National Aeronautics and Space Administration

The Digital Astronaut Project (DAP) Computational Modeling of Space Physiology

March 23, 2017

Beth Lewandowski, NASA GRC

Human Research Program Mission

To enable space exploration beyond low Earth orbit by reducing the risks to human health & performance through a focused program of:

- Basic, applied, and operational research

Leading to the development and delivery of:

- Human health, performance, and habitability standards
- Countermeasures and risk mitigation solutions
- Advanced habitability and medical support technologies

The NASA Digital Astronaut Project (DAP)

- Develops and utilizes computational modeling in the mitigation of human health and performance risks associated with long-duration spaceflight
- Supplements space physiology research by informing experimental design
- Informs design and predicts efficacy of spaceflight countermeasure devices

• Project team:

- Kelly Gilkey, NASA GRC
- Beth Lewandowski, NASA GRC
- John DeWitt, KBRWyle
- Jerry Myers, NASA GRC
- Emily Nelson, NASA GRC
- Jim Pennline, NASA GRC
- Bill Thompson, NASA GRC

- Chris Gallo, NASA GRC
- Drayton Munster, NASA GRC
- Aaron Godfrey, ZIN Technologies
- Brad Humphreys, ZIN Technologies
- Chris Werner, ZIN Technologies
- Kathy Jagodnik, Baylor College of Medicine
- Mo Kassemi, CWRU

DAP Models of Physiological Systems and Organs

Musculoskeletal system Biomechanical analysis; Bone and muscle

Lumped-parameter whole body model

Vasculature, cerebral spinal fluid, interstitial fluid and lymphatic fluid; heart, eye, kidney Central nervous system Vestibular organs

Biomechanical Modeling

- **Biomechanical data** collection capabilities within the NASA GRC Exercise Countermeasures Lab
- **Biomechanical analysis with** • the open source biomechanical simulation software OpenSim (Stanford **University**)
- **Example Analyses:**
 - **Biomechanical characterization** of spaceflight exercise devices
 - Operational volume analyses
 - Interface loads analyses

HULK Long Bar

HULK Yo-Yo Harness

Barbell Free Weight

Musculoskeletal Modeling

- Bone Fracture Risk Module (BFxRM) for fracture probability calculations
- Bone physiology model to predict changes in bone mineral density
- Muscle atrophy space-flight simulation through a grant to University of Virginia

Cardiovascular and Ocular Modeling

- A human body model of cardiovascular, cerebral spinal, interstitial and lymphatic fluids provides mean arterial pressure (MAP) and intracranial pressure (ICP) in response to gravity-driven fluid shifts
- A lumped eye model provides intraocular pressure (IOP) and globe and blood volume estimates
- A finite element model of the optic nerve head includes tissue properties for tissue strains estimation when subjected to different MAP, ICP and IOP developed through a grant to the Georgia Institute of Technology
- Models are used in the research of Visual Impairment and Intracranial Pressure (VIIP) syndrome

NASA Human Research Program

- The Digital Astronaut Project is within the Human Health and Countermeasures Element of the Human Research Program (HRP)
 - <u>https://www.nasa.gov/hrp</u>
- HRP has established a risk reduction strategy for human space exploration
 - <u>https://humanresearchroadmap.nasa.gov/</u>
 - Studies and tasks are performed to reduce the risk
- NASA funding opportunities are available through NSPIRES
 - <u>https://nspires.nasaprs.com/external/</u>
 - HRP funding opportunities are listed as Human Exploration Research Opportunities (HERO)
 - Other information on research opportunities within HRP: <u>https://www.nasa.gov/hrp/research/opportunities</u>
- New collaborative institute Translational Research Institute
 - <u>https://www.bcm.edu/centers/space-medicine/translational-research-institute</u>
 - Replacing National Space and Biomedical Research Institute

National Aeronautics and Space Administration

Thank You!!