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Bayesian Inference

Once a Bayesian model has been specified as a Stan program it is 
parsed into C++ code that can utilized by the Stan Core Library.   

The first component of  the Stan Core Library is the Stan Math 
Library, which admits high-performance evaluation of  the 
posterior density while providing automatic differentiation, a 
algorithmic method for computing fast and exact derivatives of  
the posterior density.  

The availability of  the posterior density and its derivatives enables 
the implementation of  state-of-the-art computational algorithms 
in the Stan Algorithm Library.  These algorithms include

The Stan Modeling Language is a probabilistic programming 
language designed for specifying complex posterior distributions.  
Each Stan program is organized by programming blocks.  The data 
block defines the measurement,

The language is extensive, supporting linear algebra, ordinary 
differential equations, and a large library of  classic and modern 
probability density functions.

Stan is a collection of  state-of-the-art computational tools to 
facilitate the specification and fitting of  the complex Bayesian 
models that arise at the frontiers of  applied statistics.  A high-
performance math and statistics library written in C++ is exposed 
to users via interfaces to the command line, R, Python, and a 
rapidly growing list of  other popular analysis environments.  These 
interfaces are also available on all three common operating 
systems: Mac OS X, Linux, and Windows. 

By automating statistical computation, Stan allows users to focus 
their efforts on exploiting their domain expertise to build more 
sophisticated models and better analyses.  Academic fields as 
diverse as psychology, political science, ecology, astronomy, and 
physics, amongst many others, have used Stan to build analyses 
novel to their fields.  Similarly, Stan is an increasingly powerful tool 
in industries spanning pharmacology and medicine to social media 
and entertainment to real estate and finance.  The large scope of  
computing environments supported by Stan allow it to be quickly 
integrated into new applications across cinch and industry. 

Stan is freedom-respecting, open-source software (new BSD core, 
some interfaces in GPLv3) and is affiliated with NumFOCUS, a 
501(c)(3) nonprofit supporting open code and reproducible 
science.
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data { 
  int<lower=1> N; 
  real x[N]; 
  real y[N]; 
}
parameters { 
  real beta; 
  real alpha; 
  real<lower=0> sigma; 
}
model { 
  beta ~ normal(0, 1); 
  alpha ~ normal(0, 1); 
  sigma ~ cauchy(0, 2.5); 
  y ~ normal(beta * x + alpha, sigma); 
}
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while the parameter block defines the degrees of  freedom in the 
model,
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Finally the model block defines the posterior density itself,
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Optimization 
      The parameter values that optimize the posterior density 
can be found with an an implementation of  the L-BFGS 
algorithm, allowing Stan to compute penalized maximum 
likelihood estimates. 

Sampling 
  Stan utilizes a state-of-the-art implementation of  
Hamiltonian Monte Carlo to accurately estimate posterior 
expectations with Markov chain Monte Carlo.  This 
implementation also features a suite of  powerful diagnostics 
that inform the user when estimates are inaccurate or 
otherwise should not be trusted in a serious analysis. 

Variational Inference 
   Automatic Differentiation Variational Inference is a 
algorithm currently under development to automate the 
application of  variational inference for any model specified 
in Stan.  The algorithm aims to provide less precise but 
faster estimates of  posterior expectations than Markov 
chain Monte Carlo.

These latter two algorithms also demonstrate the power of  Stan in 
not only supporting Bayesian inference but also promoting 
research in statistical computation.  The Stan Core Library 
provides the building blocks for developing new algorithms while 
the Stan Programming Language allows these algorithms to be 
validated against the models actually be used in statistical practice. 

Moreover, this interaction between algorithms and models 
facilitates the development of  automated adaptation procedures 
that remove the burdensome task of  algorithm tuning from users.
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data { 
  int<lower=1> N; 
  real x[N]; 
  real y[N]; 
}
parameters { 
  real beta; 
  real alpha; 
  real<lower=0> sigma; 
}
model { 
  beta ~ normal(0, 1); 
  alpha ~ normal(0, 1); 
  sigma ~ cauchy(0, 2.5); 
  y ~ normal(beta * x + alpha, sigma); 
}

data { 
  int<lower=1> N; 
  real x[N]; 
  real y[N]; 
}
parameters { 
  real beta; 
  real alpha; 
  real<lower=0> sigma; 
}
model { 
  beta ~ normal(0, 1); 
  alpha ~ normal(0, 1); 
  sigma ~ cauchy(0, 2.5); 
  y ~ normal(beta * x + alpha, sigma); 
}

!

!

Bayesian inference is a powerful statistical methodology for 
learning from large, noisy, and often corrupted data.  A Bayesian  
model is compromised of  a likelihood that models the complex 
measurement process, 

and a prior distribution that quantifies our knowledge of  the 
underlying system before the measurement is made, 

Together these two components yield the posterior distribution which 
quantifies all of  our information about the system being studied 
after the measurement, 

Once the posterior distribution has been summarized we can 
extract principled inferences by computing expectations, 

such as means, variances, quantiles, and expected utility functions 
for making robust decisions. 

Consequently the practical challenge of  implementing Bayesian 
inference reduces to first being able to specify complex and 
bespoke posterior distributions and then being able to accurately 
compute posterior expectation values.  These challenges are 
facilitated with the Stan Modeling Language and Stan Core 
Library, respectively.
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