V&V 40 Subcommittee # V&V for Computational Modeling for Medical Devices Carl Popelar, Chair, Southwest Research Institute Tina Morrison, Vice-Chair*, FDA Andrew Rau, Vice-Chair, Exponent Ryan Crane, Secretary, ASME in a medical device e.g., physiological model in a control system CM&S as valid scientific evidence e.g., fatigue safety factors CM&S is the medical device e.g., clinical decision support in a medical device e.g., logical algorithm in a control system medicalnewstoday.com CM&S is the medical device e.g., clinical decision support heartflow.com Kelm, Int J of Med Sci 2009 CM&S as valid scientific evidence e.g., fatigue safety factors Bluestein, PLOS - 2012 #### Credible CM&S In order to more fully leverage CM&S of medical devices (medical products), we need a methodology to ensure the output of CM&S is credible. Credibility: the quality to elicit belief or trust in predictions of the CM&S within a context of use Adequate verification, validation and uncertainty quantification (VVUQ) are necessary to foster confidence and wider acceptance of CM&S in medical device evaluation. Stakeholders need a tool for determining and communicating the rigor of VVUQ needed to support the use of CM&S in - Product development - Regulatory submissions - Medical Device Development Tools¹ qualification applications - FDA Library of Models and Simulations² ^{2,} http://www.fda.gov/MedicalDevices/NewsEvents/WorkshopsConferences/ucm346375.htm #### ASME Guide for V&V for CM&S Focus of the Guide Instead of focusing on <u>HOW TO</u> perform V&V (established elsewhere) The main emphasis of the *credibility strategy* is to serve as a framework for determining the risk associated with using a computational model in a specific context of use to inform decision making and for determining 'HOW MUCH' V&V is necessary to support the model in that context of use³. # The Credibility Strategy #### **Establishing credibility involves** - assessing the pedigree of input data - verifying the software - verifying calculations - determining an appropriate comparator - validating the CM&S outcomes with an appropriate comparator - quantifying uncertainty - performing sensitivity analysis to establish robustness - determining the predictive capability of the CM&S for the context of use (COU) # **Computational Fluid Dynamics** #### **Example COU** For a marketing application, computational fluid flow simulation is used to characterize the flow field and predict blood damage and thrombosis potential for a circulatory support device (e.g., heart valve, blood pump). ## Risk Assessment #### **Establish Context of Use** CM&S Risk: combination of decision influence and consequence - Decision Influence: contribution of CM&S outcome to the decision being made - Consequence: impact if the CM&S outcomes prove incorrect #### Risk assessment - Directs/guides V&V activities - Defines model credibility thresholds ## Framework to Assess Credibility Ensure that the credibility of the CM&S is commensurate with the associated risk The questions raised by the FAC are the following: - How are the elements of the CM&S represented? - How well is the comparator understood (e.g., experiment)? - How appropriate is the computational model to the comparator? - How rigorously are the outputs compared? - How do the CM&S and VVUQ activities relate to the context of use? # Evolution – take 1 #### **April 2012** | | Verification | | Coi | mputational Mod | Comp | Validation | | | | | | |---------|---|--|----------------|-----------------|-------------|-------------|---------------|----------------|---------------|--|--| | | | Device | Constitutive | Boundary | Uncertainty | Sensitivity | Physiological | "Experimental" | some accuracy | | | | "Level" | | Geometry | models/Gover | Conditions, | assessment | assessment | Geometry | Design | assessment | | | | | | | ning Equations | Loads and | | | | | btwn the CM | | | | | | | Used | Deformations | | | | | & comparator | | | | 1 | | | | | | | | | | | | | 2 | | | | | | | | | | | | | 3 | | | | | | | | | | | | | 4 | | | | | | | | | | | | | 5 | Complete V&V Assessment / Evaluation Criteria | | | | | | | | | | | | | | Unsophisticated, but applicable for "low risk" applications, early in design phase/submission process etc. | | | | | | | | | | | | | Moderately sophisticated - applicable for "moderate risk" application etc. | | | | | | | | | | | | | Sophisticated - applicable for "high risk" application etc. | | | | | | | | | | ## Evolution – take 2 #### September 2012 & February 2013 | LEVEL | VERIFICA | ATION* | | | | ASSESSMENT | | | | | | | | |-------|---|---|--|--|--|---|--|---|--|--|--|---|--| | | | | Computational Model | | | | Evidence-based | Comparator | Discrepancy | Comparison | Applicability | | | | | Code | Solution | System
Configurat | Governing
Equations | System
Properties | System
Conditions | System
Configuration | System
Properties | System
Conditions | Sample
Size | Model-to-Comparator | Qualitative or
Quantitative | V&V to COU | | 0 | Insufficient | Insufficient | -Insufficient | Insufficient -Insufficient | | | Incomplete | Incomplete | -Incomplete | Incomplete | Incomplete | Incomplete | -Incomplete | Incomplete | Incomplete | Incomplete | Incomplete | -Incomplete | -Incomplete | | | - Judqmont barod an
priarzimilar analyzir | priorzimilar analyziz | ·Little arna
representation | Physics substantially
simplified relative to
theory, with expected
order of magnitude
effect | -Bulk proporties | Significant
simplification of BCs
withsubstantial
offocton QOI | -Lacations for data collection
are roughly measured or
estimated | -Material properties are nominal
average and homogeneous non-
specific
to present system | Systomstator are not specifically prescribed, measured and affected degrees of freedom are unknown | | - Model and comparator data might not
correspond to equivalent conditions | | Abstraction of CoU that
approximatos ossontial | | | -Minimal test of any
software elements | -Numorical orrars
have an unknaun ar
large offect an
simulation results | -Abstraction of quametry/architecture | -Madel farms are
either unknaun ar
fully empirical | ·Simplified properties
over known
comparator | -Koy BCr not modeled | -Geometry of parts and assemblies is assumed | Matorial interactions are non-
specific to the system when wed
to derive reported quantities | OR | Single care OR feu
cares with no variation
of key parameters | AND | -Qualitativo compariron
only with compariron ir of
dircrete rather than
continuour variabler | systom proporties | | | ·Little arna SQE
praceduresspecified
arfallawed | | | -No coupling | -Uncortainties and
sonsitivities are not
addressed | .Uncortainties and
sonsitivities are n o t
addressed | -Calibrate drystem where
error of system is estimated
OR
Signal to noise ratio
is on the order of data | -Environmental conditions
unknown and offects on
materials not accounted for | .Perturbations are approximate | | -Repart different but related QOI | | | | 2 | · Cado ir managod by
SQE pracoduror | -Numorical offocts
on rolevant SROs
are qualitatively
estimated | -Mean/naminal
qeametry | Physics substantially
simplified with minor
offect on QOI | Bulk properties, not confirmed as approximation of comparator | .Samosimplification
of BCs uith a
considerable offect
on QOI | ·Locations for data collection
are prescribed
and measured | -Matorial proporties are
nominal average and
homogeneous specific
to the system tested | -Systomstator arospecifically
proscribed and measured and
affected degrees of freedom are
known | -Soveral cares with
varied key parameters | -Madel and comparator data do not correspond
to equivalent conditions | -Qualitative comparison
only with comparison of
trends possible from | | | | .Unit and rogrossian
tosting canducted | Input/Output
vorified by the
analyzir | -Single care | -Madolr farms are
based and calibratedf
tuned an data from
rolated systems | -Naminal properties | ·Binary variation | -Goamotry of parts and
assemblies is coassely
measured | Material interactions are
specific to the system when
wed to derive reported
quantities | OR | or | AND | trondr passible from
continuous variables | Approximatos koy CoU
foaturos and capturos
ossontialsystom proportio | | | -Samo campariran
mado uith
bonchmarkr | | -Abstract
qoametry range
af deterministic
cases | ·Little arna caupling | -Dirtribution of simplified properties | Uncortaintios
propagatoduith
informalsonsitivity
analysis | -Calibratedsystem where
error of system is known
OR | -Environmental conditions
known but offects on materials
not accounted for | .Porturbations are prescribed
and measured | -Statistically rolovant
samplosizofor
constant koy
paramotor(s) | -Ropart thosamo QOI | OR | | | | | | -Major fo aturos
capturos | | -Uncortaintios
propagatodwith
informalsonsitivity
analysis | | Signal to noire ratio ir
rubrtantially greater than
one. | | | | | ·Quantitativo
comparison of single,
achievable care | | | 3 | Some algorithms are
tested to determine
the observed order of
numerical
convergence | · Numorical offocts
aro quantitativoly
ostimatod to bo
small onsomo SRQs | ·MMC and LLC | -Minarzimplifications
of physics with at
mast minor offect on
QOI | Dirtribution of proportios, confirmed arrepresentative of comparator | -Representative BCs
uith minor effect on
QOI | -Locations for data collection
are prescribed and error in
location is collected | -Koy material properties are
measured for this lot f billet and
heterogeneity captured where
appropriate | -Systomstatos arospocifically
proscribed and moasured and
affected degrees of freedom are
known | ·Soveral cares with
varied key parameters | -Madel and comparator data correspond to equivalent conditions | ·Quantitative
comparison of
continuous key QOI,
without predictive
accuracy or | | | | -Samo foaturos &
capabilitios are tosts
with bonchmark
salutions | ·Input/Output
independently
verified | -Multiple cares,
range not
statistically
determined | -Madol
roprozontatian af all
impartant pracozzoz | -Uncortainties
sogregated,
propagated and
identified in QOI | -Variation not
statistically relevant | -Goomotry of parts and
assemblies is me asseed to
machine tolerance | -Material interactions are
measured when wed to derive
reported quantities | AND | AND | AND | uncortaintios availablo
OR | Embadies koy CaU feature
and captures koy and | | | ·Samo poorroviour
canductod | -Samo poor roviour
canducted | -Major and some
minor features
captured | -Calibration/tuning
nooded | | -Uncortaintios
sogrogatod,
propagatod and
idontifiod in QOI | -Error of systom is calculated
based on manuf, calibration,
and signal to noise ratio is
high | -Environmental offectron key
materials accounted for | .Porturbations are prescribed
and measured | -Statistically relevant
samplesize for key
parameter(s) | -Ropartzamo QOI | ·Quantitativo
compariron with broad
rango of carer | azzaciałodzysłom
praportios | | | | | ·Dotorministic
cases | -Same cauple, when relevant | | | | | | | | | | | 4 | alqurithms are tested
to determine the
observed order of
numerical
convergence | Numerical offects are determined to be determined to be defined and limpertant QOIs at conditions/ quametries directly relevant to the context of use | ·Nasimplification | -Koy phyzicz capturod | capturodwith
statistical | ·Nazimplifications | -All dimensions / assemblage
known to greater than
machine precision | -All material properties are
measured for lot / billet and
heterogeneity captured where
appropriate | Systomstates are specifically prescribed and measured and affected degrees of freedom are known | -Camprohonrivo
parameter variability | -Madel war implemented with the equivalent comparator conditions | -Quantitative assessment
uith predictive
accuracy, experimental | | | | | | -Multiplo caros,
rangostatistically
rolovant t a
samplos | -Roducod madol farm
orrar | distributions,
confidence intervals | -Appropriate
distribution of
variation | -Data ir collected from
locations known with high
procision | -Material interactions are
measured with tolerance when
reporting derived quantities | AND | AND | AND | AND | Embadies all praperties in
cantext af use | | | -All important F&Cs
are tested with
rigorow benchmark
solutions | -Exporimontal
uncortaintior are
woll charactorized | -All foatures
captured
-Full acommotes | -Minimal need for
calibration/tuning | -Match proportios with
rolovant uncortainty
and comprohensive | -Comprehensive
sensitivity analysis
conducted for BCs | -Error of system is measured a
priori and signal to noise ratio
is high | -Environmental offectron all
materials accounted for | -Perturbations are prescribed and measured | -Statistically relevant
samplesize for all
parameters | -Reportsome QOI | -Computational
uncortainties are well
charactorized | | #### Evolution – take 3 Feb 2014 Framework to Assess Credibility Numerical ation Implementation rification System Configuration Computational erties Model nditions Governing Equations Sample Characterization Control Over Test Condina Measurement Uncertainty Output Comparison puts/Outputs of Output C Applicability to Co Applicability to Context of Use Description of activities generally adheres to the following convention, in order to provide relative assessments of activities that can improve credibility: - <low credibility> - <improved credibility> - <high credibility> ## **Credibility Factor Thresholds** #### **Example** **Quantification of sensitivities:** Associated activities reflect the degree to which CM&S results are sensitive to inputs including material properties, geometries, and boundary conditions. - Sensitivity analyses were not performed - Sensitivity analyses on expected key input parameters were performed across the range of values expected in the COU - Comprehensive sensitivity analysis was performed across the full range of all input values expected in the COU # **Credibility Factor Thresholds** #### Example Rigor of output comparison: Increased credibility is achieved by increased quantification and incorporation of uncertainties in the comparison of the outputs from the CM&S and comparator. Credibility relies on increased attention to both experimental uncertainty and computational error. - Visual Comparison - Comparison of simply measuring the differences between paired computational results and experimental data - Comparison with uncertainty captured and incorporated from the comparator and/or computational model - Comparison with uncertainties captured and incorporated from both the comparator and the computational model, including comparison error ## Establishing V&V Plan ### Develop the V&V plan that considers: - Explicit mention of the COUs - Risk posture for the CM&S for the defined COUs - Credibility thresholds, evaluation metrics, evaluation criteria and justifications - V&V activities that will be implemented, and rationale for why the V&V activities are appropriate to satisfy the credibility thresholds - Discuss the methods for acquiring and analyzing data that will be used, and rationale for why the data source, data quality and data analysis are appropriate or sufficient to satisfy the credibility thresholds and Findings # Applicability of V&V Activities ## V&V-40 Subcommittee Membership Carl Popelar, Chair, Southwest Research Institute Tina Morrison, Vice-Chair*, FDA Andrew Rau, Vice-Chair, Exponent Ryan Crane, Secretary, ASME Payman Afshari, DePuy **Dawn Bardot, MDIC** **Anita Bestelmeyer, BD Technologies** Jeff Bischoff, Zimmer Jeff Bodner, Medtronic Shumin Cheng, St. Jude Medical **Brian Choules, MED Institute** **Rick Chow, Lake Region Medical** Chadd Clary, DePuy Orthopaedics James Coburn, FDA Carlos Corrales, Baxter Kristian Debus, Cd-Adapco Senthil Eswaran, Abbott Vascular Mark Goodin, Simutech Group **Atul Gupta, Medtronic** Prasanna Hariharan, FDA Windi Hary, HeartFlow, Inc Marc Horner*, ANSYS Jinhua Huang, GE Healthcare Hui Jin, Medtronic Sanjeev Kulkarni, Defiance Technologies Danny Levine, Zimmer XueMei Li, St. Jude Medical Michael Liebschner, Exponent Xiangyi (Cheryl) Liu, Simulia Brandon Lurie, WL Gore Paul Missel, Alcon Research, Ltd Lealem Mulugeta, USRA/NASA Arun Nair, BD Technologies William Olson, Ethicon Endo-Surgery Andrew Pierce, Biomet Todd Pietila, Materialise David Quinn, Veryst Engineering **Timothy Rossman, Mayo Clinic** Nuno Rebelo, Simulia Payman Saffari, NDC **Christine Scotti, WL Gore** **Richard Swift, MED Institute** Paul Tomaszewski, DePuy **Tianwen (Tina) Zhao, Edwards Lifesciences** * Standards Committee representative Subcommittee members in bold