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Abstract

Modern molecular biology has always been a great source of inspiration for computational science.
Half a century ago, the challenge from understanding macromolecular dynamics has led the way for
computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand
from genome science has inspired an entire generation of computer scientists with an interest in discrete
mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new
mathematical theory for biochemical reaction system dynamics in small volume (i.e., mesoscopic) in terms
of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME).
The stochastic trajectories of the dynamics are best known through the simulations using the “Gillespie
algorithm”, which is a form of minimal process sampling. This Monte Carlo sampling technique does not
follow a process with detailed balance. We shall show several examples how CMEs are used to model
cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale
phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises
from mesoscopic dynamics. We argue that this mathematical model is an ideal system from which one
can learn to understand “complex behavior” and complexity theory, and from which important biological
insight can be gained.
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1 Introduction

Cellular biology has two important foundations:
Genomics focuses on DNA sequences and their
evolutionary dynamics; and biochemistry studies
molecular reaction kinetics that involve both small
metabolites and large macromolecules. Computa-
tional science has been an essential component of
genomics. In recent years, cellular biochemistry
is also increasingly relying on mathematical mod-
els for biochemical reaction networks. Two ap-
proaches have been particularly prominent: The
Law of Mass Action for deterministic nonlinear
chemical reactions in terms of the concentrations of
chemical species, and the Chemical Master Equa-
tion (CME) for stochastic reactions in terms of the
numbers of reaction species.

The Law of Mass Action and the CME are two
parts of a single mathematical theory of chemical
reaction systems, with the latter being fundamen-
tal. When the number of molecules in a reaction
system are large, stochasticity in the CME disap-
pears and the Law of Mass Action can be shown,
mathematically, to arise as the limit [1, 2].

In this article, we shall introduce the CME ap-
proach to biochemical reaction kinetics. We use
simply examples to illustrate some of the salient
features of this yet to be fully developed theory.
We then discuss the computational challenges one
faces in applying this theory to computational cel-
lular biology. There have been several recent texts
which cover some of the materials we discuss. See
(2, 3].

2 A System of Nonlinear Reactions

To illustrate the theory of the CME and the Law
of Mass Action, let us first consider a simple sys-
tem of nonlinear chemical reactions first proposed
by Schlogl [4]

A+2X 23X, B+X 2 ¢ (1)

Q B2
in which species A, B and C are at fixed concen-
trations a, b and c, respectively. The traditional,

macroscopic kinetics of the system (1), according
to the law of mass action, is described by a deter-
ministic ordinary differential equation (ODE) [5]

Z—i = —awz® + ajaz? — Bibz + Poc, (2)
where x represents the concentration of X. It is
straightforward to show that Eq. 2 exhibits pitch-
fork bifurcation when asf1b/(a1a)? = 3 [4,5]. Tt
also shows saddle-node bifurcations when varying
another lumped parameter o3f2c/(a1a)3.

We now turn to the CME approach to this re-
action system (Eqnl). If in a small volume such
as that of a cell, the number of X is sufficiently
small, its concentration fluctuations become sig-
nificant [6]. The dynamics of reaction (1) then is
stochastic, which should be described in terms of a
master equation, also known as a birth-death pro-
cess in the theory of Markov processes [7].

The system is represented by a discrete ran-
dom variable nx(¢): the number of X at time ¢
(0 < nx < o0). Let P(k,t) = Pr{nx(t) = k}, and
we have

% =vp_1P(k — 1,t) + wp P(k + 1,1%)
—(vk + w—1)P(k, 1), (3)
where
o = a1ak‘(/k2— 1) 4 Bue,
and
wy = ag(k+1)k(k—1)  pib(k + 1).
V3 |4

Here V is the volume of the reaction system. The
basic rule is still the Law of Mass Action: The rate
of one step reaction B + X Ao , when there are
k4 1 number of X molecule is 81b(k +1)/V. This
gives the above last term. Similarly, the rate of
one step reaction A+ 2X 2 3X, when there are k
number of X molecule is ajak(k —1)/V?2.

For complex biochemical reactions, master
equation like this in general cannot be solved ana-
lytically. However various algorithms exist for sim-
ulating its stochastic trajectories [8]. For the above
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specific example, however, the exact stationary so-
lution to Eq. 3, i.e., after the system reaches a
steady state, can be found as [9, 10]:

P(k)=Co [ -2, (4)

where Cj is a normalization constant such that
Y oreo P(k) =1. We note that for large V,

k—1 k—1
-y vj ~3 v(k/V)
lnP(k)— lnw—+01~ IDW
=0 3=0

k/V
+o i +01%V/ lnv(z)dz—I—Cl,
4 0 w(z)

in which
v(z) =22+ 0, w(z)=2%4+pz,

p = asfBib/(a1a)?, 0 = aBac/(ara)?, and C; =

InCy. Therefore in terms of the concentration

T = é, we have the probability distribution f(z)

= VP(Va):

1 1
1 /% wv(z) A
~ = 1
2/0 no it C )
1 [* 2240 R
= = In——— .
2/0 n Tt O ()

Therefore, the stationary probability distribu-
tion of the concentration of X:

f(z) ~ eV, (M)
where )
T 4o
d(z) = —/O In po uzdz (8)

is independent of V. It is easy to verify that ¢(z)
is at its extrema exactly when the ODE (2) is at its
fixed points. The function ¢(x) can be thought as
a “landscape” for the nonlinear chemical reaction
system.

Closed system, detailed balance and chemical
equilibrium. A chemical equilibrium is reached in
the reaction system (1) when

XP _a [C] _ B

ANE "o BN A

This leads to the equilibrium condition that

(camm) -

In term of the two model parameters y and ¢ intro-
duced above, this equilibrium (also called detailed
balance) condition is expressed as

o151

o (10)

o _ ajfac/(aia)®  agfac
g agbib/(eia)?  aifrab L (11)

In thermodynamic terms, AG = kgT In(o/u) is
the chemical potential difference between the A+ B
and C. They serve as a source and a sink. When
AG # 0, there exists a nonequilibrium chemical
driving force exerted on the reaction system.

Mathematically, the ODE (2) can be simplified.
Let u = aor/(c1a) and T = (a1a)?t/as, then Eq.
(2) becomes

d
%z—u3+u2—uu+0, (12)

in which g, ¢ > 0. If ¢ = p, the right-hand-side
of Eq. (12) becomes —(u? + p)(u — 1). There is
only one unique fixed point, i.e., u®? = 1, the equi-
librium point. This result is general. For equi-
librium system, the steady state distribution is al-
ways uni-modal, corresponding to the unique fixed
point [9,11]

NESS, Gaussian approximation, and multiscale
dynamics. When o # u, the chemical reaction sys-
tem is not in detailed balanced. In this case, there
is a continuous conversion of chemical energy to
heat, even in the steady state. Therefore, there
is a positive entropy production rate, due to the
conversion of chemical energy to heat:

epr = kgTJIn Y (13)
ag

in which the nonequilibrium steady-state (NESS)
results in a net flux in the overall reaction A+B —

C:
J=v*—ud=pu—o. (14)
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It is easy to show that the epr in (13) is always pos-
itive in the NESS. This result should be compared
with “power = current Xx voltage” being always
positive in a stationary electrical circuit.

For certain parameter values, say u = 0.25 and
o = 0.01, the landscape function ¢(z) in Eq. (8)
has two minima and one maximum in between:

—udtu? —puto ~ —(u—0.05)(u—0.32) (u—0.63).

(15)
It is easy to see that the root of u® + pu =u? + o
is precisely the extrema of ¢(z) where

2?40
ni
3 + px

¢ (z) = -1 = 0. (16)
Therefore, the nonlinear chemical reaction system
is bistable. The dynamics of the system exhibits
multiple time scale: The relaxation within each
“well” and transitions between the two wells. The
former can be accurately described by a Gaussian
linear process. The latter, as two-state transitions,
is on a much longer time scale.

It can be shown, according to the CME, that
for a closed nonlinear chemical reaction system,
its stationary distribution has a unique peak, the
equilibrium [9,11]. Furthermore, the fluctuating
dynamics, i.e., the stationary stochastic process
in equilibrium is statistically time reversible [12].
These theoretical results indicate that complex be-
havior such as chemical bistability indeed can only
occur in a “living system” and it is associated with
“negentropy” [13, 14].

Multiscale dynamics and the Keizer’s paradox.
Every CME model contains the parameter V', the
volume of the reaction system. When the number
of molecules, N, and V — oo, the mathematical
solution to the CME agrees with that of from the
Law of Mass Action which yields concentration
z = N/V [1,2]. For most biochemical models,
one is also interested in the stationary behavior of
the solution of the CME. This represents all the
number of molecules in a reaction systems that
are statistically independent of time, with station-
ary number fluctuations due to the biochemical
reactions. One naturally identifies this with the
homeostasis of a cell. Mathematically, this means
one is interested in the limit of ¢ — co. Hanggi et al

[15] and Baras et al. [16] correctly pointed out the
delicate issue of V' (and N) — oo and ¢ — oo and
their noncommutative relation. In other words,
one needs to be extra careful in dealing with the
steady state behavior of a CME model.

This issue has been re-examined recently [11, 17]
in more details. It is shown to be intimately re-
lated to the multiple time scales of the bistability.
The transition rates between the two states of a
bistable system are exponentially small: o< e~ @V
where « is a positive constant.

The mathematical relation between the CME
and its Fokker-Planck approximation has been dis-
cussed in several treatises (e.g., p. 116 of [18]).
It is based on a similar diffusion approximation
theory for Boltzmann equation (Sections 3.2 and
3.3 of [18]). Keizer also discussed multiple steady-
states in biochemical reaction systems. However,
the consequence of the multi-stability with diffu-
sion approximation was not discussed. Van Kam-
pen has repeatedly emphasized that the Fokker-
Planck approximation can be obtained for mas-
ter equations only with small individual jumps. A
more sophisticated treatment of the Fokker-Planck
approximation for master equation was given in
terms of the Q-expansion ([10], Ch. 10). This the-
ory provides a more satisfying approximation for
the stochastic relaxation in the limit of large V.
However, it does not address how to obtain the
stationary distribution with multiple equilibria.

3 Stochastic Bistability in the CME

In the previous section we have stated that for
sufficiently large V, the CME gives a stationary
probability distribution for the numbers of all the
dynamical species that is in complete agreement
with the prediction from the Law of Mass Ac-
tion. A bistable system according to the Law of
Mass Action, thus, corresponds to a bimodal dis-
tribution in the CME. The converse is not true,
however. In recent years, there have been in-
creasingly more examples that nonlinear biochemi-
cal reaction systems with macroscopic unistability
can exhibit bistable behavior in a small volume.
These results have important implications to cellu-
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lar biochemistry. We shall give one example: The
phosphorylation-dephosphorylation cycle (PdPC)
with autocatalytic kinase [19]:

k k
E+E*+ATP = E*+ E*+ ADP, E* = E+P,

k_1 k_o
(17)
If we use z to denote the fraction of the phos-
phorylated E*, then according to the Law of Mass
Action:

(ji—': = kz(l—z) — k_12® — kex + k_o(1 — z)
= —(751 + E_1)$2 + (E1 — ko —k_9)z + k_2,
(18)

where 751 = k1 Eicr, 75_1 = k_1Ecp, F; is the to-
tal concentration of E and E*, ¢y and ¢p are ATP
and ADP concentrations. Eq. (18) has two steady
states, only one is positive and chemically mean-
ingful. Hence there is no bistability in macroscopic
size reaction system, with any parameters.

However, if the exactly same nonlinear PdPC
are in a small reaction volume such as a cell, then
according to the CME, the stationary probability
distribution for the number of E* is

n—1 ,3 . .
_ (k1j + k_2)(Ny — 5)
pel) =C 1L GGy

=0

where k; = %i/V, 1 = 1. C is a normalization
factor.

It is easy to check that the distribution in Eq.
(19) has two peaks, one at n} = 0 and one at n3:

ko + k_o + k_1 — ki N,
ny = 2+ Kk o+ K1 1V + (20)

—4(]%_1 + ];71)(]{)2 — k}_th)
2(;)1 + ]2,‘71)

It is usually not an integer. Hence it exhibits
stochastic bistability in a small volume.

1
( (ko + koo + k1 — B IV})? ) 2

4 Biochemical Bistability in a Cell and
Epi-genetic Inheritance with a Distribu-
tive Code

Since the discovery of DNA double helix, it has
been well understood that DNA replication is the
molecular basis of biological inheritance. However,
in addition to DNA based inheritance, epi-genetic
inheritance has become an increasingly important
concept in cell differentiation, stem cell research, as
well as bacterial persistence [20]. Current research
has been focusing on several specific molecular pro-
cesses as the possible “code” for epi-genetics, e.g.,
histone acetylation [21] and DNA methylation [22].
One of the key issues is that the code has to be suf-
ficiently stable. This leads researchers to look for
specific covalent modifications of transcriptional
regulation apparatus.

However, specific covalent modifications might
not be necessary. According to the theory of
the CME, the stability of a state of a biochemi-
cal reaction system, i.e., the peak in the station-
ary distribution, is due to the biochemical reac-
tion network [23]. In other words, the epi-genetic
code could be distributive, namely, properties such
as state stabilities are the outcome of the collec-
tive behavior of many components of a biochem-
ical network. Therefore, the detailed molecular
mechanism(s) aside, the nonlinear biochemical re-
action network(s) as the foundation of cellular epi-
genetics has to be valid.

Ptashne has recently re-emphasized the impor-
tance of heritability in the term “epi-genetics” [24].
We shall point out that the states of bi- or multi-
stable nonlinear biochemical reaction systems, as
defined above, naturally give rise to the heritabil-
ity. It is important to remember that the ¢(z)
above is inpendent of V, and the z is the con-
centration. Hence, assume there is no specific
mechanism of regulating the production of the X
molecules, when the system’s volume is increased,
the concentration z goes down. However, the non-
linear dynamics automatically regulates itself and
the steady state concentration of X is regained.
Thus, as long as the volume of the system is slowly
increasing in the S-phase of of cell cycle, the con-
centrations of all the key biochemical species (i.e.,
transcriptional regulators) are always maintained
at its steady state value. Only when the vol-
ume change sufficiently large and very rapid, there



Liang and Qian : Computational cellular dynamics based on the CME 6

would be a chance the system “jump” into another
basin of attraction, see Fig. 1. If the basin of at-
traction of a state is broad, then a daughter cell
will still be in the same state as the parent cell
without a need for any additional signal and regu-
lation.

steady state chemical distribution

. .
I Cz* I * .

Co concentration of
regulatory molecules

c_1* *
2 O 2
|—| |—|

Fig. 1: Schematics showing how two biochemical states
of a nonlinear biochemical reaction system can be inherita-
ble if the volume of the reaction system is slowly increased,
and then divided into two. In the figure, a sudden volume
increase with a factor of 2 will still maintain the system in

its original attractors.

5 Computational Challenges from the
Chemical Master Equation

In the theory of the CME, the dynamics of a
biochemical reaction system, in a small volume, is
represented by a multi-dimensional, integer-valued
stochastic jump process in Z". The process is
a discrete-state, continuous-time Markov process.
As any Markov process, it can be mathematically
characterized either in terms of its ensemble of
stochastic trajectories, or by its probability distri-
bution as function of time. These corresponds to
the stochastic differential equation and the Fokker-
Planck equation representations of a Brownian dy-
namics. The CME is the differential equation for
the probability distribution; the stochastic trajec-
tory is defined by the well-known Gillespie algo-
rithm. In analyzing a CME model, these two ap-
proach complement to each other.

One type of chemical reaction systems, the
single molecules or uni-molecular reaction sys-
tem, has been extensively studied in the past.

It is important to note that such systems are
linear chemical reaction systems. Since all the
molecules in uni-molecular reaction systems are
statistically independent, it can be represented by
either the particle-state-tracking (PST) algorithm
or particle-number-tracking (PNT) algorithm [25].
The simulation can also be carried out approxi-
mately, but accurately, by a continuous model of
Langevin dynamics [26]. There is no multistability
in such systems.

The difference between PST and PNT is as fol-
lows: One either considers the discrete states of the
particles in the simulation, or one considers the
number of particles in a particular state. These
two approaches correspond precisely to the La-
grangian and Euler descriptions of fluid particles -
in terms of trajectories of particles and in terms
of the density [27]. In the current research on
stochastic simulation of biochemical reaction sys-
tems, these correspond to the StochSim/MCell [28]
and the StochKit, respectively. The Langevin ap-
proximated algorithm is closely related to the lin-
ear noise approximation (LNA) [29]. The LNA
can be only valid within each “peak” region. i.e.,
a basin of attraction, of the CME. For nonlinear
reaction systems with multi-stability, the Keizer’s
paradox can occur which invalidates the Langevin
approximation for the longer time scale dynamics.

On more general terms, there are many rea-
sons to seek accurate solution from the CME di-
rectly, although much has been learned about the
overall probabilistic landscape of many biochemi-
cal networks through stochastic simulations (Gille-
spie, StochSim/MCell, and StochKit) and approx-
imated continuous models based on stochastic dif-
ferential equations. First, details of the topological
features and their quantification such as the exis-
tence and location of basins of attraction, craters,
peaks, and saddle points of various dimensions,
their widths, breadth, and depths on the proba-
bilistic landscape, as well as their possible biologi-
cal implications such as the inheritable epi-genetic
state arising from the properties of the network are
largely unexplored. This is true even for simple re-
action systems such as the 2-dimensional Shnaken-
berg model, which is only slightly more complex
than the 1-dimensional Schlogl model discussed
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above, as there are no general exact probabilistic
solutions available yet. Second, accurate solution
to the CME problems can facilitate development
of approximation methods that are capable of solv-
ing large-size problems. There is a large body of
studies on theoretical approaches approximating
the CME through the Fokker-Planck, and equiv-
alently Langevin, equations. For effective design
of these models and efficient computations of ac-
curate solutions to large biochemical systems, it
is essential to have some a priori knowledge of
the ground truth. Third, perhaps most impor-
tantly, an accurate solution to the CME of simpler
model systems can reveal important insights into
basic principles on how biological networks func-
tion and how they respond to various environmen-
tal perturbations. A shining example of studying
complex systems using manageably simple mod-
els is the study of protein folding. Models such
as two- and three-dimensional lattice self-avoiding
walks with only hydrophobic and polar (HP) inter-
actions allow complete enumeration of all feasible
conformations and calculation of exact thermody-
namic parameters for molecules with short chain
lengths. They have played important roles in elu-
cidating the principles of protein folding [30], in-
cluding collapse and folding transitions [31-38], in-
fluence of packing on secondary structure and void
formation [39-42], the evolution of protein func-
tion [43,44], nascent chain folding [45], and the
effects of chirality and side chains [42].

6 The State Space of the Chemical
Master Equation and Exact Calculation
of Steady State

The state space of the CME is that of M-
dimensional vectors with non-negative integers,
which represents the copy numbers of molecular
species in a network; M is the number of dynamic
species. These states are microscopic in nature, as
they provide a detailed, chemical amount of each
and every molecular species. An important advan-
tage of treating these microscopic states of copy
numbers explicitly is that both linear and nonlin-
ear reactions (such as synthesis, degradation, bi-

molecular association, and polymerization) can be
modeled as Markovian transitions between two mi-
crostates, one reaction at a time. Here the tran-
sition rates between states are determined by the
intrinsic propensities of the reaction, and the copy
numbers of molecules involved.

For any biochemical systems beyond the sim-
plest toy problems, a challenging issue in obtain-
ing an accurate solution to the CME is the char-
acterization of the state space. An accurate de-
scription of the state space is a prerequisite for
computationally obtaining solutions to the CME.
In principle, the size of the state space grows ex-
ponentially with the number of molecular species
and the copy numbers of molecules in the system.
For example, if there are 16 molecular species in a
network, and there are only 33 copies of molecules
total in the whole system, one can estimate some-
what naively the upper bound of the state space
as (33+1)® = 3.19x 10%*. Note the +1 counts the
zero copy as a state. This is an astronomic num-
ber that is well beyond what can be computed with
current and for-seeable future computing technol-
0gy.

Below we discuss the enumeration of the state
space of CME and exam how to obtain exact
steady state solutions to the CME for biochemi-
cal systems with small and moderate sizes.

Optimal enumeration of state space. Although
in principle the size of the state space grows ex-
ponentially with the number of molecular species
and the copy numbers of molecules in the system,
all is not lost. There are two important observa-
tions about general biochemical networks. First,
the Markovian transition matrix is very sparse.
For any given micro-state, the number of reactions
that could occur in a short time interval is small,
which could be bounded by the total number of
possible reactions in a biochemical network. Sec-
ond, as an open system, molecules are synthesized
and degraded constantly. However, the number
of molecules that can be synthesized is never in-
finite, as synthesis is constrained by the time and
resources required. With these two considerations,
an algorithm to enumerate the state space of CME
has recently been developed [46]. The algorithm is
optimal in memory requirement, as it allows the
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enumeration of all states that can be reached from
a given initial state, without including any irrel-
evant states. In addition, all possible transitions
are recorded, and no infeasible transitions are at-
tempted. The resulting transition matrix based
on the enumerated state space is compact with-
out redundant information, and is minimal in size.
In addition, its computational time is also opti-
mized [46].

Exact calculation of probability distribution of
the steady state. Once the states reachable from
a given initial state are enumerated, the rates of
chemical reactions connecting two of these states
can be computed. For example, if we denote the
rate of the reaction that brings the before-state %
to the after-state j as a;;, we have for the third
order reaction

2 X Protein + GeneA LN BoundGeneA,

the following reaction rate coefficient a; ;:

aij =b-ngp,i-npa,i (npa,i —1)/2,

where b is the intrinsic reaction rate which con-
tains hidden systems volume V', ny,4,; is the copy
number of protein A in state ¢, and ngp ; is the
copy number of unbound gene B. Here the combi-
nation number of the protein for this second order
reaction is ("74%) = npa,i - (npa,i — 1)/2. Note
that in addition to the volume V, there is a factor
of 2 difference between the intrinsic reaction rate
here and the macroscopic rate constant discussed
in Sec. 2.

Once the full reaction rate matrix A = {a;;} €
R**" jg filled with computed rates, the chemical
master equation can be written in a matrix-vector
form as:

P(t) = AP(t). (21)

Here the matrix A represents the infinitesimal gen-
erator of the continuous time Markov process. The
diagonal elements a;; is set as: a; = — Z#j aji,
and all off-diagonal elements are nonnegative. The
analytical solution at time ¢ to Eqn 21 can be writ-
ten in as a matrix exponential:

P(t) = exp(At)P(0). (22)

The matrix ¢4 is the Markovian state transition
probability matrix with time duration ¢. We can
also obtain its discrete equivalent M as [38]:

M=TI+A-At, (23)

where I is the identity matrix, At is a small time
interval during which one reaction occurs. When
the system has reached the steady state, the proba-
bility landscape over the enumerated states P can
be computed by solving the equation:

Here P can be obtained with an iterative solver
such as that based on the successive over-
relaxation (SOR) technique [47]. Alternatively,
since P for the steady state corresponds to the
eigenvector of M with eigenvalue 1.0, one can ob-
tain P by using eigenvector method such as the
Arnoldi method [48], as done in [46].

By examining computationally the stochastic
behavior of genetic circuits for wild type and mu-
tant networks, and by studying the probabilities
of rare events, one can gain further understanding
of the regulation mechanism of genetic circuits, its
system stability against perturbation (such as fluc-
tuations in nutritional conditions), and its robust-
ness against genetic mutations (such as those due
to DNA damage) [49].

6 Two Examples of Stochastic Bio-
chemical Systems and Their CMEs



Liang and Qian : Computational cellular dynamics based on the CME 9

proteig B d

el

)i

S

W 0

s

p | o

d protein A

b GeneA> ProteinA
GeneB-> ProteinB
ProteinA &
ProteinBS &
2X ProteinA+GeneB 2 BoundGeneB
2 X ProteinB + GeneA LA BoundGeneA
BoundGeneA~: 2 X ProteinB+GeneA
BoundGeneB 52 X ProteinA +GeneB

Fig. 2: The model of a toggle switch. (a) The network
model and the reaction rates. Single copies of gene A and
gene B encode a protein product. Two protein monomers
can repress the transcription of the other gene. The syn-
thesis of protein product of gene A and B depends on
the bound or unbound state of the gene. (b) The chemi-
cal reactions of the 8 stochastic processes involved in the
toggle-switch system. The reaction rates include s for
protein synthesis, d for protein degradation, b for protein-
gene binding, and u for protein-gene unbinding (Adapted
from [46]).

In this section we give two examples on how
exact stationary probability landscapes of a bio-
chemical network can be computed from its CME.
The CME, of course, gives more than just a sta-
tionary distribution, but solving the steady state is
almost obligatory in any analysis of mathematical
models.

Toggle Switch. In Section 3, we have already
discussed how bistability arising from stochastic-
ity. Another example is the well studied toggle-
switch system. This is a small network consisting
of two genes, A and B , each inhibits the other
(Fig. 2). Although this is the simplest network

with bistability that can already be identified from
ODE models based on the Law of Mass Action,
important questions such as switching probability
between the “on” and “off” states requires a treat-
ment of the stochasticity. Although there have
been great recent progresses in deriving analyt-
ical solutions [50-53], they are applicable under
special conditions, such as fast transition between
the on- and off-states, or overall small noise associ-
ated with high concentrations. With the algorithm
for state enumeration, the steady state landscape
probability of the toggle-switch can be solved ex-
actly for models with arbitrary parameter specifi-
cations.

Epigenetic switch in phage lambda. Exact solu-
tion of the CME can also be obtained for larger sys-
tems in which biological phenomenon are modeled
more realistically. An example is the epi-genetic
switch of phage lambda, in which a gene regu-
latory circuit controls the switching between the
maintenance of the lysogenic state and the induc-
tion of the lytic state. The CME model analysis
clearly demonstrates the idea of a distributive epi-
genetic code. As a paradigm for understanding
cell development, phage lambda has been exten-
sively studied, with the molecular components and
reaction rates well characterized (see the seminal
book by Ptashne [54]). The key components of the
switch of the genetic circuits and their wirings can
be summarized in Fig 3. There are three operators
(OR1, OR2, and OR3) and two promoters (Pr and
Prm). These are used to control the transcription
of CI and Cro proteins, which dimerize and bind to
the operator sites with different affinity and inhibit
the expression of each other [54].

The importance of stochasticity in the genetic
circuit of lambda phage is well recognized, and its
effects have been studied using stochastic simula-
tions [55] and stochastic differential equations [56,
57]. The steady state probability landscape of the
CME model based on the network depicted in Fig.
3 can be solved directly [49]. Fig. 4 shows the prob-
ability landscape under several physiological con-
ditions when the system is in the lysogenic state, in
transitory switching state, and in lytic state [49].
Fig. 5 shows the phase diagram of concentrations
of CI and Cro at different CI synthesis rate.
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Kb_DimerDNA

Ku_OR3CI2 Ku_OR2CI2 Ku_OR1CI2

] i

Ku_OR3Cro2 Ku_OR2Cro2 Ku_OR1Cro2

Kb_DimerDNA

Fig. 3: The phage X switching network. Reactions in-
cluding binding and unbinding, synthesis and degradation,
dimerization are labeled as arrows, along with the corre-
sponding kinetic constants (Adapted from [49]).

Fig. 4:
sis rate.
The switching state, Ks_Cl=0.0245/sec, (C) Lytic state,
Ks_Cl=0.0077/sec. X and Y axes are copy numbers of
Cl and Cro dimers; and Z axes is the marginal probability.

Lysogenic and lytic states and Cl synthe-
(A) Lysogenic state, Ks_Cl=0.045/sec, (B)

(Adapted from [49]).
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Fig. 5: Cl and Cro dimer levels at different CI synthesis
rates. Cl levels are plotted in solid lines, and Cro levels in

dashed lines. The protein dimer levels are relative values
(Adapted from [49]).

By examining computationally the stochastic
behavior of genetic circuits for wild type and mu-
tant network, and by studying the probabilities of
rare events, one can gain further understanding
of the regulation mechanism of genetic circuits, its
system stability against perturbation (such as fluc-
tuations in nutritional conditions), and its robust-
ness against genetic mutations (such as those due
to DNA damage) [49].

7 Methods for State Space Simplifica-
tion

For large systems in which enumeration is no
longer feasible, one approach for numerical compu-
tation is to reduce the large number of microstates
to a smaller finite number [58].

Finite State Projection. Munsky and Kham-
mash made two key observations about projecting
the high dimensional state space to a lower dimen-
sional finite space when including only a subset
of the original states. Denote two sets of indice
of the states being chosen as Ji and Jo, and as-
sume J; C Jy. The reduced rate matrix obtained
by selecting states in J; and J; are Ay, and Ajy,,
respectively. The first observation is:

((eAJ?)J1 > e > 0. (24)

This relation implies that by increasing the size
of the selected subset of states, the approximation
improves monotonically. Second, if one obtains a
reduced state space by selecting states contained
in the index set J and if 174 P;(0) > 1 — ¢ for
€ >0 and t > 0, then:

tAIP0) < Py(t) < eATP(0) + el (25)

That is, starting with the initial probability of the
reduced vector Py(0), compute the probability vec-
tor in reduced space e*47 P;(0) at time ¢ using the
reduced rate matrix Ay. If the inner-product of
this vector for time ¢ with 1 is no less than 1 — ¢,
then the error of this vector with the projected true
vector Pj(t) from the true probability P(t) is no
more than eI. This inequality guarantees that the
approximation obtained with reduced state space
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will never exceed the actual solution, and its error
is bounded by € [58].

These key observations led to the Finite State
Project Algorithm, which iteratively adds new
states to an initial reduced state space, until
the approximation error is within a prescribed
bound [58]. Munsky and Khammash further
extended the original Finite State Projection
method [59], and recommends running a few steps
of stochastic simulation to obtain the initial prob-
ability vector P(0) that is non-sparse. However,
there are no generally applicable strategies as to
what states to add to a finite projection to im-
prove the approximation accuracy most efficiently

Krylov Subspace Method. The analytical solu-
tion of the CME can be expressed in the form of a

matrix exponential P(t) = eAtP(O). As discussed
before, the rate matrix A has a very large dimen-
sion but is sparse. An alternative approach to re-
duced the state space is to convert the problem of
exponentiating a large spars matrix to that of ex-
ponentiating a small dense matrix in the Krylov
subspace K, [60]:

Km(At, P(0)) = Span{P(0),--- , (At)™ 1 P(0)}.

(26)
The idea is that the Krylov subspace has a
very small dimension of m = 30 — 60. De-
noting || - ||2 as the 2-norm of a vector or ma-
trix, the approximation then becomes P(t) =
[|[P(0)||2Vmt1exp (tH41) €1, where e; is the
first unit basis vector, V11 isa (m+1) x (m+1)
matrix formed by the orthonormal basis of the
Krylov subspace, and H,, 1 the upper Hessenberg
matrix, both computed from an Arnoldi algorithm
[61]. The error can be bounded by

O(em 1Al (1] Al /m)™).

One only needs to compute explicitly
exp (ﬁm+1t). This is a simpler problem as m
is much smaller. A special form of the well-known
Padé rational of polynomials instead of Taylor
expansion is used [62, 63]:

eHmit s Ny (F 1) [Ny (—F 1),

where Npp(tHpi1) = Yb_ock(tHpi1)® and
Cp = Ck_1 - ﬁ. The EXPOKIT software by
Sidje provides an excellent implementation of this
method [63]. This approach has been shown to
be very effective in studying large dynamic system
(n = 8.0 x 10°) such as protein folding [38] and sig-
naling transmission in macromolecular assembly of
GroEL-GroES [64].

The Krylov subspace method concurrently eval-
uate the matrix exponential. The overall scheme

can be expressed as follows:

P(t) = exp(Tk Ak) . ..exp(19Ag) P(0),

K
t=> 7 (27)
k=0

in which the evaluation is from right to left. Here
{7;} are size of time steps, and K is the total num-
ber of time steps [60].

MacNamara et al further extends the Krylov
subspace method by splitting the rate matrix A.
Based on the reachability criteria, one can divide
the states into the “fast partition” and the “slow
partition” [65]. Here the condition is that two
states belong to the same subset of the fast par-
tition if and only if one can be reached from the
other via a sequence of finite fast reactions [65].
Correspondingly, the matrix can be splitted into

two:
A= Af + A,

where Ay corresponds to the fast CME, and A,
corresponds to the slow CME, and one has:

Py(t) = AfPy(t)

and

P(t) = A;Ps(t).

With this deliberate separation, both Ay and A,
maintain the important property of being infinites-
imal generators of continuous time Markov pro-
cesses by themselves [65]. With more elaborated
splitting scheme for aggregation of Markov pro-
cesses, the Krylov subspace projection method
have been shown to be computationally very ef-
ficient [60].

Approximation by continuous stochastic differ-
ential equation. An effective approach to study
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biochemical networks whose chemical master equa-
tions cannot be solved directly is to approximate
them with stochastic differential equations. One
widely used approach is that of the Fokker-Planck-
Langevin model [10]. The Langevin equation for
concentration flux consists of a drift term and a
diffusion term. The drift term models the macro-
scopic deterministic component of the system. It
reflects the time-dependent evolution of the mean
concentrations of the molecular species. The diffu-
sion term models the intrinsic stochasticity of the
system. The basic form of a Langevin, stochastic
differential equation is:

ax

O = (X) + o (X)W (0, %) L (28)

(a) CME
A=10
B=50

(e) ULE
| A=10
1 B=50

400 400

(f) ULE
| A=20
27" B=40

400 400

Here X is the vector of concentrations of molecular
species in the reaction system, pu(X) the drift term,
and the second term is the diffusion term. Here
N(0,1/dt) is a vector of one-dimensional Gaus-
sians, with zero mean and 1/dt variance. The co-
efficient o(X) controls the amplitude of the Gaus-
sian noise. It can be either a function of X or a
constant. The key issue in developing Langevin
models for biochemical networks is to determine
u(X) and o(X). When o(X) is a vector of con-
stants, one adjusts its values so the variance of the
Gaussian noise produce the correct fluctuations in
the system [10].

(g) ODE
a=0.1
7 b=0.5
> o -
- d
od
0 1 2 3 4
X
< J
(h) ODE
a=0.2
7 b=0.4
> o -
- d
od
0 1 2 3 4

X

Fig. 6: Calculated probability distributions over different copy numbers of X and Y and the trajectories of evolving

concentrations of X and Y of the Schnakenberg model. (a) and (b): Exact probability distributions over copy numbers
X and Y obtained by solving the chemical master equation (CME). Two sets of copy numbers of (4, B) at (10, 50)
and (20,40) are used for the fixed parameters A and B ; (c) and (d): Reconstructed probability distributions over X
and Y obtained from 200,000 simulations of the Langevin equation (ULE); and (e) and (f): Trajectories of evolving

concentrations of X and Y according to the deterministic ordinary differential equation (ODE). Here (e) shows the well-

known oscillating limit cycle behavior of the Schnakenberg model, and (f) shows the convergence towards a fixed point.

The concentrations of A and B are set at values equivalent to the copy numbers used in stochastic models (Adapted

from [66]).
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One of the most important issues one should
keep in mind when developing Fokker-Planck-
Langevin approximations for a CME is the Keizer’s
paradox previously discussed. For dynamical sys-
tem with a single, globally attracting attractor,
however, this is not an issue. We shall use the
Schnakenberg model to demonstrate how well the
Langevin approach works. Originally developed
for studying the limit cycle behavior in a simple
chemical reaction system [67], the Schnakenberg
model is a simple system with two reacting com-
ponents and three reversible reactions:

k ks k
X=A4 B=Y, 2X+4Y = 3X, (29
k_1 k_2 k—3

where X and Y are reacting species of the system,
and A and B are external reactants whose con-
centrations (or copy numbers) are fixed constants.
Each reaction has a corresponding microscopic re-
action rate. The fixed copy numbers or concen-
trations of A and B can be adjusted, which lead
to different behavior of the system. This simple
system already produces complex behavior such
as oscillation and has a single stable limit cycle
(see [6,68] for recent examples).

The macroscopic concentration obtained by
solving the corresponding ODE model, the approx-
imated steady state probability distribution ob-
tained by integrating the Langevin model, and the
exact probability distributions obtained by solving
the chemical master equation [46] are shown in Fig.
6. At the parameter values of A = 10 and B = 50,
the well-known oscillating limit cycle behavior of
the Schnakenberg model can be seen in Fig. 6g.
At A = 20 and B = 40, the behavior of the sys-
tem converges towards a fixed point (Fig. 6h). The
landscapes of the steady state probability distribu-
tions obtained from solving the Langevin equation
and the chemical master equation all show a crater,
or a basin surrounded by a mountainous ridge for
the parameter set of A = 10 and B = 50 (details
not shown). This corresponds well with the limit
cycle behavior observed in the ODE model. At
A = 20 and B = 40, the landscapes show a sin-
gle peak, which again corresponds well with the
fixed-point behavior observed in the ODE model.

As can be seen in Fig. 6, and Fig. 7, the model

of Langevin equation approximates well the true
probability landscape of the chemical mater equa-
tion. This demonstrates that the diffusion term
models the intrinsic stochasticity of the Schnaken-
berg model well.

Further improvement can be achieved when
the diffusion term is modeled by the variance-
covariance between pairs of the molecular species,
which account for the statistical correlations
among interacting reactions. The magnitude of
the covariance is determined by the Hessian ma-
trix of the second-order partial derivative of the
propensity functions of the reactions [69, 70]. The
inclusion of the second moments to account for the
stochasticity is the basis of the stochastic kinetic
model [69]and the mass fluctuation kinetic model
(MFK) [70]. These models can rigorously model
reactions involving one or two molecules [69, 70].
They are similar in spirit to the Fokker-Planck
equation model of the CME as described in [71]
by including a second moment term for better ap-
proximation, but are different from that of [71] as
they are macroscopic in nature.

Fig. 7. Comparison of errors between different steady
state solutions of the Schnakenberg model. (a): Differ-
ence between the probability landscapes of the Langevin
equation and that of the chemical master equation. This
represents errors in the Langevin model. (b): The amount
of the errors in (a) that are corrected by introducing
explicitly a coupling term between X and Y (Adapted
from [66]).

A simpler approach is to directly model ex-
plicitly the stochastic coupling of the macroscopic
concentrations of molecular species, in addition
to the Gaussian noise of the original Langevin
model [66]. The steady state probability landscape
of the Schnakenberg model resulting from this ap-
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proach is shown in Fig. 6. Significant improvement
after incorporating the coupling term can be seen
in Fig. 7.

Remark. The complex nature of the stochas-
tic dynamics arising from biochemical networks
bears much resemblance to another complex sys-
tem, namely, that of protein folding. Both have
very large space of micro-states, and both can be
modeled by transitions between micro-states us-
ing master equations (for using master equation
in protein folding studies, see [35,37,38]). How-
ever, these two systems differ in several important
aspects. First, while protein folding can be mod-
eled as a relaxation process towards the equilib-
rium state, biochemical networks are intrinsically
open, with synthesis and degradation of molecules
an integral part of the system, hence there are no
equilibrium states. Instead, one frequently seeks
to study the non-equilibrium steady state (NESS).
Second, once the energy of a protein conforma-
tion is known, the relative probability of its se-
quence adopting this conformation in the equilib-
rium state can be calculated from the Boltzmann
distribution, without the need of knowing all other
possible conformations and their associated prob-
abilities. In other words, the protein folding prob-
lem is local in the energy landscape. In contrast,
it is not possible to calculated the relative prob-
ability of a specific microstate of copy numbers
a priori without solving the entire CME, as the
probability distribution of network states do not
generally follow any specific analytical forms (no
detailed balance and the existence of cycle fluxes).
Third, transitions between microstates are clearly
defined in biochemical networks by the reactions,
whereas transitions between different protein con-
formations often technically depend on specific
move sets, which are different in terms of allowable
transitions between states and transition rates, al-
though all such move-sets are developed with the
goal to mimic physical movement of molecules.

8 Discussions and Outlooks

In this review, we have discussed the signifi-
cance of the chemical master equation (CME) as a

theoretical framework for modeling nonlinear, bio-
chemical reaction networks inside cells, and the
possible mechanism of cellular states, or attractors,
as the inheritable phenotypes with a distributive
epi-genetic code. The validity of such a grand the-
ory requires close comparisons between theoreti-
cal predictions with experiments. Solving a given
CME, however, is a computationally challenging
task at the present time. We have outlined several
key difficulties, as well as some of the progresses
that have been made so far.

Complexity theory is a major subject of com-
puter science. What is complexity and how to de-
fine complex behaviors? Through studies of the
CME, one seems to be able to gain some deeper
understanding of the issues involved through con-
crete physical and biology examples. Recently, one
of us has suggested that a key to mesoscopic com-
plexity [72] is in the multi-stability with multiple
time scale dynamics [73]. Nonlinear biochemical
reaction systems in a cell-size volume can be a pro-
totype for studying complexity.
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