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Bayesian Uncertainty Quantification (UQ)

I Bayesian paradigm provides a useful framework for uncertainty
quantification (UQ)

I Let θ ∈ Θ denote unknown parameters & L(y |θ) denote the
likelihood function of data y given these parameters

I Bayes inference starts with specifying a prior probability
distribution π(θ) for the unknowns

I This probability quantifies our uncertainty prior to observing
data y and may include structural constraints

I Updating the prior distribution with the likelihood function,
we obtain the posterior probability distribution:

π(θ|y) =
π(θ)L(y |θ)∫

Θ π(θ)L(y |θ)dθ
=
π(θ)L(y |θ)

L(y)
.

I π(θ|y) quantifies uncertainty about θ & functionals f (θ)
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Some notes on this framework

I The unknown ‘parameter’ θ can be very broad - not just
scalar inputs but unknown functions, surfaces, tensors, latent
data, etc can be included in θ

I Outside of simple conjugate familes, π(θ|y) is not analytically
tractable - even if likelihood L(y |θ) is available, marginal
likelihood L(y) involves a high-dimensional integral

I To avoid potentially inaccurate integral approximations to
L(y), Monte Carlo methods are widely used

I Markov chain Monte Carlo (MCMC) constructs a Markov
chain with stationary distribution π(θ|y)

I Bypasses ever needing to calculate L(y) & highly complex
models can be considered
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UQ in applied math mechanistic modeling

I Ok so how is this useful in multscale/mechanistic modeling in
applied math?

I In such settings, one has some intricate system of equations
(e.g., ODEs, PDEs, etc)

I For known inputs, data can be forward simulated from the
mechanistic model

I Also, there are commonly solvers available that can be used to
‘fit’ data

I Multiple types of uncertainty: (i) unknown inputs; (ii) model
may not exactly characterize observed data; (iii) may be
difficult to model ‘everything’ (e.g., variability across subjects
or conditions) mechanistically

I Bayesian paradigm potentially very useful for solving such
problems
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Bayes UQ - issues & typical approaches

I Typically not possible to analytically express the likelihood
L(y |θ) of the data under an interesting mechanistic model

I Unclear how to use the Bayes paradigm for UQ without a
likelihood

I Common solutions to likelihood specification problem:

1. Use a usual solver without considering UQ & put solution in as
‘center’ of simple statistical distribution

2. Use approximate Bayes computation (ABC) methods, which
only require a forward simulator & not an explicit likelihood
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Bayes UQ - Gaussian process emulators

I A very widely used approach is Gaussian process (GP)
‘emulation’

I Let y = g(x ; θ) denote the input-output relationship under
some posited mechanistic (perhaps multiscale) model with
conditions θ

I Based on data (xi , yi ), i = 1, . . . , n, we apply a solver to
obtain ĝ

I There can be errors in the solver & biases in the model

I To account for this, let yi = µ(xi ) + εi , εi ∼ N(0, σ2)

I µ ∼ GP(ĝ , c) = unknown function, εi = measurement error
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Gaussian process (GP) overview

I Gaussian process provides a ‘prior’ for an unknown function µ
mapping from inputs to outputs

I Realizations µ ∼ GP(ĝ , c) are random functions/stochastic
processes centered on ĝ on average

I Variance and smoothness of the realizations controlled by the
covariance function:

cov{µ(x), µ(x ′)} = cφ(x , x ′),

where φ are (potentially unknown) parameters
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Some comments on GPs

I Often a default covariance is used that doesn’t include
mechanistic information; eg,

cφ(x , x ′) = φ1 exp{−φ2||x , x ′||22},

φ1 controls amplitude variability & φ2 smoothness

I If the ‘true’ function µ0 is smooth with a global level of
smoothness α, the GP has excellent theoretical properties

I If we choose a prior for the smoothness φ2, the posterior for µ
concentrates around µ0 at the minimax optimal adaptive rate

I Also very convenient computationally: µ ∼ GP(ĝ , c) implies

{µ(x1), . . . , µ(xn)} ∼ Nn({ĝ(x1), . . . , ĝ(xn)},Cn),

where Cn ∼ n × n covariance matrix with elements cφ(xi , xj).

I This prior for µ evaluated at a finite number of inputs is
conjugate to the normal likelihood of the measurements {yi}

I The posterior for µ|y1, . . . , yn, ĝ , φ has a simple analytic form
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Some issues with ‘vanilla’ GPs for UQ

I The GP approach to UQ has been widely used & successful
but has some issues

I Off the shelf generic covariance functions can lead to overly
erratic & unstructured deviations from ĝ .

I Would be appealing for the realizations of the unknown µ to
inherit some characteristics of the mechanistic model

I For example, the realizations may resemble realizations of
SDEs/SPDEs or solutions of ODEs/PDEs

I May also have a multiscale/non-smooth character

I Broadly mechanistic nonparametric Bayes models can be
designed for these problems

I Literature is under-developed- will give a simple case study
here
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Mechanistic GPs - muscle activation example

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14
F

or
ce

 (
N

ew
to

ns
)

Time (Seconds)

I Rich literature collecting data & modeling muscle contractions

I For each subject under each condition, a force tracing curve is
collected

I Observed function h(t) = Q(t)F (t) is product of isometric &
stretch shortening components defined by ODEs

I Solutions to ODEs would need to be specific to each replicate
& do not fit observed data perfectly
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Mechanistic Gaussian Processes

I Nonparametric hierarchical model - mechanistic knowledge
through ODEs; allow bias, UQ & systematic & random
deviations among subjects

I Mechanistic information is expressed via linear ODE

Lh(t) =
dmh(t)

dtm
+am−1(t)

dm−1h(t)

dtm−1
+. . . a1(t)

dh(t)

dt
+a0(t)h(t),

= r(t); {a0(t), . . . , am−1(t)} = known non-zero functions.
I The solution exists & can be expressed as

h(t) =

∫ t

t0

G (t, ξ)r(ξ)dξ,

G (t, ξ)=Green’s function
I As the integral operator is linear, if r(t) ∼ GP(0, c) then h(t)

is also a GP
I Covariance kernel of induced GP is obtained by the

convolution of Green’s function for the ODE & the covariance
kernel of r(t).
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Implementation & hierarchical extension

I Exact solution to resulting covariance matrix is very
ill-conditioned

I Rely on a Runge-Kutta (RK) method to approximate the
ODE solution

I Use an Euler-Cauchy second order approximation; higher order
RK also possible

I We obtain a simple posterior sampling algorithm & applied to
the muscle force data

I To model differences among subjects & across experimental
groups (pre/post exercise protocol), we use a hierarchical GP

I Sample individual curves from GPs with mean curve specific
to each group.
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Muscle force application
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I Analyzed effect of repetitive muscle contractions on muscle
force

I Data on 13 sessions for 15 young & 27 old rats, with 565
observations per session

I The above figure shows our model fits for one animal pre- and
post-
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Some results
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I Bayesian mechanistic hierarchical model can produce
uncertainty estimates in any functional of interest

I Top row: mean isometric contraction for pre- (dashed) &
post- (solid) exercise in old (top left) & young (top right)

I Figure bottom row = differences & 95% intervals are shown
in the bottom row (old left & young right)

I Increased muscle performance after exercise in young & old
I Can also do inferences on individual differences
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Summary & discussion

I There is great potential for hybrid approaches combining
Bayesian nonparametric models & mechanistic models in
applied math

I Illustrated in a simple application to studying muscle
contractions but similar approaches can be developed much
more broadly

I Bayes approach appealing for not just UQ but also for allow
modeling of hierarchical structure & statistical inferences

I Appealing to consider more complex mechanistic models (e.g.
PDEs) & nonparametric Bayes models other than Gaussian
processes

I However, GPs are remarkably flexible and can incorporate
quite rich dynamics including multiscale structure
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Facilitating implementation - STAN

I In implementing the mechanistic hierarchical GP, we developed
our own MCMC sampling algorithm & coded it ourselves

I The software package STAN provides a black box for efficient
posterior sampling in a broad variety of Bayesian models

I There is an effort by the STAN development team to
accommodate mechanistic models

I One of the STAN developers (Michael Betancourt) is here &
interested in helping facilitate implementation
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