Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis: Model Credibility

* Stony Brog	ok Peng Zh	ang ¹ , Jawaad Sh
Start Date: Ma	y 1, 2016	¹ S1
	lodel Utility and	Audience
 Integrated dissipation molecular dynamic macroscopic transport 	tive particle dynamics (CGMD) approach	ics (DPD) and coar - bridging the gap ng molecular events i
 Predicts changes in platelet morphology upon shear mediate activation, biomechanical transduction, interaction with clotti- aggregation with other platelets, and adhesion to blood vessel a surface 		
AUDIENCE		
 Clinicians and scient circulation condition 	ntists to predict initiations	on of arterial thromb
 Pharmaceutical manufacturers to develop new approaches for mechanotransduction pathways for pharmacological manage thrombosis 		
 Cardiovascular device engineers - next generation of devices thromboresistance 		
	Model Credibilit	ty Plan
VALIDATION OF MODEL P	ARAMETERS	
Geometrical, rheol	ogical, and material pro	operties of coarse grai
molecular dynamics (CGMD) platelet model validated using pub		
literature and <i>in vit</i>	ro experiments	
 In silico snear-med 	v images of platelets o	ange validated with so
Shearing Device (HSD)		
 Flow-mediated plan 	elet flipping, aggregat	ion, and adhesion mod
validated with high	magnification DIC mic	roscopy and high fram
capture of shear-m	ediated platelet behav	ior in microchannels
 Antiplatelet agent-induced membrane fluidity modeling validated dielectrophoresis (DEP) setup 		
UNCERTAINTY OUANTIFICATION (UO) AND PARAMETER SENSITIVITY ANALYSI		
 Identify time-stepp 	ing sizes and spatial re	solutions for desired a
 Iterative numerica 	al parameter optimi	zation and global
sensitivity until cor	vergence	
 Predictive ability of simulations using optimal numerical parameters 		
SHARING OF MODEL ALG	ORITHMS AND EXPERIMEN	TAL RESULTS
Harvard Dataverse	(from Year 3). Potentia	I for Google Cloud Pla
Key Experimental Parameters	Key Independent Model Parame	eters Adjustable Model P
Properties : μ of plasma: 1.1~1.3 mPa·s at 37°C. Diameter of platelet: 2~5 μm. Aspect ratio: ¼.	γ and r _{cut} in DPD correspond to resultan plasma. Current μ of plasma: 1.12 mPa·s Diameter: 4 μm. Aspect ratio: ¼.	t μ of Increase γ to increase μ of pla to change accordingly. μ: visco
Shape change (HSD and microchannel + microscony/SEM): flow rate=> τ :	Couette flow shear stress: up to 400 dyr ts _{max} controls growth duration, α contro	 1e/cm² Couette flow BCs adjusted for ls shear rate increase/decrease,
1^{70} dyne/cm ² ; exposure time: 0^{480}	filopodia growth rate in response to she stress-exposure time combinations, k _b -a	ar ratio and circularity. r _o – chan aspect length L _{max} & T _{max} - converted
number of pseudopods: 0~5; major	ratio (range: 0.2~0.4), circularity (range: 0.8~1.0). r(ts,fb) and σ(ts, fb) controls	parameter space=> >50 pesue adjusted to expt. (multiple de
axis: 2 ~3 μ m; circularity: 0.9~1.0.	pseudopod L-length and T-thickness.	parameters change according
- real time DIC microscopy (Jeffery's	fluid-platelet interaction. σ – key param	eter Jeffery's orbit. σ mainly control relation of the sub-
(dyne/cm ²); flow rate: up to 17 cm/s.	$\phi(\dot{\gamma}t)$. Flow rate: up to 15 cm/s.	correspondingly. $\phi(\dot{\gamma}t)$ is cha
Platelet stiffness with DEP: E = 1.93~6.88 KPa; ΔL/L: 0~0.2; Poisson's ratio: 0.25~0.35.	Bi-layered membrane: k _b =0.023 N/m, r _o nm. Model values: E: from 1.14 KPa to to rigidity; ΔL/L: 0~0.5; Poisson's ratio: 0.37	 = 33 k_b adjusted by matching E of e otal E: Young's modulus, L: axial di deformability of platelet chan
Micropipette aspiration : γ=(2.9±1.4)×10 ⁻² dyne/cm.	Stiffness of membrane controlled by spr force constant k_b . Model value γ from	ring k _b adjusted to match the mod membrane in experiments.γ:
μ of cytoplasm : 4.1~23.9 mPa⋅s.	Morse potential: control parameters inc	lude ε, α ε mainly controls μ. α takes er
Modulating membrane fluidity with	anα κ. k _b of membrane changed (range 10 ⁻² ~ α	× N/m). Increase k_b to reflect membra

DEP+fluorescence measurements: E, change accordingly Adhesion: microscopy of observed adhesion patterns (vasc. wall-cultured HUVEC + vWF + Fg +fibronectin. Device

surface + Fg).

deformability adjusted, γ -adhesion properties force strength between interacting particles. adjusted to corroborate values for membrane. Up to 50,000 GPIIb/IIIa and 25,000 GPIb GPIIb/IIIa-vWF binding potential, GPIbα-vWF-GPIbα, f^A- adhesion force magnitude coefficient receptors, n_a controls receptor # - model patterns (plt-plt. and/or surface binding and (time dependent), r_{ii}- inter-receptor distance, - # of receptors, d_- relaxation distance, vWF number- r_{ii} adjusted to expt. r_{ii} < d_c; r_{ii} –distance multimer, GPIIb/IIIa-Fg binding potential between 2 receptors - 2 plts come in contact.)

