
The Stan Modeling Language The Stan Core Library

Bayesian Inference

Once a Bayesian model has been specified as a Stan program it is
parsed into C++ code that can utilized by the Stan Core Library.

The first component of the Stan Core Library is the Stan Math
Library, which admits high-performance evaluation of the
posterior density while providing automatic differentiation, a
algorithmic method for computing fast and exact derivatives of
the posterior density.

The availability of the posterior density and its derivatives enables
the implementation of state-of-the-art computational algorithms
in the Stan Algorithm Library. These algorithms include

The Stan Modeling Language is a probabilistic programming
language designed for specifying complex posterior distributions.
Each Stan program is organized by programming blocks. The data
block defines the measurement,

The language is extensive, supporting linear algebra, ordinary
differential equations, and a large library of classic and modern
probability density functions.

Stan is a collection of state-of-the-art computational tools to
facilitate the specification and fitting of the complex Bayesian
models that arise at the frontiers of applied statistics. A high-
performance math and statistics library written in C++ is exposed
to users via interfaces to the command line, R, Python, and a
rapidly growing list of other popular analysis environments. These
interfaces are also available on all three common operating
systems: Mac OS X, Linux, and Windows.

By automating statistical computation, Stan allows users to focus
their efforts on exploiting their domain expertise to build more
sophisticated models and better analyses. Academic fields as
diverse as psychology, political science, ecology, astronomy, and
physics, amongst many others, have used Stan to build analyses
novel to their fields. Similarly, Stan is an increasingly powerful tool
in industries spanning pharmacology and medicine to social media
and entertainment to real estate and finance. The large scope of
computing environments supported by Stan allow it to be quickly
integrated into new applications across cinch and industry.

Stan is freedom-respecting, open-source software (new BSD core,
some interfaces in GPLv3) and is affiliated with NumFOCUS, a
501(c)(3) nonprofit supporting open code and reproducible
science.

Stan: A Platform for Scalable Bayesian Inference
The Stan Development Team

www.mc-stan.org, @mcmc_stan

data {
 int<lower=1> N;
 real x[N];
 real y[N];
}
parameters {
 real beta;
 real alpha;
 real<lower=0> sigma;
}
model {
 beta ~ normal(0, 1);
 alpha ~ normal(0, 1);
 sigma ~ cauchy(0, 2.5);
 y ~ normal(beta * x + alpha, sigma);
}

⇡(✓ | D)

while the parameter block defines the degrees of freedom in the
model,

⇡(✓ | D)

Finally the model block defines the posterior density itself,

⇡(✓ | D)

⇡(✓ | D)

⇡(✓ | D)

Optimization
 The parameter values that optimize the posterior density
can be found with an an implementation of the L-BFGS
algorithm, allowing Stan to compute penalized maximum
likelihood estimates.

Sampling
 Stan utilizes a state-of-the-art implementation of
Hamiltonian Monte Carlo to accurately estimate posterior
expectations with Markov chain Monte Carlo. This
implementation also features a suite of powerful diagnostics
that inform the user when estimates are inaccurate or
otherwise should not be trusted in a serious analysis.

Variational Inference
 Automatic Differentiation Variational Inference is a
algorithm currently under development to automate the
application of variational inference for any model specified
in Stan. The algorithm aims to provide less precise but
faster estimates of posterior expectations than Markov
chain Monte Carlo.

These latter two algorithms also demonstrate the power of Stan in
not only supporting Bayesian inference but also promoting
research in statistical computation. The Stan Core Library
provides the building blocks for developing new algorithms while
the Stan Programming Language allows these algorithms to be
validated against the models actually be used in statistical practice.

Moreover, this interaction between algorithms and models
facilitates the development of automated adaptation procedures
that remove the burdensome task of algorithm tuning from users.

!

data {
 int<lower=1> N;
 real x[N];
 real y[N];
}
parameters {
 real beta;
 real alpha;
 real<lower=0> sigma;
}
model {
 beta ~ normal(0, 1);
 alpha ~ normal(0, 1);
 sigma ~ cauchy(0, 2.5);
 y ~ normal(beta * x + alpha, sigma);
}

data {
 int<lower=1> N;
 real x[N];
 real y[N];
}
parameters {
 real beta;
 real alpha;
 real<lower=0> sigma;
}
model {
 beta ~ normal(0, 1);
 alpha ~ normal(0, 1);
 sigma ~ cauchy(0, 2.5);
 y ~ normal(beta * x + alpha, sigma);
}

!

!

Bayesian inference is a powerful statistical methodology for
learning from large, noisy, and often corrupted data. A Bayesian
model is compromised of a likelihood that models the complex
measurement process,

and a prior distribution that quantifies our knowledge of the
underlying system before the measurement is made,

Together these two components yield the posterior distribution which
quantifies all of our information about the system being studied
after the measurement,

Once the posterior distribution has been summarized we can
extract principled inferences by computing expectations,

such as means, variances, quantiles, and expected utility functions
for making robust decisions.

Consequently the practical challenge of implementing Bayesian
inference reduces to first being able to specify complex and
bespoke posterior distributions and then being able to accurately
compute posterior expectation values. These challenges are
facilitated with the Stan Modeling Language and Stan Core
Library, respectively.

⇡(D | ✓)

⇡(✓)

⇡(✓ | D) / ⇡(D | ✓)⇡(✓)

,

.

.

,E⇡[f] =

Z
d✓ ⇡(✓ | D)f(✓)

