
Solving PDEs Using

Conditional Generative Models

Chinmay Hegde

October 24, 2019

Iowa State → NYU

1



Today’s talk

PDEs

Generative Models

Conditional

2



Today’s talk

PDEs Generative Models

Conditional

2



Today’s talk

PDEs Generative Models

Conditional

2



Application: Materials design

Materials design → exploring the space of plausible microstructures

Expensive, time-consuming; need to create digital twin

3



Application: Materials design

However, simulations are themselves extremely slow and costly.

Ex: Two-component fluid mixtures that undergo a phase separation:

Solve the Cahn-Hilliard Equation → 4th order nonlinear PDE

Question: Are there alternatives to numerically solving PDEs?

4



Application: Materials design

However, simulations are themselves extremely slow and costly.

Ex: Two-component fluid mixtures that undergo a phase separation:

Solve the Cahn-Hilliard Equation → 4th order nonlinear PDE

Question: Are there alternatives to numerically solving PDEs?

4



Application: Materials design

However, simulations are themselves extremely slow and costly.

Ex: Two-component fluid mixtures that undergo a phase separation:

Solve the Cahn-Hilliard Equation → 4th order nonlinear PDE

Question: Are there alternatives to numerically solving PDEs?

4



Inverse problems

Canonical challenge in machine learning, scientific computing,

engineering design

Parameters Forward model Observations

y = A(x) + noise.

A: given by nature, or manually designed

Goal: Given y and (possibly) A, recover an estimate of x.

5



Inverse problems

Canonical challenge in machine learning, scientific computing,

engineering design

Parameters Forward model Observations

y = A(x) + noise.

A: given by nature, or manually designed

Goal: Given y and (possibly) A, recover an estimate of x.

5



Inverse problems

Canonical challenge in machine learning, scientific computing,

engineering design

Parameters Forward model Observations

y = A(x) + noise.

A: given by nature, or manually designed

Goal: Given y and (possibly) A, recover an estimate of x.

5



Inverse problems

Canonical challenge in machine learning, scientific computing,

engineering design

Parameters Forward model Observations

y = A(x) + noise.

A: given by nature, or manually designed

Goal: Given y and (possibly) A, recover an estimate of x.

5



Inverse problems

Canonical challenge in machine learning, scientific computing,

engineering design

Parametersl Forward model Observations

Imaging / CV

• Imaging

• (De)compression

• Confocal microscopy

• MRI/CT

Systems, design, prediction

• System identification

• Inverse design

• Prognostics

• NDE

6



Inverse problems

Canonical challenge in machine learning, scientific computing,

engineering design

Parametersl Forward model Observations

Imaging / CV

• Imaging

• (De)compression

• Confocal microscopy

• MRI/CT

Systems, design, prediction

• System identification

• Inverse design

• Prognostics

• NDE

6



Classical approach

Estimation typically ill-posed; additional information / priors necessary

Estimation typically posed in terms of (constrained) optimization:

x̂ = min
x

F (x|y,A)

s.t. x ∈ S

S denotes hypothesis class (prior) for “true” x:

• Bounded total variation

• Smoothness

• RKHS

• Sparsity in a basis/dictionary (synthesis, analysis, . . . )

• . . .

7



Classical approach

Estimation typically ill-posed; additional information / priors necessary

Estimation typically posed in terms of (constrained) optimization:

x̂ = min
x

F (x|y,A)

s.t. x ∈ S

S denotes hypothesis class (prior) for “true” x:

• Bounded total variation

• Smoothness

• RKHS

• Sparsity in a basis/dictionary (synthesis, analysis, . . . )

• . . .

7



Classical approach

Estimation typically ill-posed; additional information / priors necessary

Estimation typically posed in terms of (constrained) optimization:

x̂ = min
x

F (x|y,A)

s.t. x ∈ S

S denotes hypothesis class (prior) for “true” x:

• Bounded total variation

• Smoothness

• RKHS

• Sparsity in a basis/dictionary (synthesis, analysis, . . . )

• . . .

7



Classical approach

Estimation typically ill-posed; additional information / priors necessary

Estimation typically posed in terms of (constrained) optimization:

x̂ = min
x

F (x|y,A)

s.t. x ∈ S

S denotes hypothesis class (prior) for “true” x:

• Bounded total variation

• Smoothness

• RKHS

• Sparsity in a basis/dictionary (synthesis, analysis, . . . )

• . . .

7



Neural Priors

Given training data samples, learn a neural generative prior as the

hypothesis class

Example prior: Generative Adversarial Networks (GANs)

[Goodfellow et al, 2014]

Real
Images 

from
Dataset

G(.)z

X
fa

ke
X

re
a
l

(R
e
a
l D

a
ta

)

D(.)
real

fake

k

Training through 
Back-propagation

G(.)zk S: Set of natural images

Learning a 'natural' image prior through GAN training

z: random variable; G(z) is a convolutional neural network (CNN) that

models the distribution of S

8



Neural Priors

Given training data samples, learn a neural generative prior as the

hypothesis class

Example prior: Generative Adversarial Networks (GANs)

[Goodfellow et al, 2014]

Real
Images 

from
Dataset

G(.)z

X
fa

ke
X

re
a
l

(R
e
a
l D

a
ta

)

D(.)
real

fake

k

Training through 
Back-propagation

G(.)zk S: Set of natural images

Learning a 'natural' image prior through GAN training

z: random variable; G(z) is a convolutional neural network (CNN) that

models the distribution of S

8



Promise of GANs

[Brock, Donahue, Simonyan, 2018]

BigGAN, dim(z) = 32, x = G(z), dim(x) = 2562

9



Promise of GANs

[Brock, Donahue, Simonyan, 2018]

BigGAN, dim(z) = 32, x = G(z), dim(x) = 2562

9



Using neural priors to solve PDEs

Intuition: Think of solving a PDE as a (non)linear mapping from one

space (parameters/boundary conditions) to another space (domain)

Why this is possible: Neural networks can approximate arbitrary high

dimensional maps if architecture sufficiently wide/deep

[Cybenko ’89], [Funahashi ’89], [Hornik et al ’89], [Kurkova ’92]

More recent developments: Refinements to reasonable width but

(very) deep networks

[Lu et al, ’17], [Hardt-Ma ’17], [Lin-Jegelka ’18]

Our approach: Train neural networks that can solve PDEs

But not in the standard way..

10



Using neural priors to solve PDEs

Intuition: Think of solving a PDE as a (non)linear mapping from one

space (parameters/boundary conditions) to another space (domain)

Why this is possible: Neural networks can approximate arbitrary high

dimensional maps if architecture sufficiently wide/deep

[Cybenko ’89], [Funahashi ’89], [Hornik et al ’89], [Kurkova ’92]

More recent developments: Refinements to reasonable width but

(very) deep networks

[Lu et al, ’17], [Hardt-Ma ’17], [Lin-Jegelka ’18]

Our approach: Train neural networks that can solve PDEs

But not in the standard way..

10



Using neural priors to solve PDEs

Intuition: Think of solving a PDE as a (non)linear mapping from one

space (parameters/boundary conditions) to another space (domain)

Why this is possible: Neural networks can approximate arbitrary high

dimensional maps if architecture sufficiently wide/deep

[Cybenko ’89], [Funahashi ’89], [Hornik et al ’89], [Kurkova ’92]

More recent developments: Refinements to reasonable width but

(very) deep networks

[Lu et al, ’17], [Hardt-Ma ’17], [Lin-Jegelka ’18]

Our approach: Train neural networks that can solve PDEs

But not in the standard way..

10



Using neural priors to solve PDEs

Intuition: Think of solving a PDE as a (non)linear mapping from one

space (parameters/boundary conditions) to another space (domain)

Why this is possible: Neural networks can approximate arbitrary high

dimensional maps if architecture sufficiently wide/deep

[Cybenko ’89], [Funahashi ’89], [Hornik et al ’89], [Kurkova ’92]

More recent developments: Refinements to reasonable width but

(very) deep networks

[Lu et al, ’17], [Hardt-Ma ’17], [Lin-Jegelka ’18]

Our approach: Train neural networks that can solve PDEs

But not in the standard way..

10



Using neural priors to solve PDEs

Intuition: Think of solving a PDE as a (non)linear mapping from one

space (parameters/boundary conditions) to another space (domain)

Why this is possible: Neural networks can approximate arbitrary high

dimensional maps if architecture sufficiently wide/deep

[Cybenko ’89], [Funahashi ’89], [Hornik et al ’89], [Kurkova ’92]

More recent developments: Refinements to reasonable width but

(very) deep networks

[Lu et al, ’17], [Hardt-Ma ’17], [Lin-Jegelka ’18]

Our approach: Train neural networks that can solve PDEs

But not in the standard way..

10



Learning based solutions to PDEs

[Raissi, Perdikaris, Karniadakis 2018]

[Yang, Zhang, Karniadakis 2018]

[Lu, Meng, Mao, Karniadakis 2019]

[Zhou, Zabaras, Koutsourelakis, Perdikaris 2019]

and many others . . .

11



DiffNets: Formulation

Hybrid neural prior that combines data and physics

LInv(W ) = ‖y −A(x)‖2, x = GW (z)

LGAN(W,Ψ) = Ex′∼Pdata
[φ(DΨ(x′))] + Ex∼Px [φ(−DΨ(x))]

Optimizing the min-max two-player game:

min
W

max
Ψ

LGAN + µLInv

12



DiffNets: Formulation

Hybrid neural prior that combines data and physics

LInv(W ) = ‖y −A(x)‖2, x = GW (z)

LGAN(W,Ψ) = Ex′∼Pdata
[φ(DΨ(x′))] + Ex∼Px [φ(−DΨ(x))]

Optimizing the min-max two-player game:

min
W

max
Ψ

LGAN + µLInv

12



Example: Elliptic PDEs

Assume a stochastic elliptic PDE of the form:

A(u) = f + ξ,

Example:

∇(K ◦ ∇(u)) = f + ξ, (Stochastic heat equation).

Discretize (using finite differences):

∇2u ≈ 1

4h2
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j)

This gives a linear system of equations (assuming period BC):

(I − PΩ)Au = (I − PΩ)f + ξ,

PΩu = PΩb.

13



Example: Elliptic PDEs

Assume a stochastic elliptic PDE of the form:

A(u) = f + ξ,

Example:

∇(K ◦ ∇(u)) = f + ξ, (Stochastic heat equation).

Discretize (using finite differences):

∇2u ≈ 1

4h2
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j)

This gives a linear system of equations (assuming period BC):

(I − PΩ)Au = (I − PΩ)f + ξ,

PΩu = PΩb.

13



DiffNet: Elliptic PDEs

Periodic boundary conditions

Upshot: comparable accuracy as numerical solvers; solution for new

boundary conditions only requires a forward pass through the generator

CNN.

14



Theory: Linear PDEs

We can explicitly write down the solution space as:

u =

[
A−1PΩcf

PΩb

]
+

[
z

0

]
(1)

where z is normally distributed with covariance A−1PΩcA(−1)T .

Setup:

• We do not know the form of the PDE (i.e., A is not known), but

have access to training data sampled from distribution of u.

• We enforce boundary conditions as invariances

• Noise is gaussian

15



Theory: Linear PDEs

We can explicitly write down the solution space as:

u =

[
A−1PΩcf

PΩb

]
+

[
z

0

]
(1)

where z is normally distributed with covariance A−1PΩcA(−1)T .

Setup:

• We do not know the form of the PDE (i.e., A is not known), but

have access to training data sampled from distribution of u.

• We enforce boundary conditions as invariances

• Noise is gaussian

15



Theory: Linear PDEs

Generator: z 7→ Θz + λ; Discriminator: x 7→ xTPΩcΨPΩcx

Solve: minW maxΨ LGAN + µEu∼GW (N )‖PΩ(u− b)‖22.

Theorem: At Nash equilibrium, we get:

ΨΩc = 0,

ΘΩ = 0,

ΘΩcΘT
Ωc = A−1PΩcA−1.

In other words: the generator

• provably learns unknown dynamics (inverse of A) up to rotation

• provably enforces known constraints (boundary conditions)

16



Theory: Linear PDEs

Generator: z 7→ Θz + λ; Discriminator: x 7→ xTPΩcΨPΩcx

Solve: minW maxΨ LGAN + µEu∼GW (N )‖PΩ(u− b)‖22.

Theorem: At Nash equilibrium, we get:

ΨΩc = 0,

ΘΩ = 0,

ΘΩcΘT
Ωc = A−1PΩcA−1.

In other words: the generator

• provably learns unknown dynamics (inverse of A) up to rotation

• provably enforces known constraints (boundary conditions)

16



Solving nonlinear PDEs

Example: (In)viscid Burgers Equation

∂u

∂t
+ u · ∇u = (ν + ξ)∇2u,

ut=0 = 1− cos
2πcx

L

Upshot: Far quicker solutions (about 1500X speedup) than standard

numerical solvers; effective surrogate in lieu of solving stochastic PDEs

17



Solving nonlinear PDEs

Example: (In)viscid Burgers Equation

∂u

∂t
+ u · ∇u = (ν + ξ)∇2u,

ut=0 = 1− cos
2πcx

L

Upshot: Far quicker solutions (about 1500X speedup) than standard

numerical solvers; effective surrogate in lieu of solving stochastic PDEs

17



Solving nonlinear PDEs

Example: (In)viscid Burgers Equation

∂u

∂t
+ u · ∇u = (ν + ξ)∇2u,

ut=0 = 1− cos
2πcx

L

Upshot: Far quicker solutions (about 1500X speedup) than standard

numerical solvers; effective surrogate in lieu of solving stochastic PDEs
17



Physics-aware conditional generative models

Going beyond PDEs: instead of enforcing PDE constraints, one can use

other prior information (statistics, geometry, etc)

• Example invariance: mass fraction; α = Erx(r)

• Example invariance: 2-point correlation; β(r) = Er1,r2x(r1)x(r2)

• Example invariance: connectivity or shape information

Model: Invariance Network (InvNet). Same as above, but enforce

above properties.

[Singh, Shah, G., Sarkar, H, NeurIPS WS 2018]

18



Physics-aware conditional generative models

Going beyond PDEs: instead of enforcing PDE constraints, one can use

other prior information (statistics, geometry, etc)

• Example invariance: mass fraction; α = Erx(r)

• Example invariance: 2-point correlation; β(r) = Er1,r2x(r1)x(r2)

• Example invariance: connectivity or shape information

Model: Invariance Network (InvNet). Same as above, but enforce

above properties.

[Singh, Shah, G., Sarkar, H, NeurIPS WS 2018]

18



Physics-aware conditional generative models

Going beyond PDEs: instead of enforcing PDE constraints, one can use

other prior information (statistics, geometry, etc)

• Example invariance: mass fraction; α = Erx(r)

• Example invariance: 2-point correlation; β(r) = Er1,r2x(r1)x(r2)

• Example invariance: connectivity or shape information

Model: Invariance Network (InvNet). Same as above, but enforce

above properties.

[Singh, Shah, G., Sarkar, H, NeurIPS WS 2018]
18



InvNets: Results

Upshot: Far quicker microstructure reconstruction (nearly 1500X

speedup in amortized time)

19



InvNets: Results

Upshot: Far quicker microstructure reconstruction (nearly 1500X

speedup in amortized time)

19



Summary

This talk: Solving PDEs using neural networks.

• Conditional generative models

Allow for user tuning of inputs/boundary conditions

• Wide Applicability

Works for linear, non-linear PDEs

• (Preliminary) Theoretical guarantees

Nash equilibrium provably learns the inverse

Open problems:

• Properly modeling grid mismatch (ideas from multi-scale modeling?)

• Faster training (ideas from PDE pre-conditioning?)

• Limited samples (ideas from transfer learning?)

• Guarantees (ideas from optimization and statistics?)

20



Summary

This talk: Solving PDEs using neural networks.

• Conditional generative models

Allow for user tuning of inputs/boundary conditions

• Wide Applicability

Works for linear, non-linear PDEs

• (Preliminary) Theoretical guarantees

Nash equilibrium provably learns the inverse

Open problems:

• Properly modeling grid mismatch (ideas from multi-scale modeling?)

• Faster training (ideas from PDE pre-conditioning?)

• Limited samples (ideas from transfer learning?)

• Guarantees (ideas from optimization and statistics?)

20



Thanks

Funded by the DARPA AIE (AIRA) Program; Dec 2018 - present.

• Baskar Ganapathysubramanian, Soumik Sarkar (ISU)

• Daniel Sparkman (AFRL)

• Payel Das, Youssef Mroueh (IBM)

Singh, Shah, Pokuri, Sarkar, G., H, ”Physics-aware Deep Generative Models for

Creating Synthetic Microstructures”, Dec 2018

Shah, Joshi, Ghoshal, Pokuri, Sarkar, G., H, ”Encoding Invariances in Deep

Generative Models”, June 2019

Joshi, Cho, Pokuri, Sarkar, G., H, ”InvNet: Incorporating Statistical and

Geometric Invariances in Generative Models”, Sept 2019

Joshi, Shah, Sarkar, G., H, ”Generative Models for Solving Partial Differential

Equations”, Dec 2019


