical bifurcation as a function of the activation signal, θ = αxt/ε:

y =

 0 0 ≤ θ ≤ 1

1− 1
θ

θ ≥ 1
(31)
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Compared with the hypobolic activation curve θ
1+θ

, Equation (31) exhibits “delayed onset” of
activation [33,39]. See Figure 4. Note the curve (31) is an extreme version of a sigmoidal shape. It
has a response coefficient of 9, and a Hill’s coefficient of 2. Recall that the response coefficient is
defined as θ0.9/θ0.1, where y(θ0.9) = 0.9 and y(θ0.1) = 0.1.

Figure 4. Activation curves of PdPC with or without autocatalytic phosphorylation E +

χ E∗ → E∗ + χE∗ and dephosphorylation E∗ → E. Curve with χ = 0 is the standard
hyperbolic activation without feeback: y = θ

1+θ
. Curve with χ = 1 is for the PdPC with

first-order autocatalysis, following Equation (31). It exhibits an extreme version of sigmoldal
shape called delayed onset. Curve labelled χ = 2, following Equation (40), is for PdPC with
second-order autocatalysis. It shows bistability when θ > 4, with the dotted branch being
unstable.

It is interesting to point out that the curve in Equation (31), the delayed onset, can be obtained from a
completely different mechanism for PdPC with multiple phosphorylation sites [40]. Assuming that there
is a sequential phosphorylation of cites with rate α and dephosphorylation rate β, and there are totally n
sites. The active form of the substrate enzyme requires full n-sites phosphorylation. Then

y =
θ̂n

1 + θ̂ + θ̂2 + · · · θ̂n
=
θ̂n(1− θ̂)
1− θ̂n+1

(32)

where θ̂ = α/β. One can easily show that if n→∞, the y(θ̂) will be precisely the one in Equation (31).
Both mechanisms lead to the same mathematical expression of the activation curve.

3.2.2. Stochastic Bistability and Bifurcation without Deterministic Counterpart

Consider the first order autocatalytic system from Equation (29), adding the appropriate reverse
reactions such that the system can be considered in a thermodynamic framework, yields

E∗ + E
k′1


k′−1

E∗ + E∗, E∗
k2


k−2

E (33)
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The stochastic model of this system was studied in depth by Bishop and Qian, [34]. The appropriate
CME, where N(t) is the random variable measuring the number of phosphorylated E∗ molecules and
Nt is the total number of kinase molecules, is

dp(n, t)

dt
=− [k1n(Nt − n) + k−1n(n− 1) + k2n+ k−2(Nt − n)] p(n, t) (34)

+ [k1(n− 1)(Nt − n+ 1) + k−2(Nt − n+ 1)] p(n− 1, t)

+ [k−1(n+ 1)n+ k2(n+ 1)] p(n+ 1, t)

where k±1 = k′±1/V .
Solving dp(n,t)

dt
= 0 leads to the steady state distribution

pss(n) = C
n−1∏
j=0

(k1j + k−2)(Nt − j)
(k−1j + k2)(j + 1)

(35)

where C is a normalization constant. For certain parameter regimes this distribution is bimodal where
the bimodality appears as a sudden second peak at zero, Figure (5). This bimodal distribution is related
to traditional deterministic dynamics by considering the peaks of the probability to correspond to stable
steady states, and the troughs to correspond to unstable steady states. Figure (5B) shows how this unique
instance of bi-molecular bistability is related to zero being almost an absorbing state.

Figure 5. (A) The steady state distribution of the number of active kinase, N, from
Equation 35. For certain parameter values the distribution is bimodal with the second peak
appearing at zero. Parameter values are k1 = 5, k−1 = 10, k2 = 10, Nt = 30 and k−2 varied.
(B) Sample trajectory of the fluctuating E∗ in Equation 33 generated using the Gillespie
Algorithm with parameter values, k1 = 5, k−1 = 10, k2 = 10, k−2 = 0.001, Nt = 30. For
each segment of nonzero fluctuations the average was taken and plotted (dashed line). Data
taken from and figure redrawn based on [34].
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Note that this bistability is a purely stochastic phenomenon; it has no deterministic counterpart. The
deterministic model of the same bi-molecular system in Equation (30) and Figure (4) has only a weak
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(quadratic) nonlinearity and has no capacity bistability. Bishop and Qian showed that this stochastic
bistability explains the more complex instance of the noise induced bistability first discovered in [41].

The extrema of Equation (35) can be conditioned on both the volume, V , and the energy,
γ = (k1k2)/(k−1k−2), of the system. If we consider V to be the bifurcation parameter we can find that
for 0 < k′−1/(k

′
1Et − k2 − k−2) < V < k2/(k−2Et) the system is bistable. Letting γ be the bifurcation

parameter we find γ > k2(k−1 + k2 + k−2)/(Ntk−1k−2) with no upper bound, i.e., a minimal energy
input is necessary. These bounds with the parameters from Figure (5) clearly demonstrates that the
stochastic bistability is dependent on having a sufficiently small volume and the presence of sufficiently
large energy dissipation.

3.3. Keizer’s Paradox

For the kinetic scheme in Figure 3B, we again have χ = 1. However, we assume that there is
a continuous biosynthesis and degradation for the E such that its concentration is sustained in the
biochemical system, say at the value of a. Then, the kinetic equation for the dynamics of [E∗] becomes

dx

dt
= αax− βx2 − εx+ δa (36)

When δ = 0, Equation (36) is the same equation for the generic chemical reaction scheme

A+X
α


β

2X, X
ε→ B (37)

J. Keizer studied this model in [42] to illustrate a very interesting observation: While the deterministic
kinetics of the system has a positive steady state, the steady state of its stochastic kinetics is zero. Vellela
and Qian have studied this Keizer’s “paradox” [43]. It was shown that there are two very different time
scales in the stochastic model: In a rather short time scale corresponding to the eigenvalues |λ2| and
above, the system rapidly settles to a quasi-stationary distribution peaking at the deterministic positive
steady state. However, in a much slower time scale corresponding to the eigenvalue |λ1|, the above
probability distribution slowly decay to zero. For very large reaction system volume V , λ1 ∼ −e−cV

where c is a positive constant. Hence there is an exponentially slow decay process beyond the infinite
time of the deterministic dynamics [44,45].

Keizer’s paradox and its resolution is the origin of all the multi-scale dynamics in the CME system
with multi-stability. It is also clear it is intimately related to the stochastic bistability in Section 3.2.2
when the k−2, i.e., δ in Equation (36), is very small but nonzero. k−2 controls the lifetime, i.e., relative
probability of the the zero state in Figure 5.

3.4. Schlögl’s Nonlinear Bistability and PdPC with Second-Order Autocatalysis

For the kinetic scheme in Figure 3C with second-order autocatalysis, we have χ = 2. We again
assume that there is a continuous biosynthesis and degradation for the E such that its concentration is
sustained in the biochemical system at a constant value of a. Then, the kinetic equation for the dynamics
of x = [E∗] becomes

dx

dt
= αax2 − βx3 − εx+ δa (38)
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On the other hand, if we assume the rate of biosynthesis is negligible, and that both kinase and
phosphatase catalyzed reactions are irreversbile, then we have the kinetics

2E∗ + E
α−→ 3E∗, E∗

ε−→ E (39)

Comparing this system with that in Equation (29), the difference is in the 2E∗ on the left-hand-side.
The kinetic equation for the fraction of E∗, y = [E∗]

Et
where Et is the total amount of [E] + [E∗]. is

dy
dt

= αE2
t y

2(1− y)− εy. The steady state exhibits a saddle-node bifurcation at θ =
αE2

t

ε
= 4:

y =

 0 0 ≤ θ ≤ 4

0, θ±
√
θ2−4θ
2θ

θ ≥ 4
(40)

See the orange curve in Figure 4.
Equation (38) is precisely the same kinetic equation, according to the Law of Mass Action, for the

chemical reaction system
A+ 2X

α


β

3X, X
ε


δa/cB

B (41)

The system (41) is known as Schlögl’s model. It is the canonical example for nonlinear chemical
bistability and bifurcation which has been studied for more than 30 years [46].

Qian and Reluga [47] have studied a system very similar to Equation (41) in terms of deterministic,
nonlinear bifurcation theory. In particular, they established the important connection between
the nonlinear bistability with nonequilibrium thermodynamics [48]. They have shown that if the
concentrations of A and B are near equilibrium,(cB

a

)eq
=
cBαε

βδa
, i.e.,

βδ

αε
=
k−1k−2[ADP ][Pi]

k1k2[ATP ]
= 1 (42)

then there would be no bistability. The last equation in (42) is precisely equivalent to free energy change
of ATP hydrolysis being zero. It can be easily shown, see Section 4.1, with the equilibrium condition
in Equation (42), the system has only a single, unique deterministic steady state. And also, in terms
of its CME, a single peak in the equilibrium probability for the number of X . This result is much
more general for all nonlinear chemical and biochemical reaction systems, not just limited to the simple
reaction system in (41) [36,49,50].

Vellela and Qian [36] have recently studied the Schlögl system in great detail, with a nonequilibrium
steady state perspective. In particular, it was shown that the nonlinear bistability is intimately related
to nonequilibrium phase transitions in statistical physics [36,51,52]. Ge and Qian [45,51] further
investigated the steady state distribution according to the CME and its relationship to the steady states
according to the deterministic Law of Mass Action. They have shown that in the limit of system’s
volume tends infinity, i.e., the so called thermodynamic limit, the CME steady state(s) differ from that
of deterministic model: A Maxwell construction like result is obtained: According to the CME, only
one of the two determinsitic stable fixed point is the true global minimum, the other stable fixed point
is only metastable. Hence in the thermodynamic limit, the global minimum has probability 1 while the
metastable minimum has probability 0. However, the lifetime of the metastable state is infinitely long.
Furthermore, using the mathematical tool of large deviation theory, [45] shows that the bistable CME
system exhibits several key characteristics of nonequilibrium phase transition well-known in condensed
matter physics.
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3.5. Schnakenberg’s Oscillation

For the kinetic scheme in Figure 3D, we again have χ = 2, and we again assume that there is a
continuous biosynthesis for the E. However, we now consider the dynamics of both [E∗] and [E],
denoted by x and y, respectively. Then, the kinetic equations becomes

dx

dt
= αyx2 − βx3 − εx+ δy − φx+ ψb (43a)

dy

dt
= −αyx2 + βx3 + εx− δy + νa (43b)

The system of Equations (43) is the same system for the kinetic scheme

A
ν→ Y, Y + 2X

α


β

3X, X
ε


δ
Y X

φ


ψ
B (44)

with [A] = 1 and [B] = 1. If the β = ε = δ = 0, then it becomes the celebrated Schnakenberg model
which is well-known to exhibit periodic chemical oscillation. Qian et al. [53] first studied its stochastic
dynamics in terms of the CME. Recently, Vellela and Qian [54] again have studied this system. In
particular, they have introduced a novel mathematical concept of Poincaré-Hill cycle map (PHCM) to
characterize the amplitude of rotational random walk. The PHCM combines the Poincaré map from
nonlinear dynamic analysis [55] with the cycle kinetic analysis developed by T.L. Hill [56,57].

3.5.1. Sel’kov-Goldbeter-Lefever’s Glycolytic Oscillator

So far, we have always assumed that the kinase catalysis is in its linear region, and avoided using
Michaelis-Menten kinetic model for the kinase catalyzed phosphorylation. If we take the nonlinear
Michaelis-Menten kinetics into account, interestingly, we discover that in this case, our model of PdPC
with feedback in Figure 3D is mathematically closely related to a well-known metabolic oscillator: The
Sel’kov-Goldbeter-Lefever model for glycolytic oscillation [58–60]:

A
ν→ Y, Y +K‡

α1



β1
Y K‡

α2→ X +K‡, K + 2X
α3



β3
K‡, X

φ→ B (45)

In the glucolytic model, X and Y are ADP and ATP, K and K‡ are the inactive and activated from
of phosphofructokinase-1. One can find a nice nonlinear analysis of the deterministic model based on
the Law of Mass Action in [60], which shows limit-cycle oscillation. As far as we know, a stochastic
analysis of this model has not been carried out.

4. Conclusions

Nonlinear chemical reactions are the molecular basis of cellular biological processes and functions.
Complex biochemical reactions in terms of enzymes and macromolecular complexes form “biochemical
networks” in cellular control, regulation, and signaling. One of the central tasks of cellular systems
biology is to quantify and integrate experimental observations into mathematical models that first
repreduce and ultimately predict laboratory measurements. This review provides an introduction of
the biochemical modeling paradigm in terms of the chemical master equation (CME) and explores
the dynamical possibilities of various biochemical networks by considering models of homogenous,
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i.e., well-mixed, reaction systems with one and two dynamic variables. From mathematical modeling
perspective, these are one- and two-dimensional system, the simplest to be fully explored with sufficient
depth.

The chemical master equation is a comprehensive mathematical theory that quantitatively characterize
chemical and biochemical reaction system dynamics [38,61]. Traditional chemical kinetics based on the
Law of Mass Action, in terms of the concentrations of species as functions of time and differential
equations, is appropriate for reaction systems in aqueous solutions [62,63]. Deterministic differential
equation models have given satisfactory predictions for well mixed macroscopic chemical reaction
systems. One of the most celebrated examples is the Oregonator: the mathematical theory for the
Belousov-Zhabotinsky reactions [64] which display sustained oscillations in a test tube. For a recent
study see [28,29].

In recent years, due to the technological advances in optical imaging, single cell analysis, and green
fluorescence proteins, experimental observations of biochemical dynamics inside single living cells have
become increasingly quantitative [65]. Mathematical modeling of biochemical reaction systems in a
living cell requires a different approach. Chemical systems inside a cell, especially those of signaling
networks involving transcription regulation, protein phosphorylation and GTPases, often involve a small
number of molecules of one or more of the reactants [9,21,66,67]. Such dynamics are usually nonlinear
and stochastic, exhibiting random fluctuations. Thus, the traditional method of ordinary differential
equations is inappropriate. The fluctuations in the number of molecules, often called “intrinsic noise”,
have been shown to have biological significance and contribute to the function of the system [41,68].

Reaction kinetics of this kind are more realistically described by stochastic models that emphasize
the discrete nature of molecular reactions and the randomness of their occurrences [61]. The chemical
master equation is a class of discrete-state, continuous-time Markov jump processes, known as
multi-dimensional birth-death processes in probability theory [69]. Master equation is the widely used
name in the physics literature [70]. In a jump process, the chemical reactions are characterized in
terms of the stochastic copy numbers of the various dynamic chemical species, which differs from
the traditional concetrations by a trivial volume V of the reaction system. Reactions occur at random
times with exponential distribution. The expected value for the waiting period between each reaction is
determined by the number of copies of each species. The differential equation models based on the Law
of Mass Action should be thought of as the infinite volume limit of the Markov jump process, known
as the thermodynamic limit in statistical physics. As we have seen, the volume V is critical to many
phenomena which appear only in small, mesoscopic biochemical reaction systems, and thus stochastic
kinetic models in theory.

The master equation approach to chemical reactions began in the 1930’s with the work of M.A.
Leontovich [71]. Independently, it carried out by A.J.F. Siegert, M. Kac, M. Delbrück, A. Renyi, M.
Lax and D.A. McQuarrie, among many others. Comprehensive reviews can be found in [42,61,72,73].
The chemical master equation (CME), first studied by Delbrück in 1940 [74], has become the leading
mathematical theory for modeling mesoscopic nonlinear chemical reaction systems with small volume
on the order of that of a living cell [8].

From a statistical mechanics point of view, each possible combination of the numbers of the chemical
species defines a state of the system. The CME provides the evolution equation of the joint probability
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distribution function over all system states. In open chemical systems, i.e., where energy is added from
an outside source, the number of system states is often infinite, leading to an infinite, coupled system of
differential equations for the CME. An analytic solution to the CME for stochastic, open unimolecular
reaction networks can be found in [75]. It is not possible, in general, to obtain an analytic solution
for an open, non-unimolecular reaction system. However, the “steady state” solution to the master
equation (also known as the stationary probability distribution) is generally unique [70] and may be
algorithmically computed [76].

Continuous, diffusion approximations (also known as Fokker-Planck approximations) to the master
equation were first developed by Van Kampen [77] and shown by Kurtz [78,79] to match the solution to
the master equation in the thermodynamic limit for finite time. Because of the “finite time”, the stationary
solution at infinite time for the Fokker-Planck equation is often not an acceptable approximation for the
stationary solution of the CME. This gives rise to Keizer’s paradox. Fokker-Planck equations describe
the probability distribution functions of continuous random movements known as stochastic differential
equations (SDE). Approximating stochastic jump processes by diffusion processes with continuous
fluctuations, however, is a delicate problem [80,81]. The delicate issue in mathematical term has to
do with exchanging the limits for a large number of molecules and for a long time [82]. This limit
exchange can lead to disagreements between discrete and continuous stochastic models [36].

The same issue of exchanging limits is present also between a stochastic jump process and the
deterministic model. It is intimately related to the time scales for “down-hill dynamics” and “up-hill
dynamics” and how their dependence upon the system size V [43]. Note that for sufficiently large
V , the stochastic trajectory is close to the deterministic dynamics. However, there is no deterministic
counterpart for stochastic “barrier-crossing” trajectory that moves agains the deterministic vector field.
A transition between stable attractors is impossible in a deterministic system, but occurs with probability
1 in stochastic dynamics, albeit with exponentially long time ∼ ecV [44].

Kurtz carried out rigorous studies on the relation between the stochastic theory of chemical kinetics
and its deterministic counterpart [83,84]. It has been shown that in the thermodynamic limit of V →
∞, the CME becomes the expected deterministic ordinary differential equation (ODE) for finite time.
Furthermore, solutions with given initial values to the CME approach the respective solutions to the ODE
[83]. In light of this, there can still be disagreement in the steady state (i.e., infinite time limit) solutions,
an issue extensively revisited recently by Vellela and Qian [36,43].

Stochastic simulations of complex chemical reaction systems were carried out as early as the 1970’s
[85,86]. Current software packages used for the simulation of biochemical reactions commonly make use
of algorithms based on the influential work of Gillespie [8,10,87]. Microscopic particle simulations have
validated the master equation as the most accurate description of a reactive process in aqueous solution
[81,88]; see [89] for an up-to-date review. The CME provides the equation for the time-dependent joint
probabilities of the number of molecules while the Gillespie algorithm gives the stochastic trajectories.
They correspond to Fokker-Planck equation and stochastic differential equation (SDE) for diffusion
processes.

In the environment of a living cell, biochemical systems are operating under a driven condition, widely
called an “open system” [12,19,20,90]. There is a material and/or energy flux, from the outside, going
through the system [91,92]. Such molecular systems no long obey the traditional theory of equilibrium
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thermodynamics. A closed molecular system tends to a thermal, chemical equilibrium, which is unique
and in which each and every reaction has zero flux [93]. This is known as Lewis’ principle of detailed
balance [18]. Under equilibrium conditions, the ODE model based on the Law of Mass Action contains
a unique, globally attracting equilibrium (fixed point). Accordingly, the stationary solution to the CME
is a multi-Poisson distribution whose peak is located over the ODE fixed point [49].

The nonequilibrium theory for nonlinear biochemical reactions allows the possibility of multiple
steady states, and nonzero steady state flux and a nonzero entropy production rate [19,20]. Recent
developments in the area of fluctuation theorem [94,95] have illustrated the importance of entropy
production and its relationship to the irreversible nature of a system. How is the entropy production
rate related to functions of biochemical reaction networks? A correlation has been suggested between
entropy production (or “dissipation cost”) and the robustness of a network [96,97]. A more quantitative,
if any, relationship between the entropy production rate and the dynamics of a nonequilibrium steady
state is yet to be developed.

The essential difference between deterministic and stochastic models is the permanence of fixed
points. According to the theory of ordinary differential equation, once the system reaches a fixed point (or
an attractor), it must remain there for all time. Systems with stochasticity, however, can have trajectories
being pushed away from attracting fixed points by random fluctuations. Since the noise is ever-present, it
can eventually push the system out of the basin of attraction of one fixed point (attractor) and into that of
another. Fixed points are no longer stationary for all time; they are only temporary, or “quasistationary”
[98]. The amount of time the system spends at (or very near) a fixed point increases exponentially
with the system volume. This agrees with ODE dynamics in the thermodynamic limit. However, this
quasistationary behavior plays an important role at the cellular level in the “cellular evolutionary time
scale” [45].

In order to systematically understand the mesoscopic cellular biochemical dynamics, this review
discussed the simplest problem that is interesting: a one dimensional system with two fixed points. The
systems with only one fixed point are trivial since deterministic and stochastic models are in complete
agreement when there is a unique steady state [88]; the linear differential equation corresponds to a
Poisson distribution in the CME [75]. The case of two fixed points, one stable and one unstable, is studied
through an autocatalytic reaction first introduced by Keizer [42]. The ODE representation takes the form
of a classic example in population dynamics, the logistic equation. Through this simple system, one
understands the issues in the steady state predictions of the ODE and CME models [43]. This example
introduces the notion of a quasistationary fixed point and a spectral analysis reveals the multiple time
scales involved in the master equation formulation.

Logically, the next step is a one dimensional system with three fixed points, two stable with one
unstable point between them [36,47]. For this, we use a reversible, trimolecular reaction known as
Schlögl’s model. This is the first case in which bistable behavior is possible, occurring through a
saddle-node bifurcation. Again, the CME allows for new possibilities such as switching between the
stable fixed points and a nonequilibrium phase transition in the steady state distribution function [45,51].
Because this model is fully reversible, one is also able to study thermodynamic quantities such as the
chemical potential and entropy production rate and to illustrate the nonequilibrium physics [99]. The



Int. J. Mol. Sci. 2010, 11 3491

dynamics of this system serves as a representative example for all systems with multiple stable fixed
points.

Once the theory has been established for one dimensional systems with a single dynamic biochemical
species, we turn our attention to planar systems with two dynamical species [54]. Here, oscillations
become possible in the form of spiral nodes and limit cycles in ODE models. We explore the open
question of how to define and quantify stochastic oscillations. We suggest a new method for locating
oscillations in the presence of noise by extending the idea of the Poincaré return map to stochastic
systems. A reversible extension of Schankenberg’s model for chemical kinetic oscillation is used to
illustrate this new idea. The oscillation is represented by a rotational random walk.

In all these studies one encounters the presence of a time scale that grows exponentially with the
sysetm’s volume V . Dynamics operating on this “cellular evolution time scale” are lost in the infinite
volume limit of the ODE model. To study the stability of a stochastic attractor, one must consider the
chemical reactions systems in terms of the chemical master equation (CME). The ODE formulation,
however, is valuable as a way to estimate the presence and location of the critical points in the landscape
of the probability steady state distribution of the CME [100,101].

In summary, one of the most important insights from the CME study of biochemical reaction systems
in a small, cellular volume is the realization of the cellular evolution time scale and the associated
stochastic attractors which might indeed be the emergent cellular epigenetic states. The dynamics on
this time scale is stochastic; it is completely missing from the traditional ODE theory of biochemical
reaction networks. In the CME theory, deterministic fixed points become stochastic attractors [100,101].
They are the emergent properties of a complex, nonlinear biochemical network. The transitions among
the emegent stochastic attractors constitute the proper cellular dynamics [102,103].
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Appendix: The Chemical Master Equation for Systems of Biochemical Networks

A1. Michaelis-Menten model

The canonical MM kinetic scheme is

E + S
k1


k−1

ES
k2−→ E + P (46)

Let m and n be the numbers of S and ES respectively. Assume the total number of enzyme is n0. Then,
the corresponding chemical master equation graph, shown below, details the changes in the “state” of
the system, (m,n), due to the three reactions in the Equation (46). The graph in Figure 6 helps one to
write the chemical master equation in (2). The three “leaving” terms are negative in Equation (2), and the
three “into” terms are positive in Equation (2). The k̂’s in the graph is related to the k’s in the Equation
(46) according to Equation (3).



Int. J. Mol. Sci. 2010, 11 3492

Figure 6. The chemical master equation graph for the stochastic Michaelis-Menten enzyme
kinetics in (46). The graph only shows all the transitions associated with “leaving” the state
(m,n). What is not shown are the transitions: (m−1, n+1)→ (m,n) with rate k̂−1(n+1);
(m + 1, n− 1)→ (m,n) with rate k̂1(m + 1)(n0 − n + 1); and (m,n + 1)→ (m,n) with
rate k̂2(n+ 1). They are all associated with “into” the state (m,n).

u u u
u u u
u u um− 1, n+ 1 m,n+ 1 m+ 1, n+ 1

m− 1, n
m, n

m+ 1, n

m− 1, n− 1 m,n− 1 m+ 1, n− 1

# of S mole.

# of ES mole.

6

-

?

@
@
@@R

@
@

@@I

k̂−1n

k̂1m(n0 − n)

k̂2n

A2. Keizer’s Model

We are interested in the autocatalytic reaction system

A+X
k1


k−1

2X, X
k2→ B (47)

in which the concentrations of A and C are hold constant. This is a modified version of an example
originally discussed by J. Keizer in his book [42], where he assumed k−1 = 0. Let n(t) be the stochastic
number of X molecule at time t. It is then related to the concentration x by n = xV , where V is
the volume of the system. This volume parameter V appears implicitly in the CME. For example, in
the deterministic model, reaction rates k1 and k−1 have units of [volume][time]−1, and k2 has units of
[time]−1. The reaction rates in the stochastic model are related to these rates by

k̂1 = k1/V, k̂−1 = k−1/V, k̂2 = k2 (48)

These reaction rates are scaled such that the units agree in the master equation (see Equation 49
below).

Figure 7 shows how the probability of each state n is affected by the three reactions in Equation (47).
The change in the probability of each state, d

dt
pn(t) is the sum of the changes due to each of the reactions.

Thus, the CME is the system of equations:

dpo
dt

= k̂2p1 (49a)

dpn
dt

= k̂1na(n− 1)pn−1 + (k̂−1n(n+ 1) + k̂2(n+ 1))pn+1

− (k̂−1n(n− 1) + k̂1nan+ k̂2n)pn (49b)
...

where na represents the number of A molecules, which does not change in the model.
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Figure 7. The chemical master equation graph shows the probability change in state Pn,
where na is the number of A molecules.
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n
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�

n+ 1
u

A3. Schlögl Model

The canonical Schlögl model for chemical bistability is [46]

A+ 2X
k1


k2

3X, X
k3


k4
B (50)

Following the chemical master equation graph in Figure 8, we have the CME for the probability of
having n number of X at time t, pn(t) = Pr{nX(t) = n}:

d

dt
pn(t) = λn−1pn−1 − (λn + µn)pn + µn+1pn+1 (n ≥ 0) (51)

where
λn = k̂1an(n− 1) + k̂4b, µn = k̂2n(n− 1)(n− 2) + k̂3n (52)

and
k̂1 =

k1

V
, k̂2 =

k2

V 2
, k̂3 = k3, k̂4 = k4V (53)

Figure 8. The chemical master equation graph for the Schlögl model in Equation (50) shows
the rates of probability changes into and leaving state n. a and b are concentrations of A and
B. The relations between the k̂’s and k’s in Equation (50) are given in Equation (53).
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A3.1. Stationary Distribution: Steady State and Equilibrium

By setting the right-hand-side of Equation (51) to zero, one solves the steady state distribution

pssn = C
n−1∏
i=0

λi
µi+1

= C
n−1∏
i=0

k̂1ai(i− 1) + k̂4b

k̂2(i+ 1)i(i− 1) + k̂3(i+ 1)
(54)

where C is a normalization factor.
We now show a very interesting and important property of the pssn , when the concetrations of A and

B are at equilibrium: b/a = k1k3/(k2k4) = k̂1k̂3/(k̂2k̂4). Substituting this relation into Equation (54),
we have the equilibrium distribution

peqn = C
n−1∏
i=0

k̂1a

k̂2(i+ 1)
=

1

n!

(
k̂1a

k̂2

)n

e−k̂1a/k̂2 (55)

This is a Poisson distribution with the mean number of X being k̂1a

k̂2
= k1aV

k2
. That is the equilibrium

concentration of X being k1
k2
a. The Poisson distribution has only a single peak.

A4. Schnakenberg Model

We are now interested in the nonlinear chemical reaction system, the reversible Schnakenberg model,
in a mesoscopic volume V :

X
k1


k−1

A, B
k2


k−2

Y, 2X + Y
k3


k−3

3X (56)

Consider the function pn,m(t), the probability that there are n X molecules and m Y molecules at
time t. The six reactions (three forward and three backward) in the reversible Schnakenberg model in
Equation (56) define six ways to move on the lattice of possible states, i.e., the (n,m) lattice, Z+ × Z+

(see Figure 9). The chemical master equation (CME) is a doubly infinite set of ODEs:

dpn,m(t)

dt
= λ1

n−1,mpn−1,m + λ2
n,m−1pn,m−1 + λ3

n−1,m+1pn−1,m+1

+ µ1
n+1,mpn+1,m + µ2

n,m+1pn,m+1 + µ3
n+1,m−1pn+1,m−1

− (λ1
n,m + λ2

n,m + λ3
n,m + µ1

n,m + µ2
n,m + µ3

n,m)pn,m (57)

for n = 0 . . .∞,m = 0 . . .∞. The birth and death rates, λin,m and µin,m respectively, for the three
equations are

λ1
n,m = k−1na, µ1

n,m = k1n (58)

λ2
n,m = k2nb, µ2

n,m = k−2m (59)

λ3
n,m =

k3

V 2
n(n− 1)m, µ3

n,m =
k−3

V 2
n(n− 1)(n− 2) (60)

The factor of 1/V 2 in λ3
n,m and µ3

n,m accounts for the fact that the third reaction is trimolecular, and
thus k3 and k−3 have units of V 2/t. Since the first and second reactions are unimolecular, the remaining
rates have units of 1/t and do not need scaling when used in the CME.
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Figure 9. The chemical master equation graph showing possible paths away from state
(n,m), with birth rates λin,m and death rates µin,m. Note that there will be a corresponding
reverse path into state (n,m) for each of these arrows.
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Because the CME is a set of linear ODEs, there will be a unique steady state to which the system tends,
the probability steady state, pss(n,m). Once the system reaches its steady state, the total probability
flow into each point, (n,m), will equal the total probability flow out of that point. Solving for pss(n,m)

involves setting each of the equations in Equation 57 equal to zero and solving a very large linear system.
Cao and Liang have recently developed a method for computing the probability steady state for molecular
networks in general [76]. Their method is an algorithm which enumerates the state space and solves the
corresponding linear system and is optimal in both storage and time complexity.
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Abstract Modern molecular biology has always been a great source of inspiration for computational science. Half a
century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of
the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire
generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics.
In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume
(i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation
(CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with

the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the
dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm,
this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples
how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved:
multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from
mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the
steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that

the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from
which important biological insight can be gained.

Keywords biochemical networks, cellular signaling, epigenetics, master equation, nonlinear reactions, stochastic modeling

1 Introduction

Cellular biology has two important foundations: ge-
nomics focuses on DNA sequences and their evolu-
tionary dynamics; and biochemistry studies molecular
reaction kinetics that involve both small metabolites
and large macromolecules. Computational science has
been an essential component of genomics. In recent
years, cellular biochemistry is also increasingly relying
on mathematical models for biochemical reaction net-
works. Two approaches have been particularly promi-
nent: the Law of Mass Action for deterministic non-
linear chemical reactions in terms of the concentrations
of chemical species, and the Chemical Master Equation
(CME) for stochastic reactions in terms of the numbers
of reaction species.

The Law of Mass Action and the CME are two parts
of a single mathematical theory of chemical reaction
systems, with the latter being fundamental. When the
number of molecules in a reaction system are large,
stochasticity in the CME disappears and the Law of
Mass Action can be shown, mathematically, to arise as
the limit[1-2].

In this article, we shall introduce the CME approach
to biochemical reaction kinetics. We use simply exam-
ples to illustrate some of the salient features of this
yet to be fully developed theory. We then discuss the
challenges one faces in applying this theory to computa-
tional cellular biology. There have been several recent
texts which cover some of the materials we discuss. See
[2-3].

Survey
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2 A System of Nonlinear Reactions

To illustrate the theory of the CME and the Law
of Mass Action, let us first consider a simple system of
nonlinear chemical reactions first proposed by Schlögl[4]

A + 2X
α1�
α2

3X, B + X
β1�
β2

C, (1)

in which species A, B and C are at fixed concentrations
a, b and c, respectively. The traditional, macroscopic
kinetics of the system (1), according to the Law of Mass
Action, is described by a deterministic ordinary differ-
ential equation (ODE)[5]

dx

dt
= −α2x

3 + α1ax2 − β1bx + β2c, (2)

where x represents the concentration of X . It is
straightforward to show that (2) exhibits bistabi-
lity (via the so called pitchfork bifurcation) when
α2β1b/(α1a)2 = 1/3[4-5]: that is, the polynomial on
the right-hand-side switches from having only one pos-
itive root to have three positive roots. The system
also shows another bifurcations when varying another
lumped parameter α2

2β2c/(α1a)3 (this time via the so
called saddle-node bifurcation).

We now turn to the CME approach to this reaction
system (1). If in a small volume such as that of a cell,
the number of X is sufficiently small, its concentration
fluctuations become significant[6]. The dynamics of re-
action (1) then is stochastic, which should be described
in terms of a master equation, also known as a birth-
death process in the theory of Markov processes[7].

The system is represented by a discrete random vari-
able nX(t): the number of X at time t (0 � nX < ∞).
Let P (k, t) = Pr{nX(t) = k}, and we have

dP (k, t)
dt

= vk−1P (k − 1, t) + wkP (k + 1, t)

− (vk + wk−1)P (k, t), (3)

where

vk =
α1ak(k − 1)

V 2
+ β2c,

and

wk =
α2(k + 1)k(k − 1)

V 3
+

β1b(k + 1)
V

.

Here V is the volume of the reaction system. It is
a very important parameter of the model. The basic
rule is still the Law of Mass Action: the rate of one
step reaction B + X

β1−→C, when there are k + 1 num-
ber of X molecules, is β1b(k + 1)/V . This gives the
above last term. Similarly, the rate of one step reac-
tion A + 2X

α1−→ 3X , when there are k number of X
molecules, is α1ak(k − 1)/V 2.

For complex biochemical reactions, master equa-
tion like this in general cannot be solved analytically.
Various algorithms exist for simulating its stochastic
trajectories[8]. For the above specific example, however,
the exact stationary probability distribution to (3), i.e.,
after the system reaches stationarity, can be found as
[9-10]:

P (k) = C0

k−1∏
j=0

vj

wj
, (4)

where C0 is a normalization constant such that∑∞
k=0 P (k) = 1. The number of X molecules still fluc-

tuates in the steady state. We note that for large V ,

ln P (k) =
k−1∑
j=0

ln
vj

wj
+ C1 ≈

k−1∑
j=0

ln
v(k/V )
w(k/V )

+ o
( 1

V

)
+ C1 ≈ V

∫ k/V

0

ln
v(z)
w(z)

dz + C1,

in which

v(z) = z2 + σ, w(z) = z3 + μz,

μ = α2β1b/(α1a)2, σ = α2
2β2c/(α1a)3, and C1 = ln C0.

Therefore in terms of the concentration x = k/V , we
have the probability distribution f(x) = V P (V x):

1
2V

ln f(x) =
1

2V
ln P (V x) + C2

≈ 1
2

∫ x

0

ln
v(z)
w(z)

dz + Ĉ (5)

=
1
2

∫ x

0

ln
z2 + σ

z3 + μz
dz + Ĉ. (6)

Therefore, the stationary probability distribution of
the concentration of X :

f(x) ≈ e−V φ(x), (7)

where

φ(x) = −
∫ x

0

ln
z2 + σ

z3 + μz
dz, (8)

is independent of V . It is easy to verify that φ(x) is
at its extrema exactly when the ODE (2) is at its fixed
points. The function φ(x) can be thought as a “land-
scape” for the nonlinear chemical reaction system.

Closed System, Detailed Balance and Chemical Equi-
librium. A chemical equilibrium is reached in the reac-
tion system (1) when

[X ]3

[A][X ]2
=

α1

α2
,

[C]
[B][X ]

=
β1

β2
. (9)

This leads to the equilibrium condition that( [C]
[A][B]

)eq

=
α1β1

α2β2
. (10)
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In term of the two model parameters μ and σ intro-
duced above, this equilibrium (also called detailed ba-
lance) condition is expressed as

σ

μ
=

α2
2β2c/(α1a)3

α2β1b/(α1a)2
=

α2β2c

α1β1ab
= 1. (11)

This equation has a very strong thermodynamic mean-
ing: the term ln(σ/μ) = ΔG/(kBT ) is the chemical
potential difference between A + B and C. If one con-
siders A + B and C as two nodes in a circuit, then ΔG
is the potential between them. When ΔG �= 0, there
exists a nonequilibrium chemical driving force exerted
on the reaction system.

Mathematically, the ODE (2) can be simplified. Let
u = α2x/(α1a) and τ = (α1a)2t/α2, then (2) becomes

du

dτ
= −u3 + u2 − μu + σ, (12)

in which μ, σ > 0. If σ = μ, the right-hand-side of (12)
becomes −(u2+μ)(u−1). There is only one unique fixed
point, i.e., ueq = 1, the equilibrium point. This result
is general. For equilibrium system, the steady state dis-
tribution obtained from the CME is always uni-modal,
corresponding to the unique fixed point obtained from
the Law of Mass Action ODE[9,11].

Nonequilibrium Steady State, Gaussian Approxima-
tion, and Multiscale Dynamics. When σ �= μ, the che-
mical reaction system is not in detailed balance. In
this case, there is a continuous conversion of chemical
energy to heat, even in the steady state. Therefore,
there is a continuous production of entropy due to the
conversion of more useful chemical energy to less useful
heat. The entropy production rate

epr = kBTJ ln
μ

σ
. (13)

The nonequilibrium steady-state (NESS) has a net flux
in the overall reaction A + B → C:

J = u2 − u3 = μu − σ. (14)

It is easy to show that the epr in (13) is always posi-
tive in the NESS. This result should be compared with
“power = current × voltage” being always positive in
a stationary electrical circuit.

For certain parameter values, say μ = 0.25 and
σ = 0.01, the landscape function φ(x) in (8) has two
minima and one maximum in-between:

−u3+u2−μu+σ ≈ −(u−0.05)(u−0.32)(u−0.63). (15)

It is easy to see that the root of u3 + μu = u2 + σ is

precisely the extrema of φ(x) where

φ′(x) = − ln
x2 + σ

x3 + μx
= 0. (16)

Therefore, the nonlinear chemical reaction system is
bistable. The dynamics of the system exhibits multiple
time scale: the relaxation within each “well” and tran-
sitions between the two wells. The former can be accu-
rately described by a Gaussian (linear) random process.
The latter, as two-state transitions, is on a much longer
time scale.

It can be shown, according to the CME, that for a
closed nonlinear chemical reaction system, its stationa-
ry distribution has a unique peak, the equilibrium[9,11].
Furthermore, the fluctuating dynamics, i.e., the sta-
tionary stochastic process in equilibrium is statistically
time reversible[12]. These theoretical results indicate
that complex behavior such as chemical bistability in-
deed can only occur in a “living system” with dissipa-
tion, i.e., useful chemical energy is converted into heat,
and the process sustains a self-organizing complex dy-
namical system[13-14].

Multiscale Dynamics and the Keizer’s Paradox. Ev-
ery CME model contains the parameter V , the volume
of the reaction system. When the number of molecules,
N , and V → ∞, the mathematical solution to the CME
agrees with that from the Law of Mass Action which de-
scribes concentration x = N/V [1-2]. For most biochem-
ical models, one might also be interested in the station-
ary behavior of the solution to the CME. This repre-
sents all the numbers of molecules in a reaction sys-
tem, which are statistically independent of time, with
stationary number fluctuations due to the biochemical
reactions. One naturally identifies this with the home-
ostasis of a cell. Mathematically, this means one is
interested in the limit of t → ∞. Hänggi et al.[15] and
Baras et al.[16] correctly pointed out, however, there
is a delicate computational issue of V (and N) → ∞
and t → ∞ and changing the order of the limits can
lead to different mathematical predictions. This non-
exchangability between V → ∞ and t → ∞ has been
named Keizer’s paradox. One needs to be extra care-
ful in dealing with the steady state behavior of a CME
model.

This issue has been re-examined recently[11,17] in
more details. It is shown to be intimately related to
the multiple time scales of the bistability. The transi-
tion rates between the two states of a bistable system
are exponentially small with increasing V : ∝ e−αV

where α is a positive constant.
One naturally would like to approximate the CME

in terms of a Fokker-Planck equation (second order
PDE). The Fokker-Planck approximation of the CME
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has been discussed in several treatises (e.g., p. 116 of
[18]). The approach is similar to the diffusion approxi-
mation theory for Boltzmann equation (Subsections 3.2
and 3.3 of [18]). Keizer also discussed multiple steady-
states in biochemical reaction systems. However, the
consequence of the multi-stability with diffusion appro-
ximation has not been fully discussed. van Kampen has
repeatedly emphasized that the Fokker-Planck approxi-
mation can be obtained for master equations only with
small individual jumps. A more sophisticated treat-
ment of the Fokker-Planck approximation for master
equation was given in terms of the Ω-expansion (Ch. 10
of [10]). This theory provides a more satisfying appro-
ximation for the stochastic relaxation in the limit of
large V . However, it does not address how to obtain the
stationary distribution with multistability. Computing
such a stationary distribution is a major challenge.

3 Stochastic Bistability in the CME

In the previous section we stated that for suffi-
ciently large V , the CME gives a stationary probabi-
lity distribution for the numbers of all the dynamical
species, which is in complete agreement with the pre-
diction from the Law of Mass Action. A bistable sys-
tem according to the Law of Mass Action, thus, corre-
sponds to a bimodal distribution in the CME. The con-
verse is not true, however. In recent years, there have
been increasingly more examples showing that non-
linear biochemical reaction systems with macroscopic
unistability can exhibit bistable behavior in a small
volume. These results have important implications to
cellular biochemistry. We shall give one example: the
phosphorylation-dephosphorylation cycle (PdPC) with
autocatalytic kinase[19]:

E+E∗+ATP
k1�

k−1

E∗+E∗+ADP, E∗ k2�
k−2

E+Pi. (17)

If we use x to denote the fraction of the phosphory-
lated E∗, then according to the Law of Mass Action:

dx

dt
= k̃1x(1 − x) − k̃−1x

2 − k2x + k−2(1 − x)

= − (k̃1 + k̃−1)x2 + (k̃1 − k2 − k−2)x + k−2,
(18)

where k̃1 = k1EtcT, k̃−1 = k−1EtcD, Et is the total
concentration of E and E∗, cT and cD are ATP and
ADP concentrations. (18) has two steady states, only
one is positive and chemically meaningful. Hence there
is no bistability in macroscopic size reaction system,
with any parameters.

However, if the exactly same nonlinear PdPC is in
a small reaction volume such as a cell, then according

to the CME, the stationary probability distribution for
the number of E∗ is

pss(n) = C

n−1∏
j=0

(k̂1j + k−2)(Nt − j)
(k̂−1j + k2)(j + 1)

, (19)

where k̂i = k̃i/V , i = ±1. C is a normalization factor.
It is easy to check that the distribution in (19) has

two peaks, one at n∗
1 = 0 and the other at n∗

2:

n∗
2 =

k2 + k−2 + k̂−1 − k̂1Nt+

( (k2 + k−2 + k̂−1 − k̂1Nt)2

−4(k̂−1 + k̂1)(k2 − k−2Nt)

)1
2

2(k̂1 + k̂−1)
. (20)

It is usually not an integer. Hence it exhibits stochastic
bistability in a small volume.

4 Biochemical Bistability in a Cell and
Epigenetic Inheritance with a Distributive
Code

Since the discovery of DNA double helix, it has
been well understood that DNA replication is the mole-
cular basis of biological inheritance. However, in addi-
tion to DNA based inheritance, epigenetic inheritance
has become an increasingly important concept in cell
differentiation, stem cell research, as well as bacte-
rial persistence[20]. Current research has been focusing
on several specific molecular processes as the possible
“code” for epigenetics, e.g., histone acetylation[21] and
DNA methylation[22-23]. One of the key issues is that
the code has to be sufficiently stable. This leads re-
searchers to look for specific covalent modifications of
transcriptional regulation apparatus.

However, specific covalent modifications might not
be necessary in some cases. According to the theory of
the CME, the stability of a state of a biochemical re-
action system, i.e., the peak in the stationary distribu-
tion, is due to the biochemical reaction network[24]. In
other words, the epigenetic code could be distributive,
namely, properties such as state stabilities are the out-
come of the collective behavior of many components of a
biochemical network[23]. Therefore, detailed molecular
mechanism(s) aside, the nonlinear biochemical reaction
network(s) as the foundation of cellular epigenetics has
to be valid.

Ptashne has recently re-emphasized the importance
of heritability in the term of “epigenetics”[25]. We shall
point out that the states of bi- or multistable nonlinear
biochemical reaction systems, as defined above, natu-
rally give rise to heritability. It is important to recall
that the function φ(x) above is independent of V , and
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the variable x is the concentration. Hence, assuming
there is no specific mechanism of regulating the pro-
duction of molecule X , if the system’s volume is in-
creased, the concentration x will go down. However,
the nonlinear dynamic nature of the network automa-
tically regulates the system and the steady state con-
centration of X is regained. Thus, as long as the vo-
lume of the system is slowly increasing in the synthesis
phase of the cell cycle, the concentrations of all the key
biochemical species (i.e., transcriptional regulators) are
always maintained at its steady state value. Only when
the volume change occurs in short time period and the
amount of change is sufficiently large, there would be a
chance that the system “jumps” into another basin of
attraction (Fig.1). If the basins of attraction of states
are broad, then a daughter cell will still be in the same
state as the parent cell without the need for any addi-
tional signal and regulation.

Fig.1. Schematics showing how two biochemical states of a non-

linear biochemical reaction system can be inheritable if the vol-

ume of the reaction system is increased, and then divided into

two. Note that the abscissa is concentration, not number of

molecules. In the figure, an increase in volume with a factor

of 2, corresponding to a decrease of concentration to one half,

will still maintain the system in its original attractors. Division

does not change the concentration.

5 Computational Challenges from the
Chemical Master Equation

In the theory of the CME, the dynamics of a bio-
chemical reaction system, in a small volume, is repre-
sented by a multi-dimensional, integer-valued stochas-
tic jump process in Z

n. The process is a discrete-
state, continuous-time Markov process. As any Markov
process, it can be mathematically characterized ei-
ther in terms of its ensemble of stochastic trajectories,
or by its probability distribution as function of time.
These correspond to the stochastic differential equa-
tion and the Fokker-Planck equation representations
of a Brownian dynamics. The CME is the differential
equation for the probability distribution; the stochas-
tic trajectory is defined by the well-known Gillespie

algorithm. In analyzing a CME model, these two ap-
proach complement to each other.

One type of chemical reaction systems, the single
molecules or uni-molecular reaction system, has been
extensively studied in the past. It is important to
note that such systems are linear chemical reaction sys-
tems. Since all the molecules in uni-molecular reaction
systems are statistically independent, it can be repre-
sented by either the particle-state-tracking (PST) algo-
rithm or particle-number-tracking (PNT) algorithm[26].
The simulation can also be carried out approximately,
but satisfactorily, by a continuous model of Langevin
dynamics[27]. There is no multistability in such sys-
tems; nor complex dynamics.

The difference between PST and PNT is as follows:
one either considers the discrete states of the particles
in the simulation, or considers the number of particles
in a particular state. These two approaches correspond
precisely to the Lagrangian and Euler descriptions of
fluid particles — in terms of trajectories of particles
and in terms of the density[28]. In the current re-
search on stochastic simulation of biochemical reaction
systems, these correspond to the StochSim/MCell[29]

and the StochKit, respectively. The Langevin approx-
imated algorithm is closely related to the linear noise
approximation (LNA)[30]. The LNA can be only valid
within each “peak” region, i.e., a basin of attraction, of
the CME. For nonlinear reaction systems with multi-
stability, the Keizer’s paradox can occur which invali-
dates the Langevin approximation for the longer time
scale dynamics.

On more general terms, there are many reasons to
seek accurate solution to the CME directly, although
much has been learned about the overall probabilis-
tic landscape of many biochemical networks through
stochastic simulations (Gillespie, StochSim/MCell, and
StochKit) and approximated continuous models based
on stochastic differential equations. First, details of the
topological features and their quantification such as the
existence and location of basins of attraction, craters,
peaks, and saddle points of various dimensions, their
widths, breadth, and depths on the probabilistic land-
scape, as well as their possible biological implications
such as the inheritable epigenetic state arising from the
properties of the network are largely unexplored. This
is true even for simple reaction systems such as the
2-dimensional Schnakenberg model[31], which is only
slightly more complex than the 1-dimensional Schlögl
model discussed above, as there are no general exact
probabilistic solutions available yet. Second, accurate
solution to the CME problems can facilitate develop-
ment of approximation methods that are capable of
solving large-size problems. There is a large body of
studies on theoretical approaches approximating the



Jie Liang et al.: Computational Cellular Dynamics Based on the CME 159

CME through the Fokker-Planck, and equivalently
Langevin, equations. For effective design of these mod-
els and efficient computations of accurate solutions to
large biochemical systems, it is essential to have some
a priori knowledge of the ground truth. Third, per-
haps most importantly, an accurate solution to the
CME of simpler model systems can reveal important
insights into basic principles on how biological net-
works function and how they respond to various envi-
ronmental perturbations. A shining example of study-
ing complex systems using manageably simple mod-
els is the study of protein folding. Models such as
two- and three-dimensional lattice self-avoiding walks
with only hydrophobic and polar (HP) interactions
allow complete enumeration of all feasible conforma-
tions and calculation of exact thermodynamic param-
eters for molecules with short chain lengths. They
have played important roles in elucidating the princi-
ples of protein folding[32], including collapse and fold-
ing transitions[33-40], influence of packing on secondary
structure and void formation[41-44], the evolution of
protein function[45-46], nascent chain folding[47], and the
effects of chirality and side chains[44].

6 State Space of the Chemical Master
Equation and Exact Calculation of Steady
State Probability Landscape

The state space of the CME is that of M -dimensional
vectors with non-negative integers, which represents the
copy numbers of molecular species in a network; M is
the number of dynamic species. These states are micro-
scopic in nature, as they provide a detailed, chemical
amount of each and every molecular species. An impor-
tant advantage of treating these microscopic states of
copy numbers explicitly is that both linear and nonlin-
ear reactions (such as synthesis, degradation, bimole-
cular association, and polymerization) can be modeled
as Markovian transitions between two microstates, one
reaction at a time. Here the transition rates between
states are determined by the intrinsic propensities of
the reaction, and the copy numbers of molecules in-
volved.

For any biochemical systems beyond the simplest toy
problems, a challenging issue in obtaining an accurate
solution to the CME is the characterization of the state
space. That is, what are all the possible combinations
of concentrations (or copy numbers) of the molecular
species for a given set of reactions represented by a
network? An accurate description of the state space
is a prerequisite for computationally obtaining solu-
tions to the CME. In principle, the size of the state
space grows exponentially with the number of molec-
ular species and the copy numbers of molecules in the

system. For example, if there are 16 molecular species
in a network, and there are only a total of 33 copies of
molecules in the whole system, one can estimate some-
what naively the upper bound of the state space as
(33 + 1)16 = 3.19 × 1024. Note the +1 counts the zero
copy as a state. This is an astronomic number that is
well beyond what can be computed with current and
for-seeable future computing technology.

Below we discuss the enumeration of the state space
of CME and exam how to obtain exact steady state so-
lutions to the CME for biochemical systems with small
and moderate sizes.

Optimal Enumeration of State Space. Although in
principle the size of the state space grows exponen-
tially with the number of molecular species and the
copy numbers of molecules in the system, all is not
lost. There are two important observations about gene-
ral biochemical networks. First, the Markovian transi-
tion matrix is very sparse. For any given microstate,
the number of reactions that could occur in a short
time interval is small, which could be bounded by the
total number of possible reactions in a biochemical net-
work. Second, as an open system, molecules are synthe-
sized and degraded constantly. However, the number of
molecules that can be synthesized is never infinite, as
synthesis is constrained by the time and resources re-
quired. With these two considerations, an algorithm to
enumerate the state space of CME has recently been
developed[48]. The algorithm is optimal in memory re-
quirement, as it allows the enumeration of all states
that can be reached from a given initial state, without
including any irrelevant states. In addition, all possible
transitions are recorded, and no infeasible transitions
are attempted. The resulting transition matrix based
on the enumerated state space is compact without re-
dundant information, and is minimal in size. In addi-
tion, its computational time is also optimal[48].

Exact Calculation of Probability Distribution of the
Steady State. Once the states reachable from a given
initial state are enumerated, the rates of chemical re-
actions connecting two of these states can be com-
puted. For example, we can study a simplified model of
protein-DNA interaction. For the process of two pro-
tein monomer (ProteinA) dimerize and bind to a seg-
ment of DNA (GeneB), we can use the simplified model
below. If we denote the rate of the reaction that brings
the before-state i to the after-state j as aj,i, we have
for the third order reaction:

2 × ProteinA + GeneB b−→BoundGeneB ,

with the following reaction rate coefficient aj,i:
aj,i = b · ngB, i · npA, i · (npA, i − 1)/2,

where b is the intrinsic reaction rate which contains
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hidden systems volume V , npA, i is the copy number
of protein A in state i, and ngB, i is the copy num-
ber of unbound gene B. Here the combination num-
ber of the protein for this second order reaction is(
npA, i

2

)
= npA, i · (npA, i−1)/2. Note that in addition to

the volume V , there is a factor of 2 difference between
the intrinsic reaction rate here and the macroscopic rate
constant discussed in Section 2.

Once the full reaction rate matrix A = {aj,i} ∈
R

n×n is filled with computed rates, the chemical master
equation can be written in a matrix-vector form as:

Ṗ (t) = AP (t). (21)

Here the matrix A represents the infinitesimal gene-
rator of a continuous time Markov process. The dia-
gonal elements aii is set as: aii = −∑

i�=j aj,i, and all
off-diagonal elements are nonnegative. The analytical
solution at time t to (21) can be written as a matrix
exponential:

P (t) = exp(At)P (0). (22)

The matrix eAt is the Markovian state transition pro-
bability matrix with time duration t. We can also ob-
tain its discrete equivalent M as[40]:

M = I + A · Δt, (23)

where I is the identity matrix, Δt is a small time inter-
val during which one reaction occurs. When the system
has reached the steady state, the probability landscape
over the enumerated states P can be computed by solv-
ing the equation:

P = MP .

Here P can be obtained with an iterative solver such
as that based on the successive over-relaxation (SOR)
technique[49]. Alternatively, since P for the steady
state corresponds to the eigenvector of M with eigen-
value 1.0, one can obtain P by using eigenvector
method such as the Arnoldi method[50], as done in [48].

By examining computationally the stochastic be-
havior of genetic circuits for wild type and mutant
networks, and by studying the probabilities of rare
events, one can gain further understanding of the re-
gulation mechanism of genetic circuits, its system sta-
bility against perturbation (such as fluctuations in nu-
tritional conditions), and its robustness against genetic
mutations (such as those due to DNA damage)[51].

7 Two Examples of Stochastic Biochemical
Systems and Their CMEs

In this section we give two examples on how exact
stationary probability landscapes of a biochemical net-
work can be computed from its CME. The CME, of

course, gives more than just a stationary distribution,
but solving the steady state is almost obligatory in any
analysis of mathematical models.

Toggle Switch. In Section 3, we already discussed
how bistability arises from stochasticity. Another ex-
ample is the well studied genetic toggle-switch system.
This is a small network consisting of two genes, A and
B, each inhibits the other (Fig.2). It was the first syn-
thetic network constructed in a wet lab from two re-
pressible promoters arranged in a mutually inhibitory
network in Escherichia coli by Gardner et al.[52]. It is
flippable between two stable states by chemical or ther-
mal induction and exhibits an ideal switching thresh-
old. This toggle switch forms a synthetic cellular mem-
ory unit[52]. Although this is the simplest network
with bistability that can already be identified from
ODE models based on the Law of Mass Action, impor-
tant questions such as switching probability between
the “on” and “off” states requires a treatment of the
stochasticity. Although there have been great recent
progresses in deriving analytical solutions[53-56], they
are applicable under special conditions, such as fast
transition between the on- and off-states, or overall

Fig.2. Model of a toggle switch. (a) The network model and the

reaction rates. Single copies of gene A and gene B encode protein

products. Two protein monomers can repress the transcription

of the other gene. The synthesis of protein product of gene A and

gene B depends on the bound or unbound state of the gene. (b)

The chemical reactions of the 8 stochastic processes involved in

the toggle-switch system. The reaction rates include s for protein

synthesis, d for protein degradation, b for protein-gene binding,

and u for protein-gene unbinding (adapted from [48]).
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small noise associated with high concentrations. With
the algorithm for state enumeration, the steady state
landscape probability of the toggle-switch can be solved
exactly for models with arbitrary parameter specifica-
tions.

Epigenetic Switch in Phage Lambda. Exact solution
of the CME can also be obtained for larger systems in
which biological phenomenon are modeled more realis-
tically. An example is the epigenetic switch of phage
lambda. Phage lambda is a virus that infects E. coli
bacteria. It is the system in which gene regulation
was first studied. Upon infection, phage lambda can
choose two different life styles. In the lysogenic path-
way, the DNA of phage lambda becomes integrated
into the chromosome of the host, and can replicate
for many generations along with the host. Upon ad-
verse environmental perturbations such as UV irradia-
tion, phage lambda switches from the lysogenic path-
way to the lytic pathway, in which it uses the protein
synthesis machinery of the host, and replicate to 100s
of copies, which leads to the burst of the host cell. The
lytic pathway offers critical evolutionary advantage for

phage lambda to survive, as it allows phage to escape
from hopelessly distressed E. coli host cells. In phage
lambda, a gene regulatory circuit controls the switching
between the maintenance of the lysogenic state and the
induction of the lytic state. The CME model analysis
clearly demonstrates the idea of a distributive epige-
netic code. As a paradigm for understanding cell de-
velopment, phage lambda has been extensively studied,
with the molecular components and reaction rates well
characterized (see the seminal book by Ptashne[57]).
The key components of the switch of the genetic cir-
cuits and their wirings can be summarized in Fig.3.
There are three operators (OR1, OR2, and OR3) and
two promoters (Pr and Prm). These are used to control
the transcription of CI and Cro proteins, which dimer-
ize and bind to the operator sites with different affinity
and inhibit the expression of each other[57].

The importance of stochasticity in the genetic cir-
cuit of lambda phage is well recognized, and its effects
have been studied using stochastic simulations[58] and
stochastic differential equations[24,59]. The steady state
probability landscape of the CME model based on the

Fig.3. Phage λ switching network. Reactions including binding and unbinding, synthesis and degradation, dimerization are labeled as

arrows, along with the corresponding kinetic constants (adapted from [51]).

Fig.4. Lysogenic and lytic states and CI synthesis rate. (a) Lysogenic state, Ks CI=0.045/s. (b) The switching state, Ks CI=0.0245/s.

(c) Lytic state, Ks CI=0.0077/s. X and Y axes are copy numbers of CI and Cro dimers; and Z axis is the marginal probability (adapted

from [51]).



162 J. Comput. Sci. & Technol., Jan. 2010, Vol.25, No.1

network depicted in Fig.3 can be solved directly[51].
Fig.4 shows the probability landscape under several
physiological conditions when the system is in the lyso-
genic state, in transitory switching state, and in lytic
state[51]. Fig.5 shows the phase diagram of concentra-
tions of CI and Cro at different CI synthesis rate.

Fig.5. Relative CI and Cro dimer levels for wild type and mu-

tant lambda phage. The lysogenic state has high CI (solid line)

concentration, and the lytic state has high Cro (dashed line) con-

centration. Wild type lambda phage has a well-behaving switch,

while mutants are all leaky (adapted from [51]).

By examining computationally the stochastic beha-
vior of genetic circuits for wild type and mutant net-
work, and by studying the probabilities of rare events,
one can gain further understanding of the regula-
tion mechanism of genetic circuits, its system stabil-
ity against perturbation (such as fluctuations in nutri-
tional conditions), and its robustness against genetic
mutations (such as those due to DNA damage)[51].

8 Methods for State Space Simplification

For large systems in which enumeration is no longer
feasible, one approach for numerical computation is to
reduce the large number of microstates to a smaller fi-
nite number[60].

Finite State Projection. Munsky and Khammash
made two key observations about projecting the high
dimensional state space to a lower dimensional finite
space by including only a subset of the original states.
Denote two sets of indice of the states being chosen
as J1 and J2, and assume J1 ⊆ J2. The reduced rate

matrix obtained by selecting states in J1 and J2 are
AJ1 and AJ2 , respectively. The first observation is:

(eAJ2 )J1 � eAJ1 � 0. (24)

This relation implies that by increasing the size of the
selected subset of states, the approximation improves
monotonically. Second, if one obtains a reduced state
space by selecting states contained in the index set J
and if 1T etAJ PJ (0) � 1 − ε for ε > 0 and t � 0, then:

etAJ P J(0) � P J (t) � etAJ P J (0) + εI. (25)

That is, starting with the initial probability of the re-
duced vector P J(0), compute the probability vector in
the reduced space etAJ P J (0) at time t using the re-
duced rate matrix AJ . If the inner-product of this
vector for time t with 1 is no less than 1 − ε, then
the error of this vector with the projected true vector
P J(t) from the true probability P (t) is no more than
εI. This inequality guarantees that the approximation
obtained with reduced state space will never exceed the
actual solution, and its error is bounded by ε[60].

These key observations led to the Finite State
Project Algorithm, which iteratively adds new states
to an initial reduced state space, until the approxima-
tion error is within a prescribed bound[60]. Munsky and
Khammash further extended the original Finite State
Projection method[61], and recommends running a few
steps of stochastic simulation to obtain the initial prob-
ability vector P (0) that is non-sparse. However, there
are no generally applicable strategies as to what states
to add to a finite projection to most efficiently improve
the approximation accuracy.

Krylov Subspace Method. The analytical solution to
the CME can be expressed in the form of a matrix ex-
ponential P (t) = eAtP (0). As discussed before, the
rate matrix A has a very large dimension but is sparse.
An alternative approach to reduced the state space is
to convert the problem of exponentiating a large sparse
matrix to that of exponentiating a small dense matrix
in the Krylov subspace Km

[62]:

Km(At, P (0)) ≡ Span{P (0), · · · , (At)m−1P (0)}.
(26)

The idea is that the Krylov subspace used is of a very
small dimension of m = 30−60. Denoting ||·||2 as the 2-
norm of a vector or matrix, the approximation then be-
comes P (t) ≈ ||P (0)||2V m+1 exp(tHm+1)e1, where e1

is the first unit basis vector, V m+1 is a (m+1)×(m+1)
matrix formed by the orthonormal basis of the Krylov
subspace, and Hm+1 the upper Hessenberg matrix,
both computed from an Arnoldi algorithm[63]. The
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error can be bounded by

O(em−t||A||2(t||A||2/m)m).

One only needs to compute explicitly exp(Hm+1t).
This is a simpler problem as m is much smaller. A
special form of the well-known Padé rational of polyno-
mials instead of Taylor expansion is used[64-65]:

etHm+1 ≈ Npp(tHm+1)/Npp(−tHm+1),

where Npp(tHm+1) =
∑p

k=0 ck(tHm+1)k and ck =
ck−1 · p+1−k

(2p+1−k)k . The Expokit software by Sidje pro-
vides an excellent implementation of this method[65].
This approach has been shown to be very effective in
studying large dynamic system (n = 8.0× 105) such as
protein folding[40] and signaling transmission in macro-
molecular assembly of GroEL-GroES[66].

The Krylov subspace method concurrently evaluate
the matrix exponential. The overall scheme can be ex-
pressed as follows:

P (t) ≈ exp(τKAK) . . . exp(τ0A0)P (0),

t =
K∑

k=0

τk, (27)

in which the evaluation is from right to left. Here {τi}
are size of time steps, and K is the total number of time
steps[62].

MacNamara et al. further extends the Krylov sub-
space method by splitting the rate matrix A. Based on
the reachability criteria, one can divide the states into
the “fast partition” and the “slow partition”[67]. Here
the condition is that two states belong to the same sub-
set of the fast partition if and only if one can be reached
from the other via a sequence of finite fast reactions[67].
Correspondingly, the matrix can be splitted into two:

A = Af + As,

where Af corresponds to the fast CME, and As corre-
sponds to the slow CME, and one has:

Ṗ f (t) = AfP f (t)

and
Ṗ s(t) = AsP s(t).

With this deliberate separation, both Af and As

maintain the important property of being infinitesi-
mal generators of continuous time Markov processes by
themselves[67]. With more elaborated splitting scheme
for aggregation of Markov processes, the Krylov sub-
space projection method have been shown to be com-
putationally very efficient[62].

Approximation by Continuous Stochastic Differen-
tial Equation. An effective approach to study bioche-
mical networks whose chemical master equations can-
not be solved directly is to approximate them with
stochastic differential equations. One widely used ap-
proach is that of the Fokker-Planck-Langevin model[10].
The Langevin equation for concentration flux consists
of a drift term and a diffusion term. The drift term
models the macroscopic deterministic component of the
system. It reflects the time-dependent evolution of the
mean concentrations of the molecular species. The dif-
fusion term models the intrinsic stochasticity of the sys-
tem. The basic form of a Langevin, stochastic differen-
tial equation is:

dX

dt
= μ(X) + σ(X)N

(
0,

1
dt

)
. (28)

Here X is the vector of concentrations of molecular
species in the reaction system, μ(X) the drift term, and
the second term is the diffusion term. Here N (0, 1/dt)
is a vector of one-dimensional Gaussians, with zero
mean and 1/dt variance. The coefficient σ(X) controls
the amplitude of the Gaussian noise. It can be either
a function of X or a constant. The key issue in deve-
loping Langevin models for biochemical networks is to
determine μ(X) and σ(X). When σ(X) is a vector of
constants, one adjusts its values so the variance of the
Gaussian noise produce the correct fluctuations in the
system[10].

One of the most important issues to keep in mind
when developing Fokker-Planck-Langevin approxima-
tions for a CME is the Keizer’s paradox previously dis-
cussed. For dynamical system with a single, globally
attracting attractor, however, this is not an issue. We
shall use the Schnakenberg model to demonstrate how
well the Langevin approach works. Originally deve-
loped for studying the limit cycle behavior in a sim-
ple chemical reaction system[31,69], the Schnakenberg
model is a simple system with two reacting components
and three reversible reactions:

X
k1�

k−1
A, B

k2�
k−2

Y, 2X + Y
k3�

k−3
3X, (29)

where X and Y are reacting species of the system, and
A and B are external reactants whose concentrations
(or copy numbers) are fixed constants. Each reaction
has a corresponding microscopic reaction rate. The
fixed copy numbers or concentrations of A and B can be
adjusted, which lead to different behavior of the system.
This simple system already produces complex behavior
such as oscillation and has a single stable limit cycle
(see [6, 70] for recent examples).
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Fig.6. Calculated steady state probability distributions over different copy numbers of X and Y and the trajectories of evolving

concentrations of X and Y of the Schnakenberg model. (a) and (b): Trajectories of evolving concentrations of X and Y according to the

deterministic ordinary differential equation (ODE). Here (a) shows the well-known oscillating limit cycle behavior of the Schnakenberg

model, and (b) shows the convergence towards a fixed point. The concentrations of A and B are set at values equivalent to the

copy numbers used in stochastic models. (c) and (d): Reconstructed probability distributions over X and Y obtained from 200 000

simulations of the Langevin equation (LE). (e) and (f): Exact probability distributions over copy numbers X and Y obtained by solving

the chemical master equation (CME). Two sets of copy numbers of (A, B) at (10, 50) and (20, 40) are used for the fixed parameters A

and B (adapted from [68]).

The macroscopic concentration obtained by solv-
ing the corresponding ODE model, the approximated
steady state probability distribution obtained by inte-
grating the Langevin model, and the exact probability
distributions obtained by solving the chemical master
equation[48] are shown in Fig.6. At the parameter va-
lues of A = 10 and B = 50, the well-known oscillating
limit cycle behavior of the Schnakenberg model can be
seen in Fig.6(a). At A = 20 and B = 40, the be-
havior of the system converges towards a fixed point
(Fig.6(b)). The landscapes of the steady state proba-
bility distributions obtained from solving the Langevin
equation (Fig.6(c)) and the chemical master equation
(Fig.6(e)) all show a crater, or a basin surrounded by a
mountainous ridge for the parameter set of A = 10 and
B = 50 (details not shown). This corresponds well with
the limit cycle behavior observed in the ODE model.
At A = 20 and B = 40, the landscapes show a single
peak (Figs. 6(c) and 6(d)), which again corresponds
well with the fixed-point behavior observed in the ODE
model.

As can be seen in Figs. 6, and 7, the model of
Langevin equation approximates well the true proba-
bility landscape of the chemical master equation. This
demonstrates that the diffusion term models the intrin-
sic stochasticity of the Schnakenberg model well.

Alternative models account for the stochasticity
by replacing the diffusion term with a term for the
variance-covariance between pairs of the molecular
reactions[71], or between concentrations of different
molecular species, without the explicit inclusion of a
random process[72]. The magnitude of the covariance
is determined by the Hessian matrix of the second-
order partial derivative of the propensity functions of
the reactions[71-72]. This inclusion of the second mo-
ments to account for the stochasticity is the basis of
the stochastic kinetic model[71] and the mass fluctua-
tion kinetic model (MFK)[72]. These models can model
reactions involving one or two molecules well[71-72].
They are similar in spirit to the Fokker-Planck equation
model of the CME as described in [73] by including a
second moment term for better approximation, but are
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different from that of [73] as they are macroscopic in
nature and do not involve any random processes.

Yet another approach is to directly model explicitly
the stochastic coupling of the macroscopic concentra-
tions of molecular species, in addition to the Gaussian
noise of the original Langevin model[68]. The steady
state probability landscape of the Schnakenberg model
resulting from this approach is shown in Fig.7. Sig-
nificant improvement after incorporating the coupling
term can be seen in Fig.7.

Fig.7. Comparison of errors between different steady state so-

lutions of the Schnakenberg model. (a) Difference between the

probability landscapes of the Langevin equation and that of the

chemical master equation. This represents errors in the Langevin

model. (b) The amount of the errors in (a) that are corrected by

introducing explicitly a coupling term between X and Y (adapted

from [68]).

Remark. The complex nature of the stochastic dy-
namics arising from biochemical networks bears much
resemblance to another complex system, namely, that
of protein folding. Both have very large space of micro-
states, and both can be modeled by transitions between
micro-states using master equations (for master equa-
tion approach in protein folding studies, see [37, 39-40]).
However, these two systems differ in several important
aspects. First, while protein folding can be modeled as
a relaxation process towards the equilibrium state, bio-
chemical networks are intrinsically open, with synthesis

and degradation of molecules an integral part of the sys-
tem, hence there are no equilibrium states. Instead, one
frequently seeks to study the non-equilibrium steady
state. Second, once the energy of a protein conforma-
tion is known, the relative probability of its sequence
adopting this conformation in the equilibrium state can
be calculated from the Boltzmann distribution, without
the need of knowing all other possible conformations
and their associated probabilities. In other words, the
protein folding problem is local in the energy landscape.
In contrast, it is not possible to calculate the relative
probability of a specific microstate of copy numbers a
priori without solving the entire CME, as the proba-
bility distribution of network states do not generally
follow any specific analytical forms (no detailed bal-
ance and the existence of cycle fluxes). Third, tran-
sitions between microstates are clearly defined in bio-
chemical networks by the reactions, whereas transitions
between different protein conformations often techni-
cally depend on specific move sets, which are different in
terms of allowable transitions between states and tran-
sition rates, although all such move-sets are developed
with the goal to mimic physical movement of molecules.

9 Discussions and Outlooks

In this review, we have discussed the significance of
the chemical master equation (CME) as a theoretical
framework for modeling nonlinear, biochemical reaction
networks inside cells, and the possible mechanism of cel-
lular states, or attractors, as the inheritable phenotypes
with a distributive epigenetic code. The validity of such
a grand theory requires close comparisons between the-
oretical predictions with experiments. Solving a given
CME, however, is a computationally challenging task
at the present time. We have outlined several key diffi-
culties, as well as some of the progresses that have been
made so far.

In addition to the subject of studying algorithmic
complexity, complex system, in a broady sense, is a
major scientific problem of computer science and com-
putational science[74]. One needs not to be reminded of
the complex phenomena exhibited in the natural world
of her/his surroundings. How to characterize and quan-
tify such complex behavior is of great interests for un-
derstanding our physical and biological worlds. But
what is complexity and how to define complex beha-
viors? Through studies of the CME, one seems to be
able to gain some deeper understanding of the issues in-
volved through concrete physical and biology examples.
Recently, one of us has suggested that a key to meso-
scopic complexity[75] is in the multi-stability with mul-
tiple time scale dynamics[76]. Nonlinear biochemical re-
action systems in a cell-size volume can be a prototype
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for studying complexity.
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