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2. Summary: The major goal of this project is to develop a computationally efficient multiscale model of 
blood flow and platelet mediated thrombosis using cutting-edge molecular dynamics and dissipative particle 
dynamics numerical approaches to understand blood flow mediated thrombosis in cardiovascular diseases 
and devices. The project deploys a high-performance computing (HPC) resources around the globe that 
enhances the research, education and training activities of researchers. For more details, visit the Biofluids 
Research Group’s Multiscale Modeling page.  

3. Model Credibility Plan: All multiscale simulations are validated using data collected from experiments 
performed in the PI’s/Co-PI’s (DB, MJS) laboratories and experimental data from literature. Model 
parameters are compared with experimental results for validation and iterative adjustment until differences 
between the model predictions and the experimental data is minimized. Major phenomena that are modeled 
include (1) geometrical, rheological, and material properties using in vitro results, (2) shear mediated 
platelet shape change using Hemodynamic Shearing Device (HSD) and scanning electron microscopy 
(SEM); and (3) flow-mediated platelet flipping, aggregation, and adhesion in microchannels with 
videomicroscopy. The table below lists key experimental and model parameters, and how the latter are 
adjusted based on validation experiments. Following this list is an example of how platelet aggregation 
events in microchannels, as measured using high framerate DIC microscopy, are used to validate our 
aggregation model. 

A-B. Planned Actions in Model Credibility Plan and Description of Information Gained 

i. Validation of Model Parameters 

Key Experiments Parameters Key Model Parameters Adjustable Model Parameters 

Material property: μ of plasma: 
1.1~1.3 mPa•s at 37°C. Diameter of 
platelet: 2-5 μm. Aspect ratio: ¼ 

γ and rcut in DPD correspond to resultant μ 
of plasma. Current μ of plasma: 1.12 
mPa•s. Diameter: 4 μm. Aspect ratio: ¼ 

Increase γ to increase μ of plasma and 
rcut needs to change accordingly. μ: 
viscosity. 

Shape change: (HSD and 
microchannel + microscopy/SEM) flow 
𝜏: 1~70 dyne/cm2; exposure time: 0-
480 sec; pseudopod length: 0.24~2.74 
µm; number of pseudopods: 0~5; 
major axis: 2 ~3 µm; circularity: 
0.9~1.0. 

Couette flow shear stress: up to 400 
dyne/cm2

. tsmax controls growth duration, α 
controls filopodia growth rate in response 
to shear stress-exposure time 
combinations, kb -aspect ratio (range: 
0.2~0.4), circularity (range: 0.8~1.0). 
r(ts,fb) and σ(ts, fb) controls pseudopod L-
length and T-thickness. 

Couette flow BCs adjusted for 𝜏: shear 
stress; �̇�: shear rate increase/decrease, 
kb- change aspect ratio and circularity. r0 
– change pseudopod length Lmax & Tmax- 
converted to model parameter 
space=> >50 pesudopodia patterns- 
adjusted to expt. 

Flipping experiments in 
microchannels - real time DIC 
microscopy (Jeffery’s orbit 𝜙(�̇�𝑡)): 
shear stress: 0.2~100 (dyne/cm2); 
flow rate: up to 17 cm/s. 

γ in DPD and ε, σ in LJ potential controls 
the fluid-platelet interaction230. σ – key 
parameter controlling flipping platelets and 
their trajectory 𝜙(�̇�𝑡). Flow rate: up to 15 
cm/s. 

Parameters are adjusted according to 
results from Jeffery’s orbit. σ mainly 
controls the trajectory of flipping 
platelets. Other sub parameters change 
correspondingly. 𝜙(�̇�𝑡) is changed 
accordingly 

Platelet stiffness with DEP: E = 
1.93~6.88 KPa; ΔL/L: 0~0.2; Poisson’s 
ratio: 0.25~0.35. 

Bi-layered membrane: kb=0.023 N/m, r0 = 
33 nm. Model values: E: from 1.14 KPa to 
total rigidity; ΔL/L: 0~0.5; Poisson’s ratio: 
0.37. 

kb adjusted by matching E of 
experiments. E: Young’s modulus, L: 
axial diameter- deformability of platelet 
change correspondingly. 

Micropipette aspiration: 
γ=(2.9±1.4)×10-2 dyne/cm. 

Stiffness of membrane controlled by spring 
force constant kb. Model value 𝛾 from 
(3.3±0.9)×10-2 dyne/cm to total rigidity. 

kb adjusted to match the modulated 
elasticity  of membrane in 
experiments. γ: shear elastic modulus. 

µ of cytoplasm: 4.1~23.9 mPa·s. 
Morse potential: control parameters 
include ε, α and R. 

ε mainly controls µ. α takes empirical 
value (α=7). R- particles average 
distance. 

Modulating membrane fluidity with 
antiplatelet agents (e.g., DMSO)-
DEP+fluorescence measurements: E, 
γ change accordingly. 

kb of membrane changed (range 10-2 ~ ∞ 
N/m). Friction factor γ in membrane 
controls strength of adhesion forces 
between interacting particles. 

Increase kb to reflect membrane 
stiffness. Other parameters adjust 
accordingly. Platelets deformability 
adjusted, γ -adhesion properties are 
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adjusted to corroborate experimental 
values for membrane. 

Aggregation: the bond length for 
GPIIb/IIIa-Fg-GPIIb/IIIa. Interaction 
distance for integrated platelets when 
a bond can begin to form. Contact are 
between aggregation platelets: 
1.950±0.484 μm2. Detaching force is 
estimated based on the rupture force 
from atomic force microscopy (AFM) 
results: 9~18 nN. 

GPIIb/IIIa-Fg-GPIIb/IIIa bond length 67.5 
nm is modeled in the Morse potential as 
equilibrium bond distance. Cutoff of 
aggregation is approximated as 87.5 nm 
when a bond can begin to form. α = 1 and 
D0 = 1.45×10-19 J in the Morse potential 
corresponds to the contact area: 
2.227±0.003 μm2. fA=0.82 pN in the 
Hooke’s term corresponds to the 
detaching force: 17.842 ± 0.027 nN. 

These is an optimal value for α to 
maximize the contact area: as α 
increases, contact area first increases 
then decreases Increase D0 also 
increases the contact areas. Increase fA 
increases the strength of detaching 
forces between aggregated platelets but 
may ruin the integrity of the platelet so it 
is adjusted to the in vitro results range, 
while platelet shape is intact. 

Adhesion: microscopy of observed 
adhesion patterns (vasc. wall-cultured 
HUVEC + vWF + Fg +fibronectin. 
Device surface + Fg). 

GPIIb/IIIa-vWF binding potential, GPIbα-
vWF-GPIbα, f A- adhesion force magnitude 
coefficient (time dependent), rij- inter-
receptor distance, na- # of receptors, dc- 
relaxation distance, vWF multimer, 
GPIIb/IIIa-Fg binding potential. 

Up to 50,000 GPIIb/IIIa and 25,000 
GPIB receptors, na controls receptor # - 
model patterns (plt-plt. and/or surface 
binding and number- rij adjusted to expt. 
rij < dc; rij –distance between 2 receptors 
when 2 plts come in contact.). 

Multiscale Modeling of Platelet Aggregation Under Shear Flow 

Fig. 1 shows the recruitment process of marginated platelets and the initiation of platelet-platelet aggregation. We 

constructed a molecular-level hybrid force field that combines Morse and Hooke potentials to mimic the binding of 

GPIIb-IIIa and fibrinogen during recruitment aggregation. The nonbonded pairwise interaction of the receptors was 

derived from the Morse potential and the bonded interactions were described as harmonic functions. The hybrid force 

field was parametrized for reproducing morphologic characteristics as contact area at aggregation. We compared rigid 

and deformable platelets and observed that a rigid model significantly underestimated the contact area of aggregated 

platelets, as validated in vitro. Platelet-platelet contact area measured in vitro increased from 1.59±0.48 to 2.00±0.55 

μm2, while platelet surface area increased slightly (21.56±0.62 to 21.89±0.7 µm2), as shear stress increased from 1 to 

10 dyne/cm2 (n=20-23, Fig. 2B). Numerically simulated contact areas correlated well with in vitro measurements in this 

shear stress range. 

 

Fig 1: Multiscale model of aggregating platelets (left). Contact area of deformable and rights platelets (right). 



 
Fig 2: (A) Parameter inputs of aggregation platelets (B) shear-dependent platelet surface and contact areas. 

ii. Uncertainty Quantification (UQ) and Parameter Sensitivity Analysis 

UQ and sensitivity analysis identifies time-stepping sizes and spatial resolutions for desired accuracy, and 
is performed via iterative numerical parameter optimization and global parameter sensitivity until 
convergence. This approach is used for both our experiments (machine learning to predict interplatelet 
contact area under a large range of shear stresses) and numerical models (machine learning to reduce 
computational time while maintaining accuracy). Examples of these approaches for our aggregation 
model and experiments are detailed below. 

Machine Learning Method in Modeling Experimental Data 

Images, recorded at 200 fps on a DIC microscope (Nikon Ti-Eclipse), were analyzed to obtain platelet 
geometric parameters, meshed and integrated to determine contact area, and input into a neural network 
machine learning-based model to predict inter-platelet contact area (Fig. 3A). In this model, we chose the 
geometry measures such as platelet radius, aspect ratio, circularity, volume and surface area, and inter-
platelet distance and contact angle, as well as flow stresses. We estimate the contact area. In the training 
set, we select a range of shear stresses: 1, 5 and 10 dyne/cm2. To test the estimation function, we chose 
another shear stress of 6.7 dyne/cm2. The model we use in the machine learning process is a feed-forward 
neural network with 2 hidden-layers, and each layer has 10 nodes. We randomly choose 75% of the data 
to train the model and the rest 25% as testing samples for trained models. As calculating weights, we use 
Bayesian regularization algorithm to minimizing the cost function. 

Machine Learning Method for More Efficient Modeling without Losing Significant Accuracy 

Our previous multiple time-stepping (MTS) scheme was improved by using deep learning-based state-
driven adaptive time stepping (ATS) to intelligently adapt to platelet dynamics and shear conditions (Fig. 
3B). Our model can classify states then label state categories with optimal time stepsizes. Compared to a 
traditional algorithm, our algorithm could reduce one day of simulation to approximately 1~2 hours, while 
maintaining no less than 95% accuracy. 



 

 

Fig 3: (A) Neural network for predicting contact area during aggregation (upper). (B) MSM adaptive time 
stepping (ATS) deep learning framework (lower). 

iii. Sharing of Model Algorithms and Experimental Results 

Our model software files, numerical results, and experimental data will initially be made available to 3rd 
party IMAG scientists and other interested researchers via the Biofluids Research Group website. We are 
also currently exploring using the Google Cloud Platform (GCP) to store larger amounts of data and allow 
easier access to our software packages and results. 

C. Actions/Activities (CPMS TSR) 

Rule 1. Define context clearly Our DPD-CGMD models are designed to reflect 
platelet properties and dynamics under shear 
stresses found in blood flow through diseased 
vessels and cardiovascular devices.  

Rule 2. Use appropriate data We ensure that all parameters and input variables 
are based on published and in-house in vitro 
observations. If any parameters cannot be 
validated (due to lack of available data or 
techniques), other model variables are monitored 
to ensure accurate reflection of platelet biology 

https://www.bme.stonybrook.edu/labs/dbluestein/Multiscale.html


Rule 3. Evaluate within context Numerical simulations are performed under 
physiological and pathological shear stresses 
relevant to blood vessels (normal/diseased) and 
blood-recirculating cardiovascular devices, with 
appropriate blood properties (i.e. viscosity, 
temperature). 

Rule 4. List limitations explicitly Numerical simulations are accurate in the context 
of published data and in-house in vitro 
observations. We do not make conclusions 
beyond the experimentally validated conditions. 
Further limitations are due to capacity of the 
software to model biological observations and 
limitations of the HPC resources used. 

Rule 5. Use version control All experimental data are traced by their creation 
date and record the experimenters’ names. All 
DPD-CGMD files track the creation date. 

Rule 6. Document adequately Simulation codes/model markups and changes 
within are tracked and shared among the 
simulation group. All experimental data are stored 
in a database (currently in video and spreadsheet 
format) and shared among all team members, 
allowing interfacing with numerical software. 
Protocols are shared and updated via Stony 
Brook’s Google Drive services 

Rule 7. Disseminate broadly Simulation software and data/experimental 
database is currently shared via Google Drive, 
and we are exploring sharing broadly via the 
Google Cloud Platform. These items are also 
presented during regular meetings and 
national/international conferences. 

Rule 8. Get independent reviews Our algorithms and experimental data will be 
shared with fellow IMAG researchers with similar 
work (i.e. Drs. Alber and Karniadakis) for 
independent evaluation. 

Rule 9. Test competing implementations Within our group, we test the efficiency of various 
iterations of our DPD and CGMD codes to select 
the most appropriate model parameters (i.e. 
Morse potential, bond force parameters, etc.). 
Due to the uniqueness of our approach, we do not 
have an external algorithm for direct comparison. 

Rule 10. Conform to standards While there are no set standards for our platelet-
based experiments, we follow commonly followed 
practices for blood/platelet preparation, 
microscopy, and statistical analysis as published 
in relevant experimental journals. 

 



D. Uniqueness of Model Credibility Plan and Development of a Credible Model 

(1) Utilizing in-house equipment (HSD, DIC microscopy, and microchannel setup) to validate: (1.a) shear-
mediated platelet shape change, kinematics, and (1.b) aggregation/adhesion simulations due to lack of 
published data. (2) Identifying and quantifying the dominant sources of uncertainties: (2.a) reductionist 
model assumptions in expressing the true physiology; (2.b) computing uncertainties due to mathematical 
function truncations and runoff resulting from finite data representations; and (2.c) input parameter 
uncertainties due to limitations of experimental apparatus. (3) Minimizing the global uncertainties by (3.a) 
ensuing the accuracy for local scales and the associated model parameters; (3.b) smoothening the interface 
between scales; (3.c) stress testing to reduce global uncertainties by adjusting algorithmic and model 
parameters in broad ranges; and (3.d) collaborating with 3rd party IMAG scientists for independent 
verification of the numerical models and experimental results. 

Our project relies on a synergistic relationship between the numerical models and validation experiments. 
Members of the numerical and experimental teams meet frequently and participate in observation of the 
other team’s activities as well as troubleshooting from the other’s perspective as needed. We have graduate 
students who are involved in both numerical and experimental activities to ensure that all members are on 
the same page regarding project goals and daily activities. As such, the models developed by our group 
are rooted in in-house biological observations, supplemented by widely accepted platelet activation, 
aggregation, and adhesion studies published by prominent experts in the field. 

E. Progress to-date/Plans for Next Reporting Cycle 

We have completed our initial models of intraplatelet properties, mechanics, shape change, dynamics in 
viscous fluids, and shear-induced aggregation with fibrinogen (as described above). We are currently 
modeling aggregation with multiple (3+) platelets using vWF and building a model of platelet adhesion on 
vWF under a large range of shear stresses (1-90 dyne/cm2). Current experiments track translational and 
rotational motion (i.e. “sliding” and “flipping”) of platelets under these stresses, their shape change, as well 
as comparisons of these parameters between activated and quiescent platelets. In the next 6 months, we 
are going to model the multi-platelet aggregation under shear flow and the platelet adhesion to blood vessel, 
and simulate the platelet-platelet-vessel dynamic interactions under shear flow. 

4. Critical Issues/Concerns/Opportunities 

There are several continuing challenges that we have identified in our modeling approaches. However, 
these issues provide us with opportunities to make new experimental observations regarding platelet 
behavior under flow conditions and develop new computational approaches to DPD-MD models and high 
performance computing. The limited number of techniques to observe platelet deformation, activation, 
aggregation, and adhesion under flow conditions have allowed us to generate unique protocols for 
microscopy observations in microchannels. Due to the large number of unknown modeling and simulation 
parameters, we use machine learning approaches for developing predictive models based on training data 
from experiments. Due to the vast spatial and temporal scales involved in our simulations, we have adapted 
discrete particle-based methods (DPD-CGMD) to describe continuum multiscale phenomena. Our 
approach requires large amounts of computational resources. To reduce computational time while 
maintaining accuracy, we continue to improve the efficiency of our algorithms on high performance 
computers (HPCs) by developing Multiple Time Stepping (MTS) and Adaptive Time Stepping (ATS) 
approaches to optimize time scales of our simulations. Due to the uniqueness of our MSM approach, we 
require our 3rd party evaluators to have knowledge of LAMMPS molecular dynamics software; familiarity 
with MD, CGMD, and DPD theory; familiarity with the basics of platelet activation, aggregation, and 
adhesion; and have access to HPC resources for large multiscale simulations. 


