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Preface 
 
A two-day workshop was held on January 13-14, 2016 at the National Science Foundation in 
Arlington, Virginia with the goal of defining directions for future research in modeling and 
simulation and its role in engineering complex systems. The workshop was sponsored by the 
National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), 
the Air Force Office of Scientific Research (AFOSR) and the National Modeling & Simulation 
Coalition (NMSC) in conjunction with its parent organization the National Training & Simulation 
Association (NTSA). This report documents the findings emanating from this workshop. 
The goal of the workshop was to identify and build consensus around critical research challenges 
in modeling and simulation related to the design of complex engineered systems – challenges 
whose solution will significantly impact and accelerate the solution of major problems facing 
society today.  Although modeling and simulation has been an active area of study for some time, 
new developments such as the need to model systems of unprecedented scale and complexity, the 
well-documented deluge in data, and revolutionary changes in underlying computing platforms 
are creating major new opportunities and challenges in the M&S field. The workshop focused on 
four main technical themes: (1) conceptual models, (2) computational issues, (3) model 
uncertainty, and (4) reuse of models and simulations. 
The workshop resulted in large part from an initiative led by the research and development 
committee of the National Modeling and Simulation Coalition (NMSC) aimed toward defining a 
common research agenda for the modeling and simulation (M&S) research community. 
Recognizing that the modeling and simulation community is fragmented and scattered across many 
different disciplines, communities and constituencies, there is a need to gather individuals from 
different communities to articulate important research problems in M&S. Toward this end, several 
events were held leading up to the January workshop. These included: 

• Winter Simulation Conference: plenary talk conference presentation (December 9, 2014, 
Savannah, Georgia). 

• NMSC national meeting: panel session (February 26, 2015, Arlington, Virginia). 
• Modsim World Conference: panel session (April 2, 2015, Virginia Beach Virginia). 
• SIMULTECH Conference: plenary talk conference presentation (July 22, 2015, Colmar, 

France). 
• Simulation Interoperability Workshop: plenary talk conference presentation (August 31, 

2015, Orlando, Florida). 
• Winter Simulation Conference: panel session (December 7, 2015, Orange County, 

California). 

After funding commitments for the workshop were obtained, detailed planning began in September 
2015 with the formation of the workshop steering committee consisting of Richard Fujimoto 
(chair, Georgia Tech and then NMSC Policy Committee chair), Steven Cornford (NASA Jet 
Propulsion Laboratory), Christiaan Paredis (National Science Foundation), and Philomena 
Zimmerman (Office of the Secretary of Defense). An open call was developed and disseminated 
that requested nominations of individuals, including self-nominations, to participate in the 
workshop. A total of 102 nominations were received. The steering committee reviewed these 
nominations and several rounds of invitations were made until the workshop capacity was reached. 
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Selection of participants took into account issues such as areas of technical interest in order to 
ensure balance across the four technical theme areas as well as other issues such as expertise, 
representation from different communities, seniority, and diversity considerations.  
A total of 65 individuals attended the workshop. Four working groups were formed, each 
representing one of the technical theme areas. Participants were initially assigned to one of the 
working groups; however, attendees were free to participate in a group different from that which 
the individual was assigned (and some did so), and some chose to participate in multiple groups 
throughout the course of the two-day workshop. Three individuals within each group agreed to 
organize and facilitate discussions for that group and help organize the workshop report. The 
workshop participants, their initial assignments to groups, and the group leads are included as an 
appendix to this report. 
Each group was charged with identifying the four or five most important research challenges in 
the specified technical area that, if solved, would have the greatest impact. It was anticipated that 
within each of these main challenges there would be some number of key sub-challenges that 
would need to be addressed to attack the research challenge. 
Prior to the workshop, several read-ahead documents concerning research challenges in M&S were 
distributed to the participants. These read-ahead materials included: 

• National Science Foundation Blue Ribbon Panel, “Simulation-Based Engineering 
Science,” May 2006. 

• National Research Council of the National Academies, “Assessing the Reliability of 
Complex Models, Mathematical and Statistical Foundations of Verification, Validation, 
and Uncertainty Quantification,” 2012. 

• A. Tolk, C. D. Combs, R. M. Fujimoto, C. M. Macal, B. L. Nelson, P. Zimmerman, “Do 
We Need a National Research Agenda for Modeling and Simulation?” Winter Simulation 
Conference, December 2015.  

• J. T. Oden, I. Babuska, D. Faghihi, “Predictive Computational Science: Computer 
Predictions in the Presence of Uncertainty,” Encyclopedia of Computational Mechanics, 
Wiley and Sons, to appear, 2017. 

• K. Farrell, J. T. Oden, D. Faghihi, “A Bayesian Framework for Adaptive Selection, 
Calibration and Validation of Coarse-Grained Models of Atomistic Systems,” Journal of 
Computational Physics, 295 (2015) pp 189-208. 

• Air Force Office of Scientific Research and National Science Foundation, “Report of the 
August 2010 Multi-Agency Workshop on Infosymbiotics/DDDAS: The Power of 
Dynamic Data Driven Application Systems” August 2010. 

In addition, workshop attendees were invited to submit brief position statements of M&S research 
challenge problems or areas that should be considered for discussion at the workshop. Each 
proposal was assigned to one of the four technical theme areas, and distributed to attendees prior 
to the workshop. The submitted position statements are included in this report as an appendix. 
The workshop program included five application-focused presentations on the first day that 
described important areas where technical advances in M&S were needed within the context of 
these domains: sustainable urban growth (John Crittenden), healthcare (Donald Combs), 
manufacturing (Michael Yukish), aerospace (Steven Jenkins), and defense (Edward Kraft). These 
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presentations, the read-ahead materials, and research challenge proposals submitted by workshop 
participants were the main inputs used in the workshop.  

The remainder of the workshop focused on break-out groups and cross-group discussions with the 
goal to build consensus around key research challenges that could form the basis for a common 
research agenda. The first day focused on collecting and consolidating views concerning important 
research challenges. The second day included brief presentations and discussions reporting 
progress of the four groups, and further discussion to refine and articulate recommendations 
concerning research challenges in each of the four technical areas. 

This document describes the main findings produced by the workshop. At the time of this writing, 
several follow up events related to the workshop have taken place, or are under development: 

• 2016 M&S Congressional Caucus Leadership Summit (Black Swans: Supporting National 
Priorities with Modeling and Simulation) and NMSC National Meeting, March 9-10, 2016, 
Chesapeake, Virginia. 

• 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (panel 
session), May 15, 2016, Banff, Alberta Canada. 

• 2016 Interservice/Industry Training, Simulation and Education Conference (I/ITSEC) 
(panel session), November 29, 2016, Orlando, Florida.  

We would like to thank the many individuals and organizations who helped to make this workshop 
possible. First, we thank the workshop sponsors, and especially NSF (Diwakar Gupta) and NASA 
(John Evans) who provided the principal funding for the workshop. NMSC/NTSA (RADM James 
Robb) sponsored a reception held at the end of the first day of the workshop, and AFOSR 
(Frederica Darema) participated in events leading up to the workshop and provided valuable 
guidance as the workshop was being formed. The five plenary speakers (John Crittenden, Donald 
Combs, Michael Yukish, Steven Jenkins, and Edward Kraft) provided outstanding, thought-
provoking presentations regarding the impact of M&S in their respective application areas. 
Administrative support for the workshop was provided by Holly Rush and Tracy Scott, and Philip 
Pecher helped with the development of the final report. 

Finally, we especially thank the many participants who devoted their time and effort to participate 
and help develop this workshop report. We thank the group leads for carefully managing the 
discussions of their groups as well as efforts to organize and in many case write much of the text 
in this report. The following individuals contributed to the writing of this report: 

Introduction and Concluding Remarks: Richard Fujimoto and Margaret Loper 
Applications: William Rouse and Philomena Zimmerman 

Conceptual Models: Conrad Bock, Fatma Dandashi, Sanford Friedenthal, Nathalie Harrison, 
Steven Jenkins, Leon McGinnis, Janos Sztipanovits, Adelinde Uhrmacher, Eric Weisel, Lin Zhang 

Computational Issues: Christopher Carothers, Alois Ferscha, Richard Fujimoto, David Jefferson, 
Margaret Loper, Madhav Marathe, Simon Taylor, Hamid Vakilzadian  

Uncertainty: Wei Chen, George Kesidis, Tina Morrison, Tinsley Oden, Jitesh Panchal, Chris 
Paredis, Michael Pennock, Sez Russcher, Gabriel Terejanu, Michael Yukish 

Reuse: Osman Balci, George L. Ball, Katherine L. Morse, Ernie Page, Mikel D. Petty, Sandra N. 
Veautour  
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Executive Summary 
Engineered systems are achieving unprecedented levels of scale and complexity in the midst of a 
rapidly changing world with many uncertainties. Cities face enormous challenges resulting from 
aging infrastructure, increased urbanization, and revolutionary technological changes such as 
smart electric power grids, photovoltaics and citizen generation of electricity, electrification of the 
vehicle fleet, autonomous vehicles, and widespread deployment of drones, to mention a few. 
Forces such as climate change threaten to dramatically impact future developments. The healthcare 
delivery system faces growing demands for service from an aging population while the system 
adapts to an explosion in patient medical data, changing payment models, and continued advances 
in medical technologies. Advances in manufacturing offer the potential for dramatic increases in 
competitiveness and economic growth, but require rapid increases in automation and fast, seamless 
integration while new technologies such as additive manufacturing and new approaches to 
materials design come online. Advanced space missions call for stringent requirements for 
robustness and flexibility in the face of harsh environments and operation over extreme distances 
in the presence of environmental surprises, possible technology failures and heavily constrained 
budgets. Similarly, defense acquisitions face challenges from asymmetric threats, changing 
missions, globalization of technology and siloed decision-making processes in the face of 
declining budgets, a shrinking defense industrial base, and congressional and service imperatives, 
mandates, and regulations. 

In these and many other areas of critical societal importance, modeling and simulation (M&S) 
plays a key role that is essential to successfully navigate through these challenges and 
uncertainties. Consideration of alternative futures is inherent to decision-making associated with 
complex socio-technical systems.  Empirical investigations of yet-to-exist futures are impossible 
to realize; however, they can be explored computationally through M&S.  Advances in M&S are 
critical to addressing the many “What if?” questions associated with these, and other examples. 
Advanced modeling techniques, integrated with current and advancing computing power, 
visualization technologies, and big data sets enable simulations to inform decisions on policies, 
investments, and operational improvements. 
Although systems arising in the aforementioned applications are very different, they have at least 
one aspect in common. They are composed of many interacting components, subsystems, and 
people. Systems such as these that consist of many interacting elements are commonly referred to 
as complex systems. For example, a city can be viewed as the collection of infrastructures such as 
water, energy, and transportation along with the social, economic, and decision-making processes 
that drive its growth and behavior over time. Interactions among the parts of a complex system 
may give rise to unexpected, emergent phenomena or behaviors that can have desirable 
consequences such as the creation of ethnic neighborhoods in cities, or undesirable ones such as 
stock market crashes or urban sprawl. M&S provides critical tools and technologies to understand, 
predict and evaluate the behavior of complex systems, as well as the means to develop and evaluate 
approaches to steer the system toward more desirable states. 

Computer-based models and simulations have been in use as long as there have been computers. 
The value of M&S technologies throughout history is without question. However, the development 
and use of reliable computer models and simulations is today time consuming, expensive and can 
sometimes produce unreliable results. These issues become even more critical as engineered 
systems increase in complexity and scale and must be deployed in uncertain environments. 
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Advances in M&S technologies now are essential to enable the creation of more effective, robust, 
and less costly engineered complex systems that are critical to modern societies. 

The workshop on Research Challenges in Modeling and Simulation for Engineered Complex 
Systems identified key research challenges that must be addressed to enable M&S to remain an 
effective means to meet the challenges of creating and managing the complex systems that 
increasingly pervade our society. Key findings of the workshop identified challenges in four areas: 

• Conceptual modeling. Understanding and developing complex systems requires the 
collaboration of individuals with widely different expertise. The models that form the 
language through which these individuals communicate and collaborate are commonly 
referred to as conceptual models. Once defined, conceptual models can be converted to 
computer models and software to represent the system and its behavior. Advances in 
conceptual modeling are essential to enable effective collaboration and cost-effective, error 
free translation of the model into a suitable computer representation.  

• Computational challenges. Computing and communications technologies have advanced 
rapidly in the last decade. M&S has not yet fully realized the potential and opportunities 
afforded by technologies such as mobile and ubiquitous computing, big data, the Internet 
of Things, cloud computing, and modern supercomputer architectures. This has kept M&S 
from achieving its fullest potential in modeling complex systems, or being widely deployed 
in new contexts such as online management of operational systems. Research advances are 
needed to enable M&S technologies to address issues such as the complexity and scale of 
the systems that need to be modeled today. 

• Uncertainty. Models and simulations are necessarily approximate representations of real-
world systems. There are always uncertainties inherent in the data used to create the model, 
as well as the behaviors and processes defined within the model itself. It is critical to 
understand and manage these uncertainties in any decision-making process involving the 
use of M&S. New approaches are required to gain better fundamental understandings of 
uncertainty and to realize practical methods to manage them. 

• Reuse of models and simulations. It is often the case that models and simulations of 
subsystems such as the components making up a vehicle are created in isolation, and must 
later be integrated with other models to create a model of the overall system. However, 
reuse of existing models and simulations can be costly and time consuming, and can yield 
uncertain results. Advances are need to enable cost-effective reuse of models and 
simulations, and to ensure that integrated models produce reliable results. 

Findings concerning important research challenges identified in the workshop in each of these 
areas are discussed in the following, and elaborated upon in the subsequent chapters that follow. 
 

A. Conceptual Modeling: Enabling Effective Collaboration to Model Complex Systems 

Conceptual modeling is recognized as crucial to the formulation and simulation of large and 
complex problems, but is not yet well-defined or understood, making it an important topic for 
focused research. The workshop concluded that conceptual models are early stage artifacts that 
integrate and provide requirements for a variety of more specialized models, and that the term 
“early” applies to every stage of system development, leading to multiple conceptual models: of 
reality, problem formulation, analysis, and model synthesis. Developing an engineering discipline 
of conceptual modeling will require much better understanding of how to make conceptual models 
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and their relationship explicit, the processes of conceptual modeling, as well as architectures and 
services for building conceptual models. 

Finding A.1. Conceptual models must be interpreted the same way by everyone 
involved, including those building computational tools for these models. 

Conceptual models today are most often expressed using some combination of sketches, 
flowcharts, data, and perhaps pseudo-code. Lack of general agreement on how to interpret these 
artifacts (i.e., ambiguity) limits the computational assistance that can be provided to engineers. 
More explicit and formal conceptual modeling languages are needed to support integration across 
engineering domains and construction of analysis tools, while retaining accessibility for domain 
experts, leading to domain-specific modeling languages. Formal conceptual modeling applies not 
only to the system of interest, but also to the analysis of that system. Several structures have been 
studied as simulation formalisms; however, there is little consensus on the best approach. 
Achieving an engineering discipline for M&S will require a more complete set of formalisms 
spanning up from rigorous discrete event, continuous, and stochastic system specification to higher 
level, perhaps domain-specific, simulation languages. 

Finding A.2. Processes for conceptual modeling must meet resource 
constraints and produce high quality models. 

M&S facilities are themselves complex systems, typically requiring multiple steps and decisions 
to move from problem to solution (lifecycle engineering). Regardless of complexity, the 
underlying principle for any type of lifecycle engineering is to ensure that unspent resources (e.g., 
money, time) are commensurate with work remaining. Reducing uncertainty about work remaining 
and the rate of resource consumption requires determining the purpose and scope of the system, 
the kind of system modeling needed (continuous/discrete, deterministic/stochastic, etc.), 
appropriate modeling formalisms, algorithms, data for calibrating and validating models, and other 
models for cross-validation. Currently, answering these questions is hampered by a lack of 
formalized engineering domain knowledge to constrain lifecycle decisions and processes. In 
addition, workflows are central to any approach for making lifecycle processes explicit and 
manageable, but evaluation of these workflows is hampered by the lack of metrics for their quality 
and for the quality of the resulting models. 
Reducing model defects introduced during the modeling process helps avoid difficult and high-
cost amendments of the model as it nears completion. During model development, program 
leadership must determine what knowledge is to be acquired at each point in the lifecycle to 
maximize value to program stakeholders. Further research is needed on how to set knowledge 
goals at particular milestones in a system development lifecycle. In particular, which knowledge 
elements are associated with which aspects of the system of interest and its environment? How 
does one determine the value of acquiring particular kinds of knowledge at particular times in the 
development lifecycle? A complementary approach is to develop a method of measuring the 
degree of formality and optimization (maturity) of M&S processes. No such standardized and 
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systematic assessment methodology is available for M&S processes, but the Capability Maturity 
Model (CMM) and CMM Integration (CMMI) approach have been applied to many areas, after 
originating in the software engineering community (CMMI 2016). Achieving a capability maturity 
model for M&S processes requires research in a number of areas, including quantitative analysis 
of the complexity and uncertainties in modeling processes, optimization, risk analysis and control 
of modeling processes, and quantitative measures of process quality and cost. 

Regarding conceptual model validation, the challenge is to find universally applicable concepts, 
with a theory that is satisfying to all the stakeholders and technology that is germane to a broad set 
of problems. For example, how does a conceptual model that is suitable for a specific use inform 
the development of other simulation process artifacts?  How do the various stakeholders in the 
simulation activity use the conceptual model, valid or otherwise?  Following the best practice to 
consider validation early in the development process, advances in theory involving validation of 
conceptual models will support the rigorous use of conceptual models throughout the simulation 
lifecycle. 

Finding A.3. Architectures and services for conceptual modeling must enable 
integration of multiple engineering disciplines and development stages. 

Reliable modeling on a large scale for complex systems requires an architecture that enables 
models to be composed across disciplines. Arriving at such a model architecture requires 
developing mechanisms for efficient interaction between many sets of laws, determining the level 
of detail needed to observe emerging behaviors between these laws when integrated, and 
identifying design patterns appropriate to various communities of interest. The architecture must 
be supported by services that enable sharing of model elements at all levels, and extension of the 
architecture as needed. Implementing the architecture and services requires development of 
integration platforms for modeling, simulation and execution. One of the major challenges to 
model integration is the semantic heterogeneity of constituent systems. Simulation integration (co-
simulation) has several well-established architectures and standards, but there are many open 
research issues related to scaling, composition, large range of required time resolution, hardware-
in-the-loop simulators and increasing automation in simulation integration. Execution integration 
is needed as distributed co-simulations are shifting toward cloud-based deployment, developing 
simulation-as-a-service use model via web interfaces and increasing automation in dynamic 
provisioning of resources as required. 

Reliable model integration depends on sufficient formality in the languages used.  In particular, 
formalizing mappings between conceptual models of a system and its analysis models is critical 
to building reliable bridges between them. Combined with formal conceptual models of both 
system and analysis, a basis is provided for automating much of analysis model creation through 
model-to-model transformation. Perhaps the most fundamental challenge in achieving this for 
conceptual modeling is understanding the tradeoffs in recording analysis knowledge in the system 
model, analysis model, or mappings between them. 
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B. Computation: Exploiting Advances in Computing in Modeling Complex Systems 

Computing has undergone dramatic advances in recent years. The days are long gone when 
computers were out of sight of most people, confined to mainframes locked away in machine 
rooms that could only be operated by highly trained specialists. Today, computers more powerful 
than yesterday’s supercomputers are routinely owned and used by average citizens in the form of 
smart phones, tablets, laptops and personal computers. They are key enablers in our everyday lives. 
Other major technological developments such as big data, cloud computing, the Internet of Things, 
and novel high performance computing architectures continue to dramatically change the 
computing landscape. 

Finding B.1. New computing platforms ranging from mobile computers to 
emerging supercomputer architectures require new modeling and simulation 
research to maximally exploit their capabilities. 

The vast majority of M&S work completed today is performed on traditional computing platforms 
such as desktop computers or back-end servers. Two major trends in computing concern advances 
in mobile computing on the one hand, and the shift to massive parallelism in high performance 
computers on the other. As discussed momentarily, exploitation of mobile computing platforms 
moves models and simulations into new realms where the models interact with the real world. 
Maximal exploitation of M&S in this new environment, often in conjunction with cloud computing 
approaches is not well understood.  

At the same time, modern supercomputer architectures have changed dramatically in the last 
decade. The so-called “power wall” has resulted in the performance of single processor computers 
to stagnate. Improved computer performance over the last decade has arisen from parallel 
processing, i.e., utilizing many computers concurrently to complete a computation. By analogy, to 
reduce the time to mow a large lawn, one can utilize many lawn mowers operating concurrently 
on different sections of the lawn. In much the same way, parallel computers utilize many 
processors to complete a simulation computation. Modern supercomputers contain hundreds of 
thousands to millions of processors, resulting in massively parallel supercomputers. Further, these 
architectures are often heterogeneous, meaning there are different types of processors included in 
the machine that have different, specialized capabilities. Effective exploitation of these platforms 
by M&S programs as well as new, experimental computing approaches is still in its infancy. 

Finding B.2. Models and simulations embedded in the real world to monitor 
and steer systems toward more desirable end states is an emerging area of 
study with potential for enormous impact. 

We are entering an age of “smart systems” that are able to assess their current surroundings and 
provide useful recommendations to users, or automatically effect changes to improve systems on-
the-fly while the system is operating. For example, smart manufacturing systems can automatically 
adapt supply chains as circumstances evolve, or smart transportation systems can automatically 



	 6	

adapt as congestion develops to reduce traveler delays. Models and simulations driven by online 
data provide a predictive capability to anticipate system changes and can provide indispensable 
aids to manage these emerging complex systems. However, key foundational and systems research 
questions must be addressed to realize this capability. Further, key questions concerning privacy, 
security, and trust must be addressed to mitigate or avoid unintended, undesirable side effects 
resulting from the widespread deployment of such systems.  

Finding B.3. New means to unify and integrate the increasing “plethora of 
models” that now exists are needed to effectively model complex systems. 

As discussed earlier, complex systems contain many interacting components. Different 
components often require different types of simulations. For example, some subsystems may be 
best represented by equation-based, physical system simulations, while others are abstracted to 
only capture “interesting” events, jumping in time from one event to the next. Simulator platforms, 
frameworks, tool chains, and standards are needed to allow these simulations to seamlessly 
interoperate with each other. The simulations may be operating on vastly different time and spatial 
scales creating mismatches at boundaries where they must interact. Further, many executions of 
the simulation will usually be required to explore different designs or to assess uncertainties. Many 
problems call for thousands of runs to be completed. New approaches are needed to complete these 
runs in a timely fashion. 

Finding B.4. Modeling and simulation is synergistic with “big data,” and 
offers the ability to advance predictive capabilities well beyond that which can 
be accomplished by machine learning technologies alone. 

“Big data” analysis techniques such as machine learning algorithms provide powerful predictive 
capabilities, but are limited because they lack specifications of system behavior. Simulation 
models provide such specifications, offering the possibility to augment the capability of pure data 
analysis methods, e.g., to answer “What if?” questions or to be used in non-recurring situations 
where sufficient data does not exist. There are clear synergies between M&S methods and machine 
learning algorithms to realize much more effective models that can be used to greatly improve 
decision making. However, important questions such as effective model and data representation 
and approaches to create effective integrated models and systems must be addressed to realize this 
potential. 

 
C. Uncertainty: Understanding and Managing Unknowns in Modeling Complex 

Systems 

All models have inherent uncertainties which limit them from fully explaining past events and 
predicting future events. Understanding this uncertainty and its implications is essential for M&S 
activities.  
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Finding C.1. There is a need to unify uncertainty-related efforts in M&S under 
a consistent theoretical and philosophical foundation. 

Multiple communities have addressed issues related to uncertainty in models using different 
mathematical formulations; however, there is a lack of a rigorous theoretical and philosophical 
foundation. The lack of such a foundation has resulted in ad-hoc approaches for dealing with 
uncertainty, e.g., use of ad-hoc measures of model validity, and the artificial distinction between 
aleatory and epistemic uncertainty. Unification of efforts under a consistent framework is essential 
for further progress. It is recognized that probability theory is the only theory of uncertainty 
consistent with the established normative tenets of epistemology. There is agreement that Bayesian 
probability theory is the consistent foundation for uncertainty in M&S. 

Finding C.2. Advancements in theory and methods are needed both for 
decision making in the M&S process and for M&S to support decision making. 

M&S are purpose-driven activities which must be considered in the eventual context of use. The 
specific context defines the role and scope of the model in the decision-making process, and the 
resources available. From this perspective, M&S activities support decision making. Further, 
modelers are also decision makers who decide how much effort and resources to expend based on 
the potential impact on the decision. While decision theory provides the necessary foundation for 
making M&S decisions, there are unique challenges associated with M&S decisions in an 
organizational context. Examples of challenges include consistently deducing preferences for 
individual uncertainty management decisions from overall organizational goals, and the 
complexity of sequential decisions in M&S. 

Finding C.3. Advancements are needed to understand and address 
aggregation issues in M&S. 

M&S of complex systems involves aggregation of information from multiple sources. Techniques 
such as multi-physics, multi-disciplinary, multi-fidelity, and multi-scale modeling integrate 
models typically developed by different modelers. Aggregation of information and integration of 
models is associated with a number of challenges such as seamlessly integrating models across 
different levels and ensuring consistency in modeling assumptions. Even if consistency across 
different models is achieved, the fundamental nature of aggregation can also result in erroneous 
results due to the path dependency problem. There is a need to address the challenges associated 
with aggregation of physics-related and preference-related information in modeling complex 
systems. 



	 8	

Finding C.4. While there has been significant progress on understanding 
humans as decision makers, the utilization of this knowledge in M&S activities 
has been limited. 

Humans are integral parts of socio-technical systems. Accurately modeling human behavior is 
essential for simulating overall system behavior. Further, the developers and users of models are 
human decision makers. Therefore, the effectiveness of the model development and usage process 
is highly dependent on the behavior of the human decision makers. Better understanding of biases 
that exist in human decisions can help towards better designed control strategies for socio-technical 
systems, better M&S processes, more efficient allocation of organizational resources, and better 
model-driven decision making. Addressing human aspects in M&S would require collaboration 
between domain-specific modeling researchers and researchers in social, behavioral, and 
psychological sciences. 
Another key challenge in M&S is communication of model predictions and associated uncertainty 
among stakeholders. There is a need for techniques for consistently communicating the underlying 
assumptions and modelers’ beliefs along with their potential impact on the predicted quantities of 
interest. There is a need for bringing uncertainty at the core of educational curricula. A modern 
curriculum on probability in engineering and science is needed to equip students with the 
foundation to reason about uncertainty.  Finally, while “big data” has been used to inform the 
models of the simulated system, the use of “big data” has introduced new challenges associated 
with incomplete or noisy samples, high dimensionality, “overfitting”, and the difficulties in 
characterizing uncertainty in extrapolative settings and rare events.  New research approaches that 
incorporate rigorous mathematical, statistical, scientific, and engineering principles are therefore 
needed. 

 
D. Reuse of Models and Simulations: Reducing the Cost of Modeling Complex Systems 

As discussed earlier, the ability to reuse models and simulations can substantially reduce the cost 
of creating new models. This topic overlaps with some of the challenges discussed earlier. For 
example, the challenges of conceptual modeling and computational challenges play pivotal roles 
in reuse processes as well. However, the facets highlighted in those areas focused on identifying 
reusable solutions, selecting the best reusable solution under the given conceptual and technical 
constraints, and the integration of the identified solution into the appropriate solution framework, 
all while taking organizational and social aspects into account. The following three challenges 
were identified to categorize solution contributions: (1) the theory of reuse, (2) the practice of 
reuse, and (3) social, behavioral, and cultural aspects of reuse. 

Finding D.1 Advancements in the theory of reuse are needed to provide a firm 
theoretical foundation for producing robust and reliable reuse practices. 
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A firm theoretical foundation is needed for producing robust and reliable reuse practices. While 
heuristics and best practices can guide the practitioners successfully, it is the theory behind these 
approaches that ensures their applicability. While good heuristics and practices have worked well 
elsewhere, and have led to good results, only a theoretic framework can provide formal proofs of 
general validity. In support of these tasks, key questions are related to composability, the use of 
metadata to enable reuse, and opportunities for reuse automation. 

Finding D.2 Guides of good practices on reuse of simulation solutions, data, 
and knowledge discovery can in particular support the workforce. 

Although work in recent years contributed to solving various challenges to the day-to-day practice 
of reuse in modeling, good practices are still needed to support the simulation workforce. To this 
end, the workshop addressed the reuse of M&S, the reuse of data, and the reuse of knowledge 
management. M&S research addresses primarily issues confronting the reuse of representations of 
models and their implementation in simulation languages and frameworks. Research on data reuse 
focuses on input needs and output possibilities of simulation systems, as well as the necessary 
metadata approaches. Finally, knowledge management research is coping with general challenges 
applicable to all these topics. 

Finding D.3 Research on social, behavioral, and cultural aspects of reuse 
shows that they may stimulate or impede reuse at least as much as technical 
constraints. 

Several recent studies show that often intangible human and organizational factors hinder the reuse 
of models, simulations, and data, even when all conceptual and technical aspects can be solved. 
Key research questions have the objective to identify and teach the skills necessary for a model or 
simulation producer to increase the ease of reuse by others if the producer chooses to, and can 
afford to do so. Programmatic issues, questions on risk and liability, and general social and 
behavioral aspects must be better understood and disseminated to contribute to reuse practices. 
 

In summary, solutions to the research challenges described across the four technical areas 
discussed in the workshop will greatly expand our abilities to design and manage complex 
engineered systems. Advances in M&S will have broad impacts across many of the most important 
and challenging problems facing society today. The world is rapidly becoming more and more 
interconnected and interdependent, resulting in consequences that are increasingly more difficult 
to anticipate or plan for. While M&S has served us well in the past and is a critical tool widely 
used today, new advances are essential for the technology to keep pace with a rapidly changing 
world, and create new capabilities never even considered in the past. 
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1 Introduction 
Computer-based models and simulations are vital technologies needed in advanced economies to 
guide the design of complex systems. M&S technologies are essential to address the critical 
challenges facing society today such as the creation of smart, sustainable cities, development of 
advanced aircraft and manufacturing systems, and creating more secure and resilient societies and 
effective health care systems, to mention a few. 

However, the development and use of reliable computer models and simulations is today time 
consuming and expensive, and results produced by the models may not be sufficiently reliable for 
their intended purpose. M&S faces unprecedented new challenges. Engineered systems are 
continually increasing in complexity and scale. Advances in M&S are essential to keep up with 
this growing complexity and to maximize the effectiveness of new and emerging computational 
technologies to engineer the increasingly complex systems that are needed in the future. 

1.1 Why Now? 
Computer-based models and simulations have been in use as long as there have been digital 
computers. For example, one application of the ENIAC, the first electronic digital computer, was 
to compute trajectories of artillery shells to create firing tables used in World War II. There is no 
question that computer simulations have had major impacts on society in the past, and will continue 
to do so in the future. The importance of M&S was recognized in the United States House of 
Representatives that declared it a critical technology of national importance (U.S. House of 
Representatives 2007). 
New developments in M&S technologies are of critical importance now. M&S applications are 
rapidly increasing in scale and complexity as systems become more complex and interconnected. 
For example, consider the use of M&S to inform policy makers to steer urban growth toward more 
sustainable trajectories. It is widely recognized that one must view cities as a whole, and consider 
interdependencies among critical infrastructures such as transportation, water, and energy, as well 
as interactions with social processes and policy. Each of these systems and infrastructures is a 
large, complex adaptive system in its own right.  Creating simulation models able to capture the 
behaviors and interactions among these infrastructures and social-economic processes is even 
more challenging. Advances in modeling and simulation technologies are needed. 

While the emerging demands of new applications built using M&S present one set of challenges, 
the underlying computing platforms and technologies exploited by M&S have undergone dramatic 
changes in the last decade, also highlighting the timeliness of this initiative. These advances create 
new opportunities, and challenges, for modeling and simulation to achieve even greater levels of 
impact. Trends such as the Internet-of-Things and “Big Data” have strong implications concerning 
the future of modeling and simulation. Online decision-making is an area of increasing importance 
with the emergence of mobile computing and growth in technologies such as sensor networks. 
Modeling and simulation is complementary to the exploitation of data analytics. While models 
derived purely from data analytics offer much benefit, they do not include behavioral descriptions 
of the system under investigation that are necessary for prediction of dynamic system behaviors 
that are necessary for what-if experimentation, or analysis of situations where sufficient data, or 
the right data are not available, e.g., due to privacy or other concerns. At the same time, power and 
energy consumption has become an important consideration in computing, both for mobile 
computing platforms and computing in data centers. Massively parallel multiprocessor systems 
containing over a million cores, GPUs, and cloud computing have emerged in importance in the 
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last decade, motivating research to effectively exploit these platforms. Cloud computing offers 
much broader exploitation of M&S technologies by making high performance computing 
capabilities much more broadly accessible, and embedding simulations into operational 
environments presents new opportunities and challenges. 

1.2 Modeling and Simulation 
There are several definitions of models, simulations and the M&S discipline. The U.S. Department 
of Defense (DoD) defines these terms as follows in their online glossary (MSCO 2013): 

• Model: a physical, mathematical, or otherwise logical representation of a system, entity, 
phenomenon, or process. 

• Simulation: a method for implementing a model and behaviors in executable software. 
• Modeling and Simulation (M&S): the discipline that comprises the development and/or use 

of models and simulations.  

Here, we are specifically concerned with computer models where the representation is stored and 
manipulated on an electronic computer. A simulation captures salient aspects of the dynamic 
behavior of the modeled system over time. Typically, a simulation model captures the state of the 
system being modeled at one instant in time through a set of values assigned to variables and data 
structures in the computer program, commonly referred to as state variables. For example, a 
simulation of vehicle transportation system might define state variables for each vehicle in the 
system indicating its current location, direction of travel, speed, acceleration, etc. A set of 
procedures or programs transform these state variables to represent the state of the system from 
one time instant to the next. In this way the simulation constructs a trajectory or sample path of 
the state of the system over the period of time that is of interest. 
We note that modeling and simulation are closely related, but distinct areas. Modeling is primarily 
concerned with the representation of the system under investigation. Models always involve a 
simplified representation of the system. Therefore, a key question concerns what is included, and 
by implication, what is left out of the model. Simulation is concerned with transforming the model 
to mimic the behavior of the system over time. Key questions include the algorithms, procedures, 
and software that are required to perform this transformation. In some cases, creation of the model 
is of primary concern, and simulation may be secondary or not required at all. For example, when 
creating the design of an automobile that is to be handed over to a factory that is responsible for 
manufacturing, the dynamics of the vehicle as it is travelling on the roadway are not important. 
Here, we are concerned with both modeling and simulation aspects of complex engineered 
systems. 

The modeling and simulation discipline covers many aspects. The elements that are most relevant 
to this report are perhaps best described within the context of the life cycle of an M&S project or 
study. The process depicted in Figure 1.1 captures the basic elements of this life cycle (Loper 
2015).  The life cycle begins by defining the purpose and scope of the study. Specific questions 
concerning the actual or envisioned system under investigation are defined. The purpose and scope 
forms the basis of the conceptual model that characterizes the system under investigation. 
Elaborated upon below, the conceptual model includes descriptions of the abstractions used to 
describe the system; key assumptions used by the model are defined explicitly or (more often) 
implicitly in the conceptual model as well as key inputs and outputs. Data used to characterize the 
system and information concerning important processes are collected, analyzed, and incorporated 
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into the model. The conceptual model is then converted into a simulation model and computer 
program. Verification is concerned with ensuring that the simulation program is an acceptable 
representation of the conceptual model. Verification is to a large extent a software development 
activity. Validation is concerned with ensuring the simulation program is an acceptable 
representation of the system under investigation for the questions posed in the study. This is often 
accomplished by comparing results produced by the simulation program with data measured from 
the system under investigation or, in the absence of an implemented system that can be measured, 
other models of the system. Once the simulation model has been validated to an acceptable degree 
of certainty, it is applied to answer the questions posed in the first step of the life cycle. The model 
will be executed many times, e.g., using different random number streams for stochastic simulation 
models, or to explore various parameter settings; the experiment design defines the simulation runs 
that are to be completed. Output analysis concerns characterization and quantification of model 
results, e.g., to determine confidence intervals and variance of output values. Simulation models 
often must be modified and evolve during the life cycle, e.g., to improve the validity of its results 
or to incorporate new capabilities or to answer new questions not recognized in the initial design. 
Configuration control refers to the processes necessary to manage these changes. Finally, once the 
necessary results have been produced, they must be documented and presented to the individuals 
or decision-makers to illustrate key behaviors and outcomes predicted by the simulation model. 

The boxes in blue in Figure 1.1 represent model development activities and the orange boxes 
represent simulation development activities. These boxes do not represent an absolute separation 
between modeling and simulation –  the “develop simulation model & program” box bridges 
between the modeling and simulation activities, and the “verify & validate model and simulation” 
box represents activities that are performed throughout the entire lifecycle. 
Here we focus on four key aspects of the life cycle, discussed next: 

• Development of the conceptual model. 
• Computational issues concerning the execution of simulation models. 
• Understanding and managing uncertainty that is inherent in models. 
• Reuse of models and simulations to accelerate the simulation model development process. 

 

Figure 1.1: M&S Lifecycle Process 
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Conceptual Model 

A model is a simplification and approximation of reality, and the art of modeling involves choosing 
which essential factors must be included, and which factors may be ignored or safely excluded 
from the model.  This is accomplished through the process of simplification and abstraction. 
Simplification is an analytical technique in which unimportant details are removed in an effort to 
define simpler relationships. Abstraction is an analytical technique that establishes the essential 
features of a real system and represents them in a different form. The resultant model should 
demonstrate the qualities and behaviors of a real world system that impact the questions that the 
modeler is trying to answer. The process of simplification and abstraction is part of developing the 
conceptual model. A simulation conceptual model is a living document that grows from an 
informal description to a formal description and serves to communicate between the diverse groups 
participating in the model’s development. It describes what is to be represented, the assumptions 
limiting those representations, and other capabilities (e.g., data) needed to satisfy the user’s 
requirements. An informal conceptual model may be written using natural language and contain 
assumptions about what one is or is not representing in the model. A formal conceptual model is 
an unambiguous description of model structure. It should consist of mathematical and logical 
relationships describing the components and the structure of the system. It is used as an aid to 
detect omissions and inconsistencies and resolve ambiguities inherent in informal models, and is 
used by software developers to develop code for the computational model. 
Simulation Development and Reuse 

Once the conceptual model has been created, the next step is to create the simulation by coding 
the conceptual model into a computer recognizable form that can calculate the impact of uncertain 
inputs on decisions and outcomes that are important relative to the purpose and scope of the study. 
Translating the model into computer code and then into an executable involves selecting the most 
appropriate simulation methodology and an appropriate computer implementation. Methodologies 
appropriate for modeling complex systems include: discrete event simulation, discrete event 
system specification (DEVS), petri nets, agent-based modeling and simulation, system dynamics, 
surrogate models, artificial neural networks, Bayesian belief networks, Markov models, game 
theory, network models (graph theory), and enterprise architecture frameworks, among others 
(Kinder 2015). 

The development of new simulation programs can be greatly accelerated by reusing existing 
simulations rather than developing everything “from scratch” for each new model. At its most 
basic level, common components of the program such as key data structures and libraries for 
random number generation can be readily reused rather than redeveloped. A much more ambitious 
goal is to reuse entire model components or entire simulations. Many large, complex systems may 
be viewed as collections of subsystems, each of which may be a complex system in its own right, 
that interact with each other in some fashion. A simulation model of such “systems-of-systems” 
may be derived by integrating existing simulation models of the subsystems. The end goal is to 
create simulations that may be easily composed with other simulations, much like composing 
mathematical functions to create more complex functions. 

Simulation Model Execution 

A single execution of the simulation model is commonly referred to as a trial. A simulation study 
will typically require many hundreds or thousands of trials. Each trial is an experiment, or instance, 
where we supply numerical values for input variables, evaluate the model to compute numerical 
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values for outcomes of interest, and collect these values for later analysis. Exhaustive exploration 
of all input parameters, e.g., to identify an optimal solution is usually impractical due to the large 
number of runs that would be required. Further, for stochastic models where random numbers are 
used to characterize uncertain variables, the output of a simulation run produces a single sample. 
Hence, simulation often relies on random sampling of values for the uncertain variables. To obtain 
more accurate results the number of trials may be increased, so there is a tradeoff between accuracy 
of the results, and the time taken to run the simulation. 
The platform on which the simulation executes is an important consideration in executing the 
simulation model. For large models parallel processing techniques utilizing parallel and distributed 
computing platforms may be used to accelerate model execution. In other contexts, the simulation 
may be used to control an operational system. In this case, data from the system is collected and 
fed directly into the simulation model. The simulation may then analyze alternate options and 
produce recommended courses of action that are then deployed in the operational system. This 
feedback loop may be automated, or may include human decision makers. This paradigm of 
utilizing online data to drive simulation computations and to use these results to optimize the 
system or adapt the measurement process is referred to as dynamic data driven application systems 
(DDDAS). 
Uncertainty and Risk 

A simulation model is always an approximate representation of reality. As such, there are always 
uncertainties concerning the relationship between the model and the actual system. Uncertainty 
can enter mathematical models and experimental measurements in various contexts. For example, 
parameter uncertainty comes from the model parameters that are inputs to the mathematical model, 
but whose exact values are unknown and cannot be controlled in physical experiments, or whose 
values cannot be exactly inferred by statistical methods. Parametric variability comes from the 
variability of input variables of the model. Structural uncertainty, aka model inadequacy, model 
bias, or model discrepancy, comes from the lack of knowledge of the underlying true physics. 
Algorithmic uncertainty, aka numerical uncertainty, comes from numerical errors and numerical 
approximations per implementation of the computer model. Interpolation uncertainty comes from 
a lack of available data collected from computer model simulations and/or experimental 
measurements. For other input settings that don't have simulation data or experimental 
measurements, one must interpolate or extrapolate in order to predict the corresponding responses. 
A quantitative risk model calculates the impact of the uncertain parameters and the decisions we 
make on outcomes that we care about.  Such a model can help decision makers understand the 
impact of uncertainty and the consequences of different decisions. The process of risk analysis 
includes identifying and quantifying uncertainties, estimating their impact on outcomes that we 
care about, building a risk analysis model that expresses these elements in quantitative form, 
exploring the model through simulation, and making risk management decisions that can help us 
avoid, mitigate, or otherwise deal with risk. 

1.3 Preliminary Questions 
Prior to the workshop five topic areas were identified to generate challenges for modeling and 
simulation research: 

1. Selected applications that would benefit from advances in modeling and simulation 
2. Conceptual modeling 
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3. Computational methods: algorithms for simulation and other types of inference 
4. Uncertainty in modeling and simulation 
5. Reuse of models and simulations 

Important application areas and questions posed prior to the workshop are discussed next. 

 

Applications 

Engineered systems continue to grow in complexity and scale. Existing modeling and simulation 
capabilities have not kept pace with the need to design and manage new emerging systems. 
Although the workshop was focused on modeling and simulation per se, distinct from the domain 
in which the technology is applied, the requirements of modeling and simulation technologies are 
ultimately derived from the application. In this context the workshop explored new emerging 
developments in specific applications of societal importance in order to assess the needs and 
impacts that advances in modeling and simulation will have within those domains. 

Specific application domains targeted by the workshop included: 

• Aerospace 
• Healthcare and medicine  
• Manufacturing 
• Security and defense 
• Sustainability, urban growth and infrastructures 

Conceptual Modeling 

Although one of the first steps in the development of a model is the development of a conceptual 
model, such conceptual models have traditionally been informal, document-based.  As the 
complexity of simulation models increases and the number of domain experts contributing to a 
single model grows, there is an increasing need to create formal, descriptive models of the system 
under investigation and its environment.  This is particularly important for the engineering of 
complex systems where multiple system alternatives are explored, compared and gradually refined 
over time.  The descriptive model of each system alternative – describing the system of interest, 
the environment and interactions between them – can serve as a conceptual model for a 
corresponding analysis or simulation model. Formal modeling of these descriptive, conceptual 
models poses significant research challenges: 

• How can models expressed by different experts in different modeling languages be 
combined in a consistent fashion? 

• What level of formality is suitable for efficient and effective communication? 
• What characteristics should a modeling environment have to support conceptual 

modeling in an organizational context – a distributed cognitive system? 
• What transformations of conceptual models to other representations are possible, and 

useful? What are the major impediments to realizing such transformations? 
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Computational Methods 

The main reason for modeling is to extend human cognition.  By expressing our knowledge in a 
mathematical formalism, the rules of mathematical inference implemented in computer algorithms 
can be used to draw systematic conclusion that are well beyond the natural cognitive ability of 
humans. For instance, simulation allows us to project how the state of a system will change over 
time for complex systems with millions of state variables and relationships.  Advancing the 
algorithms for such inference so that ever larger models can be processed more quickly is likely 
to remain a crucial capability for engineering and science.  Besides simulation, there is an 
increasing role for model checking, especially for engineered systems that are affected by high-
impact low-probability events. 
This leads to the following questions for discussion: 

• What are current trends in computing affecting modeling and simulation and how can 
they best be exploited? 

• How will these trends change the nature of simulation and reasoning algorithms? 
• What are the major gaps in computational methods for modeling and simulation, and 

what are the most important research problems? 
• How can one best exploit the vast amounts of data now becoming available to 

synergistically advance M&S for engineering complex systems? 
  

Model Uncertainty 
The goal of modeling and simulation often is to make predictions, either to support decisions in an 
engineering, business or policy-making context, or to gain understanding and test hypotheses in a 
scientific context.  It is impossible to prove a model is correct – the predictions are always 
uncertain. Yet, many models and simulations have been proven to be useful, and their results are 
routinely used for many purposes.  To further improve the usefulness of models, it is important 
that we develop a rigorous theoretical foundation for characterizing the accuracy of the predictions.  
Within the modeling and simulation community, there is still a lack of agreement on how best to 
characterize this uncertainty.  A variety of frameworks have been proposed around concepts of 
validation and verification, and a variety of uncertainty representations have been proposed. 

This leads to the following questions for discussion: 

• What is the most appropriate approach to consistently represent and reason about 
uncertainty in complex systems consistently? 

• What is the best approach to characterizing the uncertainty associated with a simulation 
model in order to enable and facilitate reuse? 

• How should one aggregate knowledge, expertise, and beliefs of multiple experts across 
different domains? 

• What is the best approach to take advantage of the large and diverse datasets for 
characterizing uncertainty and for improving model accuracy? 

• What are the most promising approaches to accelerate the validation of models for 
specific application contexts? 
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Model Reuse 

Although modeling has become indispensable in engineering and science, the cost of creating a 
good model can be considerable.  This raises the question of how these costs can be reduced.  One 
approach is to encode domain knowledge into modular, reusable libraries of models that can then 
be specialized and composed into larger composable models.  Such a modular approach allows the 
cost of model development, testing, and verification to be amortized over many (re)uses.  
However, reuse also introduces new challenges: 

• How can a model user be confident that a planned re-use of the model is within the range 
of uses intended by the model creator? 

• How can one characterize the uncertainty of a model that is reused (possibly with some 
adaptations to a new context)? 

• How can one characterize the uncertainty of simulation models obtained through the 
composition of multiple models? 

• How can one accelerate the process of adapting and reusing models for different 
purposes? What are the fundamental limitations of technologies for model reuse? 

 
The chapters that follow discuss each of these topics. Chapter 2 reports on the five targeted 
application areas. Chapter 3 reports on discussions and research challenges concerning conceptual 
models. Chapter 4 describes computational challenges in M&S. Chapter 5 discusses uncertainty 
and associated research challenges. Finally, Chapter 6 characterizes and presents research 
challenges concerning the reuse of models and simulations and Chapter 7 presents concluding 
remarks. 
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2 Applications 
Modeling and simulation provide a powerful means to understand problems, gain insights into key 
tradeoffs, and inform decisions at all echelons of the domain.  Applications of modeling and 
simulation should be driven by the nature of the problems of interest and the appropriateness of 
the model or simulation for the problem and domain in which it is being considered or applied. 
This chapter begins by reviewing the five keynote presentations from the workshop to understand 
the nature of the problems addressed rather than the approaches to modeling and simulation 
employed in these instances.  This leads to consideration of crosscutting challenges associated with 
these examples.  This chapter concludes with a discussion of specific modeling and simulation 
challenges identified. 

2.1 Five Examples 
The workshop provided examples of five problems where modeling and simulation can provide 
the means to understand problems, gain insights into key tradeoffs, and inform decisions. 

• Urban Infrastructure (Crittenden) 
• Healthcare Delivery (Combs) 
• Automated Vehicle Manufacturing (Yukish) 
• Deep Space Missions (Jenkins) 
• Acquisitions Enterprise (Kraft) 

Table 2.1 compares these five examples in terms of the nature of the problem addressed rather than 
the specific modeling and simulation employed.  The five examples are contrasted in terms of top-
down forces, bottom-up forces, human phenomena, and the difficulty of the problem. 
Top-Down Forces 
The top-down forces affecting Urban Infrastructure include the consequences of climate change, 
forced migration, and macroeconomic trends. In contrast, Healthcare Delivery is being affected by 
increased demand for services from an aging population, increased prevalence of chronic disease, 
and changing payment models.  Many of these forces are exogenous to the urban and healthcare 
enterprises. 
Automated vehicle manufacturing is being affected by demands from the Department of Defense 
for rapid design, development, manufacturing, deployment, and sustainment.  This occurs in the 
broader context of the Acquisitions Enterprise, which is being affected by Congressional and 
military services’ imperatives, mandates, and regulations, as well as budget pressures.  These 
forces are endogenous to the defense enterprise, but exogenous to particular programs. 

The top-down forces affecting Deep Space Missions include mission requirements for robustness 
and flexibility, as well as the magnitude and timing of budgets.  These requirements are seen as 
exogenous to the extent that they are taken as non-negotiable.  There could be, of course, tradeoffs 
between requirements and budgets. 

Bottom-Up Forces 
Bottom-up forces tend to come from within the enterprise and hence can be seen as endogenous 
to the system.  Such forces are often more amenable to prediction, control, and perhaps design.  
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Thus, they are more likely to be explicitly represented in models and simulations rather than seen 
as being external to the phenomena being modeled. 

The bottom-up forces of increased demands on infrastructure and generation of waste, as well as 
dealing with waste, affect Urban Infrastructure.  Healthcare Delivery must deal with patients’ 
disease incidence, progression, and preferences, as well as providers’ investment decisions.  Deep 
Space Missions is affected by environmental surprises, technological failures, and public support 
for space exploration.  These three examples concern the magnitudes and uncertainties associated 
with demands on those systems. 

Automated vehicle manufacturing is affected by the state of technology for design, development, 
and manufacturing, as well as the availability of tools, components and materials.  Acquisitions 
Enterprise must address asymmetric threats, changing missions, globalization of technology and, 
in some areas, the declining defense industrial base.  These two examples are laced with changing 
requirements and both technological and organizational constraints. 
Human Phenomena 
Behavioral and social phenomena are much more difficult to model than purely physical systems.  
The five examples differ significantly in terms of the prevalence of human phenomena. 

Social and political forces, as well as individual preferences and decisions regarding consumption 
and use of infrastructure affect Urban Infrastructure.  Disease dynamics, patient choice, and 
clinician decisions affect Healthcare Delivery.  Many of the behavioral and social phenomena 
associated with these examples are not amenable to design changes. 

Automated Vehicle Manufacturing is laced with design and development decision making, 
supervisory control of manufacturing, and operation and maintenance of deployed systems.  Deep 
Space Missions is similarly affected by design and development decision making, as well as 
ground operations decision making. Acquisitions Enterprise is also affected by decision making at 
all levels, as well as sustainment of deployed systems.  The decision making for these three 
examples is often amenable to various levels of decision support.  

Difficulty of Problem 
The difficulty of addressing Urban Infrastructure is exacerbated by fragmented decision making 
across city, state, and federal agencies, all in the context of severely aging infrastructure.   
Healthcare Delivery is difficult due to uncertainty of demands for various services, impacts of 
science and technology advances, and stability of payment models.  These two examples face 
uncertain demands and organizational difficulties. 

For Automated Vehicle Manufacturing, the required pace of rapid automation exceeds the state of 
the art. The level of integration of all needed ingredients is very demanding.  Acquisitions 
Enterprise is beset by a plethora of models, methods, and tools, as well as fragmented and siloed 
decision making.   Deep Space Missions faces harsh environments, extreme distances, 
communications delays of minutes to hours, and infeasibility of maintenance and repair.  These 
three examples are laced with technological and technical difficulties.   

2.2 Crosscutting Issues 
In all cases, the problem being addressed must be considered within the broader enterprise context 
of top-down and bottom-up forces that influence the problem and likely constrain the range and 
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nature of solutions, as well as the choice of the model(s) or simulation(s) to be applied.  In other 
words, what phenomena are internal and external to the model and simulation?    

Many models and simulations do not incorporate rich representations of the human behavioral and 
social phenomena associated with the problems of interest.  Yet, human operators and maintainers, 
as well as citizens and consumers, are central to several of the example problems.  Humans provide 
flexible, adaptive information processing capabilities to systems, but also can make risky slips and 
mistakes.  There is much more uncertainty in systems where behavioral and social phenomena are 
prevalent. 

There are also the human users of models and simulations, ranging from direct model-based 
decision support to use of model-derived evidence to support organizational decision processes.  
Technology now enables powerful decision support environments that can empower decision 
makers to immerse themselves in the complexity of their problem spaces.  Evidence of this is 
increasingly immersive interactive visualizations that prompt expressions like “wow,” but are not 
well understood in terms of their impacts on decision making. 

All of the examples are plagued, to a greater or lesser extent, by the fragmentation and 
incompatibilities of the ever-evolving range of available tools.  Some areas such as computational 
fluid dynamics, semiconductor design, and supply chain management have achieved a level of 
standardization, but this is quite difficult in areas where “one off” solutions are the norm.  Investing 
in developing and refining a model and simulation is easier to justify when one is going to produce 
thousands or even millions of the system of interest.  This is more difficult to justify and 
accomplish well when the target is, for example, a single mission. 
Underlying all five examples are implicit assumptions and questions about the model or simulation 
of interest.  Is the credibility of a model or simulation understood, accepted, or implied?  Are the 
effects of uncertainty understood?  Can one trust in the results of the model or simulation?  Can 
truly emergent behavior be elicited by the representation(s) chosen?  How can one understand the 
current configuration as the model or simulation evolves?  Does the model or simulation conform 
to exchange standards that enable valid conjunctions of models or simulations? 
There is also an assumed demand for interactivity between the users and the model or simulation 
environment.  This is likely to require more intelligence and resilience in the model or simulation 
to enable valid responses to the range of external stimuli allowed.  At the very least, it requires that 
developers of models and simulations have deep understanding of the use cases the model is 
intended to support as well as the likely knowledge and skills of the envisioned users.   

Finally, a major challenge concerns the necessary regulatory, statutory and cultural hurdles that 
must be surmounted to actually use a model or simulation, and of the set of phenomena associated 
with the problem of interest to support making real decisions.  This requires that decision makers 
both trust the model or simulation and be willing to make the decisions being informed by the 
visualizations of model outputs for the scenarios explored. 

2.3 Modeling and Simulation Challenges 
The applications cited above are part of an almost infinite space of uses for models and simulations.  
There are overlaps in the application of models and simulations; overlaps in the necessary 
characteristics of the model or simulation for the intended use; overlaps in the methods and 
processes used to develop models or simulations; and overlaps in the challenges with the 
application of modeling or simulation. 



	 21	

The development of a model, or a simulation execution of a model, as a representation of reality 
can only go so far.  Most problems are complex, and hence are decomposed to enable a solution.  
Modularization of a problem so that each part can be modeled or simulated is fairly 
straightforward.  What is not straightforward is the understanding of the interdependencies 
between the system modules being modeled.  In part, this is caused by the loss of understanding 
of these interdependencies when a system is decomposed, or modularized.  You cannot validly 
model or simulate what you do not understand.   
Because of the loss of understanding of important interdependencies, it is very difficult to 
explicitly and adequately represent the interactions in the models of the decomposed system.  
Because of this, it is not possible to recompose the models or simulation executions into a 
representation of the original system.  Emergent behaviors as a result of the composition may or 
may not replicate the unidentified relationships between the modules of the original system.  In 
other words, the emergent behaviors may be artifacts of the decomposition rather than reflections 
of reality. 

The challenges with emergent behavior extend beyond the composition of models or simulation 
executions.  These challenges extend into the relationships which exist between the modeled 
physical and organizational phenomena, and the simulation of the processes in which the models 
are to be used.   This boundary point can be thought of simply as an interface definition.   

The concept of an interface is simple; however, the necessary depth of information needed to 
express the relationship between the physical and organizational phenomena and the system or 
process that uses them is not easily identified.  Methods for identifying the needed depth of 
information, based on understanding of the interactions, are an area of significant challenge in 
efficient use of conceptual modeling or execution of conceptual models in a simulation. 
Continuing with issues associated with the interactions between modeled parts of a system, or 
models within a larger system, challenges exist with automated methods for constructing an 
operational environment from a hierarchical set of model components, for example, within a 
product line.  Considering the needed depth of information, there are challenges in knowing how 
much information to include in the operational environment.   This multi-faceted problem includes 
identification of the necessary depth of information to properly exercise the model, or gain the 
necessary data from the simulation execution.  There are no known methods for translating 
between the system, and the environment in which it operates.  As stated earlier, you cannot validly 
model what you do not understand. 

Other challenges in conceptual modeling exist in translating the descriptive models from their 
representational format into executable simulations.  These challenges exist in both the essence of 
model content, as well as the computer environment in which the model will execute.  For example, 
some conceptual models exist in text format.  The automated translation of a model expressed in 
a rich language, into an environment which ultimately is expressed in Boolean expressions is 
perhaps the largest of the challenges in the translation domain.  Less complex, but no-less 
challenging, is the ability to completely describe the model or simulation so that automated 
methods can, without loss, translate from one representational format to another. 

Additional challenges in modeling and simulation exist within the computational environment in 
which they exist.  Just as there are challenges in modeling the relationships between modeled parts 
of a system, there are dependencies which exist between the model or simulation, and the 
infrastructure in which it operates or exists.  This is especially true for simulations.  An improper 
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execution environment, will introduce unquantified unknowns into the results.  Potentially less 
known are the impacts to the model from the infrastructure in which it exists.  The model, as the 
basic representation of reality, is assumed to be uncorrupted.  The model is usually never assessed 
for representational accuracy or corruption effects when accessed.  It is assumed to be in the same 
state as when it was last ‘touched’.  The ability to assure that the model is free from infrastructure-
induced defects is a gap existing today. 

Once the model is put into use, challenges exist due to the need to match the results to the user’s 
viewpoint.  Visualization of the model or visualization of the simulation results can be assessed as 
correct or incorrect simply because the visualization tools used do not represent the results in a 
manner that is understandable, or useful to the user.  Work remains to be done on characterizing 
the user needs and preferences, as matching that to the visualization effects of the model, or data 
set resulting from the simulation execution.  These challenges can be extended deeper than the 
visualization tool.  Characterizing the user needs, and matching them to the models or simulation 
execution that fits the problem space in an automated fashion has the potential to significantly 
increase the efficiency in the use of the model or simulation. 
Other challenges exist in the representational format of the underlying phenomena within the 
model or simulation.  There exists a plethora of representational methods for models.  Not all of 
these are known to all model builders or users.  Model or simulation users need to be able to assess 
the applicability of models or simulations to various problems, which exist in formats that are 
unknown or less known to the users.  Methods to translate model or simulation characteristics from 
one format to another, or represent them in a standard, acceptable format, remain a challenge today. 
Challenges existing at the intersection of model and simulation content and the infrastructure in 
which it exists or executes include the need for methods to identify optimal fidelity or resolution 
needed for proper application to decision support.  Typically, decision makers express their needs 
in terms of textual or spoken questions.  This hides the complexity which exists in matching 
computational simplicity and rigor to the rich context underlying written or spoken format.  
Beginning with simple noun verb comparisons will get us part of the way to the match.  However, 
nouns and verbs are not easily matched to mathematical expressions which exist in the 
computational environment.  Methods are needed both to automatically perform the match, as well 
as to break down the language question into constituent parts which more easily match the 
computational component, taking care to allow for variability in the language itself.  Early steps 
include allowing the user to base model or simulation selections on the presentation of 
computational expressions.  
Challenges remain in the representation of the natural environment, both internally and externally.  
Biological and social processes are not easily expressed using logic constructs. As such, a different 
tactic may be to express what is known in logical constructs, and to quantify what is not known.  
This serves to reduce the problem to some extent, but leaves unresolved a way to quantify the 
uncertainty of biological and social systems. 

Particularly challenging is a method to express environments that are driven by human behavior, 
such as socio-economic environments.  There is a lack of methods to express, or understand, what 
is not expressed in systems and environments where humans are involved.  Human actions can be 
unscripted, unpredictable, and often not possible to model in ways comparable to physical 
phenomena.  This is partly because of the unknown relationships, but also because human 
judgement can be quite subtle. 
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In order to model or simulate interactions involving biological (human, animal, etc.) inputs, or 
human-human interactions results, the multi-fidelity, multi-modal, multi-domain models often 
constructed involve rather mixed precision.  The ability to actually do this, and have a repeatable, 
predictable result is necessary, but methods do not exist today to accomplish this, or validate the 
composition or decomposition. 
The challenges discussed thus far have not included the challenges coming from the application 
domains themselves.  One challenge is with the applicability of the model or simulation beyond 
the problem space for which it was originally intended.  Models and simulations are often reused 
due to word-of-mouth, with or without the associated documentation.  Challenges exist with 
models or simulations, built for one purpose being validly used in another domain.  Just because 
it was not built for a particular purpose does not mean that it is inherently not usable for another 
purpose.  The challenge is how to validate a model in a different domain. 
 
Modeling and simulation exists for almost every activity today.  However, each activity domain 
retains its own language.  This usually underlies the domain’s models and simulations.  
Challenges exist with integrating the domain language and knowledge, extended into the model 
or simulation manifested.  Integration, or interaction between multiple domains is usually 
accomplished using language.  This allows for reasoning and translation of concepts.  How can 
this be extended to facilitate multi-domain model integration? 
 
Many models and simulations are never retired.  Such models and simulations evolve through 
modification.   Is it possible to characterize the types of modifications performed to evolve the 
models?  If yes, how?  When is it necessary to characterize a model as new?  When is it impossible 
to assume validation due to changes? There exists a need to answer these questions, since evolving 
models and simulations need to be trusted. 
 
A final challenge remains in understanding and then describing a model or simulation as a complete 
entity, for future use, for contracting purposes, etc.  The methods to completely describe a model 
or simulation begin with understanding what “complete” means in a domain, as well as use of a 
model or simulation.   The use of a model or simulation within a domain, or ecosystem, needs to 
be articulated to fully understand the boundary conditions of the model or simulation, the 
extensibility of the model or simulation, the history of the model or simulation, as well as the 
current state of use. 
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 Urban 
Infrastructure 
(Crittenden) 

Healthcare 
Delivery 
(Combs) 

Automated Vehicle 
Manufacturing 

(Yukish) 

Deep Space 
Missions (Jenkins) 

Acquisitions 
Enterprise (Kraft) 

Top-Down 

Forces 

Consequences of 
climate change, forced 
migration, 
macroeconomic trends 

Increased demand for 
services, increased 
prevalence of chronic 
disease, changing 
payment models 

Demands for rapid design, 
development, 
manufacturing, 
deployment, and 
sustainment 

Mission requirements 
for robustness and 
flexibility, magnitude 
and timing of budgets 

Congressional and 
services’ imperatives, 
mandates, and 
regulations; budget 
pressures 

Bottom-Up Forces Increased demands on 
infrastructure and 
generation of waste, 
dealing with waste 

Patients’ disease 
incidence, 
progression, and 
preferences; 
providers investment 
decisions 

State of technology for 
design, development, and 
manufacturing; 
availability of tools, 
components and materials 

Environmental 
surprises, technological 
failures, public support 
for space exploration 

Asymmetric threats, 
changing missions, 
globalization of 
technology, declining 
defense industrial base 

Human 
Phenomena 

Social and political 
forces, individual 
preferences and 
decisions regarding 
consumption and use of 
infrastructure 

Disease dynamics, 
patient choice, 
clinician decisions 

Design and development 
decision making, 
supervisory control of 
manufacturing, operation 
and maintenance of 
deployed systems 

Design and 
development decision 
making, ground 
operations decision 
making 

Decision making at all 
levels; sustainment of 
deployed systems 

Difficulty of 
Problem 

Fragmented decision 
making across city, 
state, and federal 
agencies; aging 
infrastructure 

Uncertainty of 
demands for various 
services, science and 
technology advances, 
and stability of 
payment models 

Required pace of rapid 
automation exceeds state 
of the art, level of 
integration of all needed 
ingredients very 
demanding  

Harsh environment, 
extreme distances, 
communications delays 
of minutes to hours, and 
infeasibility of 
maintenance and repair 

Plethora of models, 
methods, and tools; 
fragmented and siloed 
decision making 

 

 
Table 2.1. Comparison of Five Applications Examples 
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3 Conceptual Modeling 
Over the past decade, within the modeling and simulation community there has been a growing 
interest in, and concern about “conceptual modeling.” Generally accepted as crucial for any 
modeling and simulation project addressing a large and complex problem, conceptual modeling is 
not well-defined, nor is there a consensus on best practices. “Important” and “not well understood” 
would seem to qualify conceptual modeling as a target for focused research. 

Some workshop participants defined conceptual models as “early stage” artifacts that integrate and 
provide requirements for a variety of more specialized models.  In this view, conceptual models 
provide a foundation from which more formal and more detailed abstractions can be developed, 
and eventually elaborated into analysis models (e.g., for simulation).  However, workshop 
discussion led us to recognize that “early” and “late” are relative terms that apply within each stage 
of development.  For example, creating an analysis model might involve describing, (i.e., 
modeling) the analysis independently of software (“conceptually”) before implementation and 
execution. As a consequence, there might be multiple “early” models: conceptual models of reality 
and conceptual models of analysis; and there may be multiple versions of conceptual models as 
the understanding of the target system matures and the analysis design and implementation 
evolves.   
These varieties of conceptual models are sometimes distinguished in existing work, with different 
terminology.  In 2013, Robinson used “conceptual model” to mean “a non-software specific 
description of the simulation model, … describing the objectives, inputs, outputs, content, 
assumptions and simplifications of the [simulation] model” and “system description” to mean 
models derived from the “real world,” with two stages of computer-specific models derived from 
the system description (Robinson 2013). In a 2012 tutorial, Harrison and Waite use “conceptual 
model” to mean “an abstract and simplified representation of a referent (reality)” (Harrison and 
Waite 2012), instead of Robinson's “system description.” 

With this context, developing an engineering discipline of conceptual modeling will require much 
better understanding of:  

1. how to make conceptual models explicit and unambiguous, for both the target system (or 
referent) and the target analysis 

2. the processes of conceptual modeling, including communication and decision-making 
involving multiple stakeholders 

3. architectures and services for building conceptual models 

Answering the first question (explicitness) requires considering alternative formalisms for 
expressing conceptual models, and the languages based on these formalisms, which are addressed 
in section 3.1. The second question (process) is discussed in section 3.2.  The third question 
involves architectures for model engineering, as well as services provided to conceptual modelers, 
and is covered in section 3.3. 

3.1 Conceptual Modeling Language/Formalism 
An articulated conceptual model, whether describing the system of interest (the referent, in 
Robinson's terminology) or an analysis model of the system of interest, is expressed using some 
language, which may be formal or informal, graphical, textual, mathematical, or logical.  Today, 
the situation is that most often, conceptual models are expressed using some combination of 
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sketches, flowcharts, data, and perhaps pseudo-code. Lack of general agreement on the 
implications of these techniques (i.e., ambiguity) limits the computational assistance that can be 
provided to engineers. Incorporating conceptual modeling into a modeling and simulation 
engineering discipline will require more explicit and formal conceptual modeling languages. 
However, conceptual modeling must be done in a manner accessible to domain engineers, who 
might not be trained in the necessary formalisms. This is addressed in the first subsection below. 
In addition, formal conceptual modeling applies as much to analysis as to the referent systems, 
raising questions about the variety of approaches to simulation, as covered in the second 
subsection. Formality in model integration is discussed in section 3.3. 
Domain-Specific Formalisms 
In mathematical logic, formalism is the application of model and proof theory to languages, to 
increase confidence in inferring new statements from existing ones (Bock, et al 2006).  In practice, 
however, most mathematicians are more informal in their definitions and proofs, with peer review 
confirming results, or not.  We expect conceptual modeling formalisms to be rigorous approaches 
to studying referent and analysis models, at least in the sense of mathematical practice.  Formal 
approaches have fewer, more abstract categories and terms than less formal ones, facilitating 
integration across engineering domains and construction of analysis tools.  However, by using 
more abstract language, formal approaches are often too far from the common language of 
applications to be easily understood by domain experts and too cumbersome to use in engineering 
practice e.g., in air traffic control, battlespace management, health care systems, logistics, etc.  
More specific formalisms would be useful not only to domain experts, for describing their systems, 
but also to technical or modeling experts who must translate the system description into analysis 
models and maintain them, and to other stakeholders who may need to participate in validation. 
Logical modeling is a widely-used approach to formalizing domain knowledge (often called 
ontology, more specifically description logics (Baader, et al 2010)). Ontologies can support 
acquisition of increasing levels of detail in model structure, and also education and 
communication. For example, in modeling an ecosystem, one begins with words and phrases, 
expressed in natural language such as pond, organism, bio-matter, insect, and so forth. Some words 
will represent categories or classes, while others represent instances falling into those categories. 
Also, words that connote action will reflect behaviors that are at the core of dynamic system 
specification. Words and phrases can be connected through relationships forming semantic 
networks and concept maps.  Semantic networks (see, e.g., (Reichgelt 1991)) grew out of theories 
of cognition around associative memory (Quillian 1968), whereas concept maps (see (Novak 
1990)) grew out of a theory of associative networks for the purpose of learning, both essential for 
capturing expert knowledge. Both are closely related to description logics (Sattler 2010, Eskridge 
and Hoffman 2012). 

Developing explicit and formal conceptual models of the referent will require ontologies and a 
suitable knowledge representation. Contemporary modeling languages have been proposed and 
used for modeling software systems (UML (OMG 2015b)), for general systems modeling (OPM 
(Reinhartz-Berger and Dori 2005), SysML (OMG 2015a)), and for modeling systems in the 
military domain (UPDM/UAF (OMG 2016), DoDAF (US Department of Defense 2016b), 
MoDAF (U.K. Ministry of Defense 2016)).  Domain-specific modeling languages (DSMLs) also 
have been developed, for modeling business processes (OMG 2013), for modeling biological 
systems, SBML (Finney, et al 2006), SBGN (Le Novère, et al 2009), and others.  Of course, general 
purpose languages can be specialized to a domain as well. In addition to using ontologies for 
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domains, methods and processes, DSMLs for representing knowledge along with induced 
constraints and interdependencies will also help to reduce uncertainty in the modeling process, 
e.g., to answer questions like what modeling approach, execution algorithm, or steady state 
analyzer to use. Thus, ontologies and DSMLs for modeling and simulation methods are relevant 
definitely in the requirements stage, where it is decided which formalism to use and how to execute 
a model, and also for validating and verifying a large set of methods. Suitable ontologies, if in 
place, will help in identifying solutions. 
While these developments are an important element of establishing an engineering discipline of 
modeling and simulation, they do not yet go far enough.  Ontology is not sufficiently applied to 
formal and domain-specific modeling languages, leaving a major gap in linking formalisms to 
engineering domains. Many of the available models of formal and domain languages only 
categorize terminology rather than semantics of the terms, and consequently cannot utilize domain 
knowledge to increase the efficiency of formal computations or bring results from those 
computations back into the domains.  For example, ontologies are available for Petri Nets (PN), a 
widely used simulation formalism, but these only formalize terminology for reliable interchange 
of PN models, rather than enabling a uniform execution of them across tools (Gaševića and 
Devedžić 2006).  In addition, if an adequate DSML does not already exist within a given domain, 
each application modeler still must develop a problem-specific ontology and capture problem-
specific knowledge in a DSML.  Within a particular domain, e.g., logistics, the creation of a 
domain-specific ontology and modeling framework would support all modelers within that domain 
(Huang, et al 2008) (McGinnis and Ustun 2009) (Thiers and McGinnis 2011) (Batarseh and 
McGinnis 2012) (Sprock and McGinnis 2014).  Work on modeling formal and domain-specific 
languages, including semantics as well as terminology and how to integrate them for practical use, 
are in its early stages (Mannadiar and Vangheluwe  2010) (Bock and Odell 2011), but several 
results have emerged during the past decade. This is an important area for future research and 
development. 

Language modeling (metamodeling) has become a widely used method for precisely defining the 
abstract syntax of DSMLs (the part of syntax that omits detailed visual aspects of a language). A 
metamodel is the model of a modeling language (Karsai, et al, 2004), expressed by means of a 
metamodeling language (Flatscher, 2002). There are several metamodeling languages in practical 
use today, ranging from informal, graphical languages, such as UML class diagrams and OCL 
used by the Object Management Group (OMG 2015b) (OMG 2014), the Eclipse Modeling 
Framework (Eclipse Foundation 2016a) or MetaGME (Emerson 2006). A formal metamodeling 
language based on algebraic datatypes and first order logic with fixpoint is FORMULA from 
Microsoft Research (Jackson and Sztipanovits 2009). 
Metamodeling can be used to specify diagrammatic syntax of DSMLs, in conjunction with their 
abstract syntaxes above.  For example, languages such as Eclipse's Graphical Modeling Project 
(Eclipse Foundation 2016b) and WebGME (Institute for Software Integrated Systems 2016) are 
providing not only a graphical metamodeling environment, but also are capable of auto-
configuring themselves into domain specific modeling environments using the created 
metamodels. Metamodeling of diagrammatic syntax also enables standardized interchange 
between tools and rendering of graphics (Bock and Elaasar 2016). 

Metamodeling has a role in precisely defining the semantics of DSML's. For example, 
FORMULA’s constraint logic programming capability is used for defining semantics of DSMLs 
via specifying model transformations to formal languages (Simko, et al 2013).   The portion of 
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UML's metamodel that overlaps description logic can be extended to specify patterns of using 
temporal relation models in UML, providing a basis to formalize the semantics of UML's 
behavioral syntaxes (Bock and Odell, 2011). 
Other approaches to the development of DSMLs include developing a DSML for a subset of the 
Simulink language, by defining the operational semantics, rather than by creating a meta-model 
(Bouissou and Chapoutot 2012), or in a similar vein, developing a DSML for systems biology 
based on an abstract syntax and operational semantics (Warnke, et al. 2015). 
A Unified Theory for Simulation Formalisms 
Conceptual modeling applies not only to the system of interest, but also to the analysis of that 
system.  Our understanding of a system of interest evolves from our earliest concept of it as we 
gain deeper understanding through the development of system models.  In the same way, our 
understanding of the analysis itself also may evolve as we better understand the system of interest 
and begin to elaborate our analysis model.  To support conceptual modeling of simulation analysis, 
it seems reasonable that we should first have the ontology, semantics and syntax to formally define 
a simulation.  Unlike the case of other analyses, such as optimization, this requirement has not yet 
been satisfied for simulation. Several structures have been studied as simulation formalisms; 
however, there is little consensus on the best approach.  In the same way that various models of 
computation provide a basis for theory within computer science, considering various simulation 
formalisms will further the development of a robust theory of simulation. 
Some formalisms are available for general discrete event simulation, some adopted industrially 
and others not. For example, the DEVS language (Zeigler, et al 2000) provides a mathematically 
precise definition of discrete event systems, and there also are a number of computational 
implementations, so it is unique in providing both a simulation programming language and an 
associated mathematical specification.  It is not widely used industrially, however, in part, perhaps, 
because of the requirement to express all behavior using state machines.  Popular discrete event 
simulation languages or environments, such as Arena (https://www. arenasimulation.com), 
FlexSim (https://www.flexsim.com), Simio (http://www.simio.com), Tecnomatix Plant 
Simulation (https://goo.gl/XmQGgN), etc., provide a programming language with semantics and 
syntax, but not a corresponding formal definition.  In part, this is due to the intent of many 
commercial simulation languages to support simulation in a particular domain, such as Tecnomatix 
Plant Simulation, which is naturally reflected in the semantics of the languages. 
Another line of research is to view simulations thru the lens of dynamical systems and 
computational complexity theory. This is particularly suitable when studying complex socially 
coupled systems. Formal computational and mathematical theory based on network science and 
graphical dynamical systems has been studied in (Mortveit and Reidys 2008) (Barrett, et al 2004) 
(Barrett, et al 2006) (Adiga, et al 2016) (Rosenkrantz, et al 2015). The theoretical framework 
allows one to study formal questions related to simulations, including: (i) computational lower and 
upper bounds on computing phase space properties, (ii) design questions: how does one design 
simulations to achieve a certain property; (iii) inference questions: how does one understand the 
conditions that led to the observed behavior, etc. 

Achieving an engineering discipline for modeling and simulation will require a more complete set 
of formalisms spanning up from rigorous discrete event, continuous, and stochastic system 
specification to higher level, perhaps domain-specific, simulation languages.  In some areas those 
domain specific modeling languages that combine a rigorous mathematical semantics with a 
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convenient modeling tool are already in use, e.g., in the area of cell biology, or collective adaptive 
systems (often based on a continuous time Markov chain semantics). For example, some 
specialized simulation languages for biology are based on mathematical formalisms, such as ML-
Rules (Helms, et al 2014), Kappa (Harvard Medical School 2016), or BioNetGen (BioNetGen 
2016), among others. In general, however, this still represents a very significant challenge for the 
modeling and simulation community. 

3.2 Conceptual Model Development Processes 
Model development is a challenging and highly intricate process, with many questions needing to 
be answered, as discussed in this section. Currently, answering these questions in a systematic and 
informed manner is hampered by a lack of formalized knowledge in the modeling domains and in 
modeling and simulation in general.  Providing these would constrain development decisions and 
the design of development processes themselves, reducing uncertainty in model lifecycle 
engineering. The first subsection below gives background on model development processes and 
analyzes questions about them. The next two subsections (effectiveness and maturity) describe 
complementary approaches to reducing model defects introduced during the modeling process. 
These help avoid difficult and high-cost amendments of the model after it is finished.  It is 
impossible to reduce model defects to zero during development, leading to the need for validation 
after the model is built, the results of which are also useful during model development, as addressed 
in the last subsection. Taken together, progress in these areas can significantly enhance the 
credibility of models by improving the quality of processes that produce them. 

Motivation and Research Approach 
The purpose of modeling and simulation is to improve our understanding of the behavior of 
systems: an executable model M of a system S together with an experiment E allows the 
experiment E to be applied to the model M to answer questions about S (Cellier 1991). Simulation 
is fundamentally an experiment on a model. A conceptual model C is the articulated description 
of S, upon which both M and E are developed.  In science we seek to understand the behavior of 
natural systems; in engineering we seek to design systems that exhibit desired behavior. Because 
modeling and simulation facilities are themselves complex systems, it is seldom possible to go in 
one step from problem to solution. The processes involved in modeling and simulation require 
different degrees of human interaction, different computer resources, are based on heterogeneous, 
partly uncertain knowledge defined more or less formally, and involve different types of expertize 
and users. Data, knowledge, processes, and orchestration vary depending on the system to be 
modelled, the questions to be answered, and the users. In these processes different versions of 
models and artifacts are generated, that need to be put into relation to each other. 

Model Lifecycle Engineering (MLE) captures the highly iterative process of developing, verifying, 
validating, applying, and maintaining a model.  MLE is an area that requires significant study and 
exploration to meet society’s needs and problems. How is MLE different than Engineering Design 
or Software Engineering lifecycles? In some instances, it may be possible to build on these related 
engineering fields in our attempt to forge MLE as a sub-discipline of Modeling and Simulation 
(M&S). It is expected that MLE will contain phases for constructing models and simulations by 
beginning with requirements and then proceeding to other phases such as design, analysis, 
implementation, verification and validation (V&V), and maintenance.   
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MLE concepts and methods should not be limited to developing M and E; they also should be 
applied to the conceptual model C, describing S and used in developing both M and E. Clearly, 
this requires that C be expressed in a form that enables MLE concepts and methods to be applied. 
The underlying principle for any type of lifecycle engineering, however, is to ensure that unspent 
resources (e.g., money, time) are commensurate with work remaining. For complex systems with 
substantial de novo content, there is typically considerable uncertainty in both the work remaining 
and the rate of resource consumption. Resources are therefore held in reserve to protect against 
depletion due to undesired outcomes. Bearing these principles in mind, a lifecycle approach for 
model/simulation development should include answering the following questions:  

• Purpose and Scope Characterization: Who are the stakeholders of the model? What are their 
concerns? In particular, what are the specific aspects of system behavior we seek to understand 
through modeling?  The answers form the context for the relevant conceptual models. 
Identification of stakeholders and concerns is a complex undertaking involving a broad 
spectrum of disciplines, including perhaps the political and behavioral sciences. For example, 
a macroeconomic simulation of energy production, distribution, and consumption would 
rightly recognize the public at large as a stakeholder, but it would be counterproductive to ask 
individual citizens simply to enumerate their concerns since ordinary citizens are not likely to 
understand the stake they have in atmospheric carbon dioxide or sulfur dioxide. Consequently, 
it may be necessary to develop methods that combine opinion research with education and 
outreach to designated proxies for the public interest. 

• Phenomenology Characterization: Is the referent a continuous system, discrete event system, 
or discrete stepwise system? Are stochastic or spatial aspects important? What are the elements 
of the system which contribute to the behavior of interest? What scientific disciplines address 
the behavior of interest? Answers to these kinds of questions will help to identify the content 
of the conceptual model and perhaps how it should be expressed. Having identified concerns, 
it is not necessarily simple to determine the scope of scientific phenomena to adequately 
address those concerns. For example, if stakeholders are concerned about the availability of 
drinking water, it may under some circumstances suffice to consider only hydrological 
phenomena. Under other circumstances it may be necessary to consider also social, economic, 
and political phenomena. Decisions will ultimately of course involve judgment, but research 
may elucidate principles and techniques that might prove useful for such analysis. 

• Formalism Characterization: What formulations will be most appropriate to describe the 
relevant system elements and characterize the phenomena of interest in the form of input-
output relations?  The conceptual model must support these formulations. The choice of 
formalism will depend on the nature of the system being modeled—is it continuous, discrete 
event, discrete stepwise? Are stochastic or spatial aspects important, etc.?  Once the nature of 
the system is identified, how is it best described, e.g., for a continuous system, are block 
diagrams most appropriate, or systems dynamics, or an object-oriented approach like Modelica 
(Modelica Association 2014b)? What mathematical formulations will be used to characterize 
the phenomena of interest in the form of input-output relations? Differential equations? 
Statistical models? Logical models? A given phenomenon may be mathematically 
characterized in different ways, depending upon, among other things, the nature of the 
concerns under consideration. If we are primarily concerned with long-term average behavior, 
we might choose a lumped-parameter description that assumes all short-term variation self-
cancels over time. On the other hand, if we are concerned with infrequent extreme events, we 
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will require a characterization that captures higher-order dynamics accurately. Research may 
help us better understand how to infer the possible mathematical formalism from a given 
referent model, but also how to develop requirements for the referent model from a useful 
mathematical formalism. 

• Algorithm Characterization: What solution algorithms will be selected for computing the 
input-output relations? What verification test cases are appropriate? Since the conceptual 
model is a bridge from S to the computational model M, it may be important to understand and 
accommodate the specific target algorithmic implementation. 

• Model Calibration: What data is available to calibrate and later validate the model, M? Is it 
necessary to calibrate a conceptual model, and if so, how is it done?  How does one validate a 
conceptual model? 

• Cross-validation: Do other models exist with which the new model can be cross-validated? If 
there are other existing conceptual models, how can they be compared to support cross-
validation?  

These questions need to be addressed during the requirements phase of the model engineering 
lifecycle. However, answers are likely to be revised during the subsequent phases. From this point 
on, conventional software development lifecycle considerations apply. In addition, special 
consideration needs to be given to validation and verification of model variants and their 
interdependencies. Research is needed to understand how to help answer the above questions: how 
to manage the evolution process of a model and the data, knowledge, activities, processes and 
organizations/people involved in the full lifecycle of a model? 

Managing the lifecycle process of a model is one of the most important tasks of model engineering. 
Some research topics should be attacked, for example, how to structurally describe the modeling 
process, and how to identify the characteristics of activities involved in model construction and 
management to ensure improvement of model quality and development efficiency and reduction 
of full model lifecycle cost. 
Some decisions, e.g., which execution algorithm to select, might even be supported automatically 
by exploiting machine learning methods (Helms, et al 2015). However, automatic solutions to 
these decisions require metrics to clearly distinguish the good choices from the less suitable ones. 
For some decisions, e.g., selecting the modeling approach, providing suitable metrics is still an 
open challenge. Knowledge about constraints on applying one method or the other, and 
interdependencies and implications of using one or the other method on future activities will 
reduce uncertainties in the overall process.  

Within the engineering of models, well-founded answers to the questions of which step to do next 
and which method to use largely determine the efficiency and effectiveness of the model 
engineering process. Referring to the first question, and for orchestrating the diverse processes that 
are involved in modeling engineering, workflow-based approaches might be exploited to make 
these processes explicit and traceable. These approaches facilitate evaluation of different phases 
of model lifecycle engineering, including validation and verification of models, and, thus, add to 
the credibility of M&S. However, this requires a high degree of standardization of these processes. 
This might be achievable for specific sub-processes of validation or verification, e.g., how to 
execute and analyze a parameter scan given a specific model. However, the overall process of a 
simulation study is highly interactive and thus one might only be able to define general constraints 
on the engineered artifacts, e.g., if the conceptual model (if we interpret conceptual model as a 
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representation of requirements or invariants that refer to the simulation model) changes, so does 
the stage of the process model, requiring a new validation phase. 

Effectiveness Measures 
In a model-based engineering (MBE) approach, the development team evolves a set of models 
throughout the system lifecycle to support design, analysis, and verification of the system under 
development. These models are intended to express aggregate knowledge about the system to 
enable communications and shared understanding among the development team and other program 
stakeholders. Program leadership must continue to determine what knowledge must be acquired 
at any given point in the lifecycle to maximize the likelihood of program success. The type of 
knowledge to be acquired can help identify the kind of design and analysis models that should be 
further developed and updated.  
This knowledge can be acquired by performing engineering tasks that involve different kinds of 
models, such as performing a trade study to select among alternative system architectures, 
performing an analysis to determine a system error budget, updating electrical, mechanical, or 
software designs, or analyzing a particular design for reliability, safety, manufacturability, or 
maintainability. Determining what knowledge is needed becomes more challenging as the 
complexity of the system increases, and as the complexity of the organization that develops the 
system increases (e.g., large geographically distributed teams). 

The research challenge is to define one or more effectiveness measures that can guide the 
knowledge acquisition process and associated model development and evolution throughout the 
system lifecycle. In other words, how do you determine the additional knowledge at each point in 
time that provides best value to the program stakeholders? The research can benefit from data that 
has been collected over many years to find a solution. For example, the following figures are 
typical examples of trends that indicate the impact of collecting certain kinds of knowledge on the 
overall cost of system development.  
In Figure 3.1 the lower curves reflect the percentage of the total lifecycle cost that is expended as 
a function of the phase of the program lifecycle. As indicated, much of the cost is expended in the 
later lifecycle phases. However, as shown in the upper curve, the percentage of the lifecycle cost 
that is committed occurs much earlier in the lifecycle. This finding shows the importance of early 
design decisions based on the available knowledge. 

In Figure 3.2 the cost to fix a defect is shown, and seen to increase exponentially as a function of 
the phase in the product lifecycle the defect is detected. Acquiring the knowledge to surface defects 
early can substantially reduce the total system lifecycle cost. 
The following are some suggested factors to be considered for research: 
• Aggregate knowledge goals at particular milestones in a system development lifecycle. 
• Knowledge elements that contribute to the aggregate knowledge. 
• Knowledge elements associated with different aspects of the system of interest and its 

environment.  
• A value function associated with acquiring knowledge elements at each point in time, and its 

impact on the probability of program success. 
• Cost to acquire the knowledge elements at a given point in the lifecycle. 
• Cost associated with acquiring incorrect knowledge at a given point in the lifecycle. 
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• Relationship between the effectiveness measure (value vs. cost) and more traditional risk 
measures. 

The acquisition of knowledge across a lifecycle can be thought of as a trajectory whose aim is to 
maximize program success. The value function of acquired knowledge is dependent on both the 
knowledge elements and the sequence in which these elements are acquired, since there are 
dependencies among the knowledge elements. For example, during the concept phase of a vehicle's 
development, it is often important to acquire knowledge about vehicle sizing and system level 
functionality to meet mission performance requirements, but it may not be important to acquire 
knowledge about the detailed software design algorithms. 
 

 
Figure 3.1 Committed and Actual Lifecycle Costs (Berliner and Brimson 1988) citing (Blanchard 1978) 

 

 
Figure 3.2 Cost To Fix Defect in Stage (McGraw 2006) citing (Boehm 1981) 
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Maturity Models 
The Capability Maturity Model (CMM) for software development has played a key role to 
guarantee the success of software projects (Paulk, et al 1993). CMM and CMM Integration 
(CMMI) originated in software engineering, but have been applied to many other areas over the 
years (CMMI 2016a). However, in M&S, there is no such standardized and systematic assessment 
methodology developed for M&S processes. Some related research and development results can 
be used as references to establish the maturity model of M&S: 

• Software Lifecycle models describe core processes for software development. Following 
proven processes for model development begins with an understanding and execution of the 
core activities in an organization’s chosen development path. Software lifecycle models are an 
example of core proven processes for development. Whether the lifecycle model chosen is the 
classic waterfall model or more modern iterative versions, all have aspects of requirements 
development, design, implementation, integration, test, etc. utilized in a way that best fits the 
size of the organization, the size of the project, or the constraints of the customer and developer. 

• Software CMMI or CMMI for Development shows the success of maturity for general software 
development. CMMI was originally developed at Carnegie Mellon University and the federally 
funded Software Engineering Institute (SEI). The CMMI Institute reports that thousands of 
CMMI appraisals are completed every year in dozens of countries (CMMI 2016b). CMMI 
enables organizations to be viewed and certified as being mature and capable of carrying out 
intended activities to a certain level or degree of expertise, which lends that degree of 
credibility to the components developed by those activities. CMMI assigns capability levels to 
process improvement achievement in individual process areas. Therefore, a certain part of an 
organization may be identified or certified at a level 3 out of 4 for Configuration Management, 
but capability level 2 out of 4 for Maintenance. CMMI assigns maturity levels to process 
improvement achievement in multiple process areas or a set of process areas and applies to the 
scope of the organization that was evaluated / certified such as a department, a division, or the 
entire company – Level 5 being the highest achievable level of maturity. 

• The Federation Development and Execution Process (FEDEP) describes core processes for 
simulation development. FEDEP was initially released in 1996 as the first common process for 
the development of simulations and was specifically for guidance in creating High Level 
Architecture (HLA) federations (IEEE Standards Association 2016). These common 
methodologies and procedures consisted of six steps: 1) Define Objectives, 2) Develop 
Conceptual Model, 3) Design Federation, 4) Develop Federation, 5) Integrate and Test, 6) 
Execute and Prepare Results. These six steps included specific work products that were inputs 
and outputs to each step. These steps and the FEDEP process paralleled the software 
development process and could serve as the initial draft of the core processes for model and 
simulation development that would be the basis for an examination of an organization’s ability 
to robustly, reliably and repeatedly develop credible models and simulations, i.e., identify the 
capability and maturity of organizations or portions of organizations. 

• System of Systems describes corollaries that may exist within Systems Engineering (Zeigler, 
and Hessam 2013). 

• DoDAF describes the notion of multiple views of simulations (US Department of Defense 
2016b). 

Taking CMM/CMMI as a basis, a capability maturity model for modeling and simulation process 
(MS-CMMI) could be established by: 
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• Finding the differences and similarities between the processes of modeling / simulation and 
software development by analyzing characteristics of modeling process and simulation of 
complex systems, then define indicators and metrics for M&S processes. 

• Setting up a MS-CMMI evaluation system (evaluation methods, standards, tools, 
organizations, etc.) to assess the structured level of capabilities of model developers or model 
users (use the model to do simulation). 

Achieving these goals requires research in: 
• Quantitative analysis of the complexity and uncertainties in modeling processes. 
• Optimization of modeling processes. 
• Risk analysis and control of modeling processes. 
• Quantitative measurement of model lifecycle quality and cost. 
• Notional mappings with CMMI, etc. 
• Identification and description of processes and work products necessary at differing levels of 

the Modeling and Simulation Maturity Model, when and why they are needed and who 
performs them. 

Validation 
As simulation models become more complex, validation of conceptual models and understanding 
their role in the broader process of validation will continue to be important research areas. Of 
course, understanding validation of conceptual models is dependent on a precise definition of the 
terms “conceptual model” and “validation.”  This section argues that a better consensus is needed 
on the first term, while a careful review of the validation literature will reveal the same for the 
second. 
This is particularly apparent across M&S communities of practice. For example, the training and 
engineering communities intersect the broader M&S community, but M&S stakeholders in those 
communities draw heavily from skill sets based in different scientific disciples and different 
perspectives of the role of modeling and simulation.  The M&S community’s challenge is to 
address universally applicable concepts, like conceptual models in validation, from a holistic 
perspective with theory that is satisfying to all the stakeholders and technology that is germane to 
a broad set of problems (in the case of the stated example, simulation theory and technology that 
is useful for both the social scientist and the engineer).   
Consider a few simple questions.  What does it mean to validate a conceptual model?  How does 
a conceptual model that is suitable for a specific use inform the development of other simulation 
process artifacts?  How do the various stakeholders in the simulation activity use the conceptual 
model, valid or otherwise?  Some researchers will see these as easily answered in their particular 
domains, but will find their conclusions quite different between domains.  So, for the discussion 
in this section we consider terminology in the broadest context possible. 
Consider modeling paradigms as equivalence classes on the set of conceptual models. Each 
paradigm has defining characteristics in terms of conceptual modeling language or formalism.  
These characteristics define every instance of a conceptual model as belonging to one class or 
another, or perhaps none.  For well-developed theory, further properties and theorems will follow 
to enable reasoning on all of the elements of each class in general without resorting to building, 
coding, and executing every instance to understand its properties.  As we develop more rigorous 
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and explicit conceptual models that bridge between the referent system and the computer 
simulation, methods for validation will become even more critical.   

Simulation frameworks that include a category for conceptual models permit the side-by-side 
comparison to and facilitate discussion of related artifacts. For example, (Balci and Ormsby 2007), 
(Petty 2009), and (Sargent 2013) provide frameworks that include conceptual models in this 
context.  Advances in conceptual modeling will drive the need for new frameworks to explain the 
properties of conceptual models, and the relations between them, the referent system, and the 
computer simulation. 

Some researchers would consider that the conceptual model is an appropriate artifact to analyze 
for suitability for use. Although recent work in validation theory is looking hard at the implication 
of risk in the decision to use particular kinds of simulation, and propagation of error in simulation, 
more basic research is needed to develop a robust model-based decision theory.  Accuracy is well-
understood, particularly in the context of physics-based models, but its use in simulation is not 
well-defined.  When deciding on the kind of simulation to inform a particular decision, 
acceptability criteria are often subjective and little theory exists to objectify the decision analysis.  
A well-developed model-based decision theory will recast validation in the language of decision 
theory, defining use in a rigorous way, clearly differentiating objective from subjective elements 
of the use decision, and providing a defensible basis for using models and simulations to inform 
decision-making (Weisel 2012).  
The logical next step for advances in theory involving validation of conceptual models is to 
incorporate these advances in simulation development environments.  As model lifecycle 
engineering develops, tools for validation of conceptual models are needed to keep pace.  As 
conceptual modeling languages and formalisms become useful additions to simulation 
development environments, tools using well-defined conceptual models within the broader process 
of validation will improve the quality and defensibility of the simulation end product.  
It is well-understood that validation is best considered early in the development process (see the 
previous two subsections) – there should be no difference when considering conceptual models in 
the mix.  As development environments would benefit from rigorous application of conceptual 
models in the development process, so too would the consideration of validation from the earliest 
lifecycle stages.   New technologies and tools are needed to incorporate validation of conceptual 
models throughout the simulation lifecycle. 
 
3.3 Conceptual Model Architecture and Services 
Many modeling paradigms exist for most kinds of domain problems, applied to knowledge from 
many engineering disciplines. Understanding complex systems requires integrating these into a 
common composable reasoning scheme (NATO Research and Technology Organization 2014). 
The software and the system engineering communities have overcome similar challenges using 
architecture frameworks (e.g. OMG’s Unified Architecture Framework (OMG 2016)), but 
modeling and simulation does not have a similarly mature integration framework.  The first 
subsection below concerns architectures for conceptual modeling, while the second outlines 
infrastructure services needed to support those architectures. 
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Model Architecture 
At the foundation of a modeling architecture should be a fundamental theory of models, to enable 
reusability, composability, and extensibility. What theory of models could support the 
implementation of a model architecture? An epistemic study of existing modeling and integration 
paradigms is necessary to develop a theory of models. This should include a taxonomy of modeling 
paradigms, semantics, syntaxes and their decomposition into primitives that operate under 
common rules across paradigms, to integrate them as required by complex systems.  
Model architecture is needed to unify different classes of models developed using different 
paradigms. An architecture is the glue specifying interfaces, rules of operation, and properties 
common across modeling paradigms, enabling models to be interconnected at multiple levels of 
conceptual abstraction. What is meaningful to connect? What is not? An architecture goes far 
beyond conventional model transformations and gateways, though these are also essential to 
comprehension of multi-paradigm modeling processes. An architecture is about persistent co-
existence and co-evolution in multiple domains at multiple levels of abstraction. How can a model 
architecture framework connect models that operate according to different sets of laws? For 
example, critical infrastructure protection requires connecting country, power grid, internet, 
economy, command and control, etc. Combat vehicle survivability requires connecting humans, 
materials, optics, electromagnetics, acoustics, cyber, etc. What mechanisms are required to 
efficiently interact between different sets of laws (e.g. layered architecture)? What level of detail 
is required to observe emerging behaviors between different sets of laws when integrated? How 
should a model architecture be implemented, in which format, using which tools? As a model 
architecture matures, successful design patterns should emerge for the most common reusable 
interconnections between disciplines. What are these design patterns in each community of 
interest? 

Model architecture sets the rules to meaningfully interconnect models from different domains. 
Generalizing and publishing rules for widespread modeling paradigms would allow composing 
and reusing models that comply with the architecture and complex system simulations will become 
achievable. As an example of interconnected models across domains, start with a Computer Aided 
Design (CAD) model representing a physical 3D object in terms of nodes and facets. In the CAD 
paradigm, objects can be merged to interconnect. A related Finite Element Model (FEM) 
represents continuous differential equations for physical laws between boundary layers. It can be 
used to compute the fluid dynamics during combustion. FEM models can interconnect at the level 
of physical laws to compute the temperature distribution from the combustion products distribution 
for instance. They also interconnect with a CAD model at the mesh level. A computer graphics 
model enables display of objects as seen from particular viewpoints. It interconnects with CAD 
and FEM models to map materials and temperature to facets for the purpose of generating an 
infrared scene image in the field of view of a sensor. A functional model of a surveillance system 
can represent discrete events involved in changing a sensor mode as a function of the mission. The 
functional model interconnects with the computer graphics model at the sensor parameter level. 
Finally, a business process model can represent a commander’s mission planning. It can 
interconnect with a functional model by changing the mission. 
Figures of merit must be developed to demonstrate how well a model architecture facilitates 
composition of multi-paradigm, multi-physics, multi-resolution models. The performance of a 
model architecture must be checked against interdisciplinary requirements using metrics for 
meaningfulness and consistency. How can we test a particular integration for validity? How can it 
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be done efficiently over large-scale complex simulations? How can it be done by a non-expert? 
What mechanisms should a model architecture framework include to support checking for 
conceptual consistency? 
Integration complexity and coupling between the degrees of freedom of individual components 
and the degrees of freedom of the integration are yet to be understood. When integrating a model 
in a complex simulation, what details can be ignored and still ensure a valid use of that model? 
What details cannot be ignored? 
Reliable model integration depends on sufficient formality in the languages used, as described in 
section 3.1. In particular, formal conceptual models of both the system of interest (referent) and 
analysis provide a basis for automating much of analysis model creation through model-to-model 
transformation.  As an example, consider the design of a mechanical part or an integrated circuit.  
The CAD tools for specifying these referents use a standard representation, with a formal 
semantics and syntax.  For particular kinds of analyses—such as response in an integrated circuit—
simulations are essentially available at the push of a button.  Formalism in the specification of the 
referent enables automation of certain analyses. This pattern is well-demonstrated, e.g., in the use 
of BPMN (Business Process Modeling Notation) to define a business process, and then automating 
the translation of this model into a hardware/software implementation specification.  The Object 
Management Group has developed standard languages for model-to-model transformations. At 
present, there are only limited demonstrations of applying this approach to systems modeling. 
Automating this kind of model-to-model transformation captures knowledge about how to create 
analysis models from referent models, so perhaps the most fundamental question is:  where should 
this knowledge reside—should it be captured in the referent modeling language, in the analysis 
modeling language, in the transformation, or perhaps spread throughout? Formalization of 
mappings between conceptual models of a referent and its analysis models is critical to building 
reliable bridges between descriptions of the referent and specifications of a simulation model and 
its computational implementation. 

Services 
The success of large-scale integration of knowledge required by complex systems fundamentally 
depends on modeling and simulation infrastructure services aggregated into platforms. These 
enable affordable solutions based on reusing domain-specific models and simulators, as well as 
integrating them into a multi-model co-simulation.  For example, understanding vulnerabilities 
and resilience of complex engineered systems such as vehicles, manufacturing plants, or electric 
distribution networks requires the modeling and simulation-based analysis of not only the 
abstracted dynamics, but also some of the implementation details of networked embedded control 
systems.  Systems of such complexity are too expensive to model and analyze without reuse and 
synergies between projects. 

Services need to enable open model architecture development and sharing of model elements at 
all levels. How can a common conceptual modeling enterprise be launched involving many 
stakeholders? How can a conceptual model be augmented with knowledge from different 
contributors (e.g., wiki)? How does it need to be managed? What structure should the conceptual 
model have? What base ontologies are required (e.g. ontology of physics)? How can conceptual 
model components be implemented in executable model repositories and how can components 
plug and play into simulation architectures? Guiding principles must also be defined and 
advertised. What guidance should modelers follow to be ready for a collaborative conceptual 
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modeling enterprise in the future? Standard theory of models, architecture, design patterns, 
consistency tests, modeling processes and tools will arise naturally as the modeling science 
matures. 
Services can be aggregated into three horizontal integration platforms:  

• In Model Integration Platforms, the key challenge is to understand and model interactions 
among a wide range of heterogeneous domain models in a semantically sound manner. One 
of the major challenges is semantic heterogeneity of the constituent systems and the 
specification of integration models. Model integration languages have become an 
important tool for integrating complex, multi-modeling design automation and simulation 
environments. The key idea is to derive opportunistically an integration language that 
captures only the cross-domain interactions among (possibly highly complex) domain 
models (Cheng, et al. 2015). 

• Simulation Integration Platforms for co-simulation have several well-established 
architectures. The High Level Architecture (HLA) (IEEE Standards Association 2016) is 
a standardized architecture for distributed computer simulation systems. The Functional 
Mockup Interface (Modelica Association 2014a) for co-simulation is a relatively new 
standard targeting the integration of different simulators. In spite of the maturity and 
acceptance of these standards, there are many open research issues related to scaling, 
composition, large range of required time resolution, hardware-in-the-loop simulators and 
increasing automation in simulation integration. 

• Execution Integration Platforms for distributed co-simulations are shifting toward cloud-
based deployment, developing simulation-as-a-service use model via web interfaces and 
increasing automation in dynamic provisioning of resources as required. More will be said 
about this in the next chapter. 
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4 Computational Challenges in Modeling and Simulation 
Computational algorithms and software play a central role in all computer models and simulations. 
A computer simulation can be viewed as a collection of state variables and data structures that 
represent the state of the system under investigation and algorithms that transform that state to 
capture the evolution of the system state over time. The algorithms encode the rules that govern 
the behavior of the system. In many cases the basis for these behaviors are specified through 
mathematics, e.g., differential equations derived from physical laws. In other simulation models, 
the behaviors are specified in logical rules that encode the causal relationships among the 
components making up the system. These computational rules may be used to determine the new 
state of the system in the next “clock tick” or time step of the simulation computation. In other 
simulations the changes in system state may occur at irregular points in simulation time, governed 
by the occurrence of “interesting” events such a doctor finishing a consultation with a patient, or 
a machine finishing the processing of a part in a manufacturing system. Regardless, computational 
methods and software are critical elements in modeling and simulation. 

New challenges are arising in computational methods for modeling and simulation that create new 
research problems that must be addressed. This is because application requirements are changing 
on the one hand, and the underlying computational platforms are changing on the other. For 
example, reliable simulation models are essential to determine the impact of new policies and 
technologies on the evolution of cities, an area of increased interest with phenomena such as global 
warming creating new challenges. The infrastructures making up a city such as water, 
transportation, and energy are highly dependent on each other. For example, electrification of the 
vehicle fleet will clearly have a direct impact on vehicle emissions. But electrification has other 
impacts as well. The demand for electricity in households will increase, which in turn impacts the 
emissions produced by power generation plants as well as the amount of water they consume. In 
some cases, this is the same water used for food production, resulting in other impacts on the 
economy. When one considers other emerging technologies such as household generation of power 
through solar panels and more broadly smart homes, the introduction of automated vehicles, 
commercial use of drones for package delivery, the introduction of smart electrical power grids, 
and changing human behaviors resulting from these innovations, the emerging phenomena 
resulting from the confluence of these interactions are not well understood.  
At the same time, the computing platforms on which simulations execute are undergoing a 
different kind of revolution. For decades the performance of computer hardware doubled every 18 
months in accordance with Moore’s Law. These improvements derived largely from increases in 
the clock rate used to drive computer circuits. These improvements in clock speed stopped around 
2004 due to an inability to dissipate heat from these circuits as they were clocked at a higher rate. 
Now, advances in hardware performance are being derived almost entirely from exploitation of 
parallel processing. The number of processors or cores in computing devices has been increasing 
rapidly across all platforms, from high performance supercomputers down to computers in 
handheld devices such as smart phones. Another related phenomenon dramatically changing the 
hardware landscape is the emergence graphical processing unit (GPU) devices for a much broader 
range of application than rendering graphics, for which they were originally designed. The high 
volume production of these devices has lowered their cost, making them increasingly attractive for 
computationally demanding tasks. A third major hardware trend is the explosion of mobile 
computing devices that continue to increase in power and sophistication. These hardware changes 
have great implications in the development of computational algorithms for computer simulations, 
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which are among the most computation intensive applications that exist. There are many research 
challenges that call for the development of novel computational methods, as will be discussed later 
in this chapter. 
Other major trends in computing include cloud computing, “big data,” and the Internet of Things. 
Each of these developments have major ramifications in modeling and simulation. Cloud 
computing provides a platform that can make access to high performance computing facilities as 
straightforward as having access to the Internet, opening broader opportunities for exploitation of 
computation intensive simulations. Modeling and simulation has long utilized data analysis 
techniques for tasks such as characterizing inputs and specifying relevant parameters for 
simulation models. Big data technologies offer new capabilities that simulations can readily 
exploit. While big data and advances in artificial intelligence is creating unprecedented capabilities 
for situation awareness, i.e., characterizing and interpreting the state of operational systems, 
modeling and simulation offers a predicative capability that cannot be achieved through data 
analysis algorithms alone. In addition, the Internet of Things creates many new rich sources of 
data that are again synergistic to modeling and simulation offering unprecedented opportunities 
for modeling and simulation to be embedded in the real world and to have enormous impacts in 
society. These emerging platforms and computation technologies offer exciting new opportunities 
to increase the impact of modeling and simulation in the context of managing operational systems. 
Lastly, Dynamic Data Driven Application Systems (Darema 2004), a paradigm that encompasses 
real-time data driving computations and simulations, are used in a feedback loop to enhance 
monitoring and/or aid in the management of operational systems. 
This chapter describes important computational challenges that must be addressed for modeling 
and simulation to achieve its fullest potential to address the new requirements of contemporary 
applications, and to maximally exploit emerging computing platforms and paradigms. The first 
section of this chapter focuses on emerging computing platforms and computational challenges 
that must be addressed to effectively exploit them. These range from massively parallel 
simulations executing on supercomputers containing millions of cores, to effectively exploiting 
new platforms with heterogeneous computing elements such as GPU accelerators, to field 
programmable gate arrays (FPGAs), cloud computing environments, and mobile computing 
platforms. Radical, new computing approaches such as neuromorphic computing that are loosely 
modeled on the human brain are also discussed. The section that follows focuses on challenges 
arising where simulations become pervasive, and appear everywhere utilizing paradigms such as 
DDDAS mentioned earlier and cyber-physical systems. Creating, understanding, and managing 
large-scale distributed systems of simulations interacting with each other to manage operational 
systems and subsystems present major challenges, and raises important concerns in privacy, 
security, and trust. Research is required both to identify fundamental principles concerning such 
simulations as well as establishing a theory behind their operation. 
The third section raises the question of how the modeling and simulation community should 
manage the plethora of models that already exists, and continues to expand as new modeling 
approaches are developed. Complex systems often involve many subsystems, each of which may 
be a complex system in its own right. Understanding systems such as these will inevitably require 
a host of different modeling approaches to be integrated, including not only different types of 
models, but models operating across vastly different scales in time and space. The relationship 
among these different modeling approaches is poorly understood, as is determining computational 
methods to best combine them to address key questions in large, heterogeneous, complex systems. 
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Are there underlying theories that can be used to combine traditionally distinct areas such as 
continuous and discrete event simulation? What computational methods and algorithms are 
required to successfully exploit this plethora of models? Many simulation trials will be required in 
any study. Are there new techniques to improve the execution of so-called ensemble simulations? 

The section that follows explores the relationship between modeling and simulation and big data, 
and highlights the synergies that naturally arise between these technologies. Simulation analytics 
represents a new paradigm expanding and exploiting these synergies. Key research questions 
concerning model and data representation, challenges in managing large-scale data and live data 
streams, and an approach termed qualitative modeling are discussed. 
In summary, there are numerous computational challenges that must be addressed for modeling 
and simulation to achieve maximal impact in light of new application requirements and emerging 
hardware and software computing platforms. This chapter highlights areas where advances are 
required to maximize the effectiveness and impact of modeling and simulation in society. 

4.1 Exploiting Emerging Computing Platforms 
The general computing architectures used for most large-scale simulations have been similar for 
the last 30 years: shared memory multicore or multiprocessor systems and tightly coupled 
distributed memory clusters. But computing platforms have undergone dramatic changes in the 
last decade, changes that are only modestly exploited by modeling and simulation technologies 
today. Examples of computing platforms requiring greater attention for modeling and simulation 
applications include massively parallel supercomputers, heterogeneous computing systems 
including graphical processing unit (GPU) accelerators, and field programmable gate arrays. The 
growing, widespread adoption of cloud and mobile computing create new opportunities and 
challenges for modeling and simulation. Effective exploitation of these platforms requires careful 
consideration of how simulation computations can best exploit, and operate under the constraints 
imposed by the underlying platform while meeting execution time and energy consumption goals 
for contemporary applications. Research challenges for each of these new, emerging computing 
platforms are discussed next, and discussed in greater detail in (Fujimoto 2016). 
Massively Parallel Simulations 
The number of processors (cores) in the most powerful supercomputers has exploded in the last 
decade. While the number of processors in the most powerful machines remained relatively stable, 
ranging from a few thousand in 1995 to ten thousand in 2004, this number began increasing 
dramatically in 2005. In November 2015 the Tianhe-2 machine, rated the most powerful 
supercomputer in the world, contained over 3 million cores. Effective exploitation of the 
computing power provided by these machines for large-scale simulation problems requires a 
paradigm shift in the modeling and simulation community. 
This trend is exemplified by experimental data reported in the literature in the parallel discrete 
event simulation field (Barnes, et al. 2013). Performance measurements of telecommunication 
network simulations indicated supercomputer performance of approximately 200 million events 
per second using 1,536 processors in 2003. This number increased to 12.26 billion events per 
second on 65,536 processors in 2009, and 504 billion events per second in 2013 using almost 2 
million cores. However, over this 10-year span, the performance per core increased by only a 
factor of two. Performance increases are being driven almost entirely by the exploitation of parallel 
processing. 
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Exploitation of massively parallel computer architectures presents many critical challenges to the 
modeling and simulation community. Perhaps the most obvious is the fact that the simulation 
computation must be developed in a way to exploit finer grains of computation, i.e., the atomic 
unit of computation that cannot be subdivided into computations that are mapped to different cores 
must become smaller. For example, in numerical simulations involving large matrix computations, 
rather than mapping entire rows, columns, or sub-matrices to individual cores, new approaches 
that consider mapping individual elements of the matrix to different cores are beginning to show 
promise, thereby exposing much higher levels of parallelism in the computation. The simulation 
computations and associated algorithms must be rethought to consider such fine grained 
parallelism. 

Once the simulation has been formulated as a fine grained parallel computation, a key challenge 
concerns efficient execution of the simulator. Communication latency has long been a principle 
impediment to efficient execution of parallel simulations; keeping the numerous cores busy with 
useful computations becomes very challenging if the delay to transmit information between cores 
increases. The reason is because many computations will have to remain idle, waiting for results 
computed on other cores to arrive. This problem becomes even more challenging in fine grained 
simulation computations where the amount of computation between communication actions 
becomes small. Latency hiding techniques that can mask communication delays become even 
more critical in order to successfully exploit large-scale parallel computers. Further, effective 
exploitation of memory system architectures become increasingly more important. When the state 
size encompassed by the simulator increases, efficient use of cache memory systems becomes 
increasingly more challenging and important. 

Another key question concerns how to map the parallel simulation model to the parallel 
architecture, especially for simulations that are modeling highly irregular physical systems. For 
example, consider a simulation of a large network, such as the Internet. Many networks such as 
these that arise in natural and engineered systems are highly irregular, and often contain “hub 
nodes” with high interconnectivity relative to other nodes in the network. The amount of activity, 
and thus simulation computation can vary by several orders of magnitude from one network node 
to another. Partitioning and mapping large-scale irregular network simulations to execute 
efficiently on modern supercomputers is a challenging task that requires further exploration. 

Parallel Simulation on Heterogeneous Computing Platforms 
Modern computers ranging from supercomputers to mobile devices are increasingly being 
composed of combinations of general purpose processors coupled with hardware accelerators, e.g., 
GPUs. A GPU is a hardware accelerator that off-loads computational tasks from the central 
processing unit (CPU). They derive their name from the fact that they were initially developed to 
render graphics for display devices on workstations and personal computers. GPUs have since 
found broader application as a means to accelerate data intensive numerical computations. High 
volume manufacturing of GPUs have driven their hardware cost down, making them attractive 
components for high performance computing systems. 
GPUs are designed for data parallel computations, i.e., computations where the same operations 
are applied to large volumes of similarly typed data. Computing elements are organized to 
implement single-instruction-stream, multiple-data-stream (SIMD) operations, i.e., a common 
program is executed by the many computing elements (cores) but operating on different data. This 
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data-parallel processing is the main source of performance improvement in these hardware 
platforms. 

A significant body of work has emerged in developing methods to exploit GPU architectures for 
numerical simulation applications. Such applications are often formulated as matrix computations, 
making them well suited for the exploitation of these architectures. Other computations such as 
discrete-event simulations are typically not structured as matrix computations. Rather, they often 
utilize much more irregular data structures which are more challenging to map to GPU 
accelerators. It is especially significant that the next generations (at least) of the highest-end 
supercomputers will be designed as clusters of nodes, each of which is composed of a small 
number of multicore processors and advanced GPUs that share memory. The GPUs will offer the 
vast majority of the computational parallelism in these platforms.  
To illustrate some of the challenges associated with executing irregular simulations on GPUs, 
consider a large discrete event simulation program that consists of many event computations. To 
execute efficiently in the SIMD style used in GPU architectures the simulation should consist of 
relatively few, and ideally only one, type of event, a restriction that applies to a limited number of 
discrete event simulation applications. SIMD code is also most efficient when it is mostly straight 
line code with few branches, and when loops running in parallel take (almost) the same number of 
iterations. This is a problem for discrete event simulations, whose control flow frequently 
branches. Also, code running on GPUs, for at least the next few generations of them, will not be 
able to execute Operating System code, perform I/O, or send or receive messages without 
involving the CPU. This last restriction is also a major problem for discrete event simulation since, 
on average, each event has to send one event message. This will almost certainly cause the CPU 
to be a performance bottleneck in any discrete event simulation that attempts to run events in 
parallel on the GPUs. The traditional multicore/multiprocessor architectures will likely remain 
more efficient for these simulations, until such time as there is more convergence between CPU 
and GPU architectures than is currently specified in the technology roadmaps.  Making efficient 
use of GPUs for highly irregular, asynchronous parallel discrete event simulations will be, to say 
the least, a major challenge. 

Concurrent execution can be obtained by partitioning the state variables of the simulation into 
objects, and processing the same event computation concurrently across these objects. Further, as 
mentioned earlier, each event computation should contain few data dependent branch instructions 
because if the program is executed over different data, the execution of different program 
sequences resulting from different branch outcomes must be serialized in the SIMD style of 
execution. The future event list used in discrete event simulations, a priority queue data structure, 
is similarly challenging to distribute for concurrent access on existing GPU architectures. Thus, 
restructuring irregular simulations for execution on GPUs remains challenging. 

Further, once the computation has been reformulated for execution on a GPU, other computational 
challenges must be addressed. Specifically, the memory available within the accelerator remains 
limited, and moving data in and out of the GPU’s memory can quickly become a bottleneck. 
Techniques to hide the latency associated with data transfers are essential to achieve efficient 
execution. Memory systems are typically organized as banks of memory, with concurrent access 
to memory distributed across different banks. However, accessing the data residing in the same 
bank must be serialized. Care must be taken to map the simulation’s state and other variables to 
the memory system to avoid creating bottlenecks. 
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Effective exploitation of GPU architectures today requires careful programming that is tailored to 
the specific target architecture. This makes codes relatively brittle – performance optimizations 
designed for one architecture may no longer be valid when the next generation architectures 
appear. Tools to automate the mapping of simulation computations to GPU architectures are 
needed to alleviate this task from the programmer. Moreover, software development on GPU 
architectures can be burdensome. Application specific languages or advances in parallel compilers 
may offer ways to simplify the programming task. 
Array Processors as a Platform for Modeling and Simulation 
Advances in field programmable gate array (FPGA) technology have improved their speed, 
performance, and connectivity with other devices while lowering their power consumption, 
leading to their emergence as array processors for use in high performance parallel computing 
platforms. These processors combine the features of application-specific integrated circuits with 
dynamic reconfigurability, especially during runtime, to provide a suitable system for performing 
massively parallel operations.  These systems have a sufficient number of processing units to 
provide large-scale parallelism, higher processing power, and shorter reconfigurability time, even 
during the execution of the same program.  Their performance is better than microprocessors by a 
factor of 100 and more (Tsoi and Luk, 2011). 
The suitability of array processors as a parallel processing platform has been and is being 
investigated in data-intensive applications, such as signal and image processing, database query, 
big data analysis, and applications that are compute and memory intensive, such as high-speed 
network processing, large-scale pattern matching, influence-driven models for time series 
prediction from partial observation, model-based assessment, and many more (Dollas, 2014).   

In array processor architectures, a single instruction controls the simultaneous execution of data in 
the processing units (SIMD) which is efficient when data sets in the processing units don’t rely on 
each other. The topology of the array processor is heavily influenced by the structure of the 
interconnection network, its speed of connectivity, and its configurability for a specific application.  
Because of this dependency, efficient partitioning (mapping) algorithms are needed.  
Array processors have good potential for big data processing models and good results have already 
been shown for some unique applications.  However, their suitability for general applications and 
for modeling and simulation of complex systems needs to be studied.  One of the reasons for the 
limitation of array processors is the coupling of prefetch instructions with the execution unit.  
Decoupling, along with the development of methodologies to properly map data dependency, 
needs to be researched.   
Development of user-friendly programs for mapping models into the array architectures, creation 
of tools for dynamic reconfiguration of general application models, development of efficient 
dynamic routing algorithms to accelerate the routing phase specific for array processors, and 
production of an open-source hardware design to enable research into novel reconfigurable 
architectures are all very important. Selecting an appropriate memory model, such as shared, 
distributed, or hybrid, to develop an efficient programming interface for the selected memory 
models needs to be researched, especially for complex compute bond simulation models. 

Developing hardware solutions for data processing that support high degrees of parallelism is 
challenging because as core counts increase, the average on-chip distance between arbitrary 
communication points also grows. Thus, enforcing scalable communication patterns is crucial.  For 
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example, an algorithm can be parallelized by replicating a task over many processing elements and 
organizing them into a feed-forward pipeline.  

The creation of more high-level development environments, such as OpenCL, in place of low-
level ones (VHDL, Verilog), for high-level abstractions will allow array processors to be 
developed more efficiently independent of the technical advances of modern synthesizers and 
provide fundamental trade-offs between speed and chip space.  Furthermore, appropriate tradeoff 
analyses between speed and generality, clock speed and power consumption, chip area and 
accuracy, expressiveness, and (runtime) flexibility need to be made.  In addition, while OpenCL 
provides programming portability, it doesn't provide performance portability.  Therefore, the 
portability issue also needs to be resolved. Thinking outside the box while researching porting data 
processing algorithms from software to hardware and accurately abstracting the underlying 
operations of a given task, including synchronization, to achieve high degrees of parallelism and 
flexibility are also important (Woods 2014). 

Other challenges include speeding up the tools for mapping a model description (which is in the 
range of hours to days) using existing parallel programming languages, such as OpenCL, CUDA 
(compute unified device architecture and programming model to increase the computing 
performance-restricted for a certain hardware), and SystemC.  

Modeling and Simulation in the Cloud 
Cloud computing offers a means to make modeling and simulation tools much more broadly 
accessible than was possible previously. Cloud computing provides the ability to offer modeling 
and simulation tools as a service that can be readily accessed by anyone with an Internet 
connection. In principle, users of such tools need not own their own computers and storage to 
complete the simulations. This feature can be especially beneficial for simulation computations 
requiring high performance computing facilities because the cloud eliminates the need for 
simulation users to manage and maintain specialized computing equipment, a serious impediment 
limiting widespread adoption in the past. The “pay-as-you-go” economic model for the cloud is 
attractive when computational needs are heavy during certain periods of time, but much less during 
others. However, there are certain challenges that must be overcome for the modeling and 
simulation community to maximally exploit cloud computing capabilities. 

Cloud computing is built upon a computational technology called virtualization. Virtualization 
enables one to create a “private” computational environment where resources such as CPU, 
memory, and operating system services appear to be readily available to applications as virtualized 
components. Virtualization provides isolation between applications, thereby enabling physical 
computing facilities to be shared among many users without concern for programs interfering with 
each other. 

Cloud computing presents certain technical challenges, especially for parallel and distributed 
simulations. A significant issue that has impeded greater exploitation of public cloud computing 
services concerns communications delay. Both latency and latency variance, i.e., jitter, may be 
high in cloud computing environments and significantly degrade performance. This problem could 
be alleviated by improved support from cloud providers for high performance computing. Another 
approach is to design parallel and distributed simulations with better ability to tolerate latency and 
jitter in the underlying communications infrastructure. 
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A second issue concerns contention for shared resources in cloud computing environments, as 
users are typically not guaranteed exclusive access to the computing resources used by their 
programs. This can lead to inefficient execution of parallel and distributed simulation codes. An 
approach to addressing this problem is to develop mechanisms to make these codes more resilient 
to changes in the underlying computing environment during the execution of the simulation. For 
example, dynamic load adaption is one method that can been applied to address this issue. 

Cloud computing introduces issues concerning privacy and security. These are issues that are well-
known in the general computing community and are equally important if cloud computing is to be 
successfully exploited by the modeling and simulation community. 
There is a trend to recognize that groups of software services require different facilities and support 
from cloud computing, virtualization and service-oriented architectures.  Arguably this is also true 
in this area and is emerging as “Modelling and Simulation as a Service” (MSaaS).  This could 
cover modeling and simulation applications ranging from “online” simulation, where multiple 
users can access the same simulation (and potentially share information between them), to 
simulations requiring various high performance computing support, to groups of interoperable 
simulations to pipelines of simulations and supporting services (real-time data collection, 
simulation analytics, optimizers, etc.)  These in turn make novel demands of cloud and service-
oriented architecture concepts such as workflow, orchestration, choreography, etc.  

Mobile Computing Platforms 
As discussed in the next section, the number of mobile computing devices dwarfs the number of 
desktop and server machines, the traditional platform used for modeling and simulation codes, and 
this gap is rapidly increasing. The increasing computing power of mobile devices means 
simulation codes need not be limited to remote servers or execution in the cloud. Rather, 
simulations can be embedded within a physical system itself. Increased use of mobile platforms 
such as drones provide many new opportunities for the use of simulation to monitor and assist in 
managing operational systems in real time. For example, simulations operating in drones may be 
used to predict the spread of forest fires or toxic chemical plumes, enabling one to dynamically 
adapt the monitoring process or institute approaches to mitigate damage. Transportation represents 
another important application where simulation embedded within the traffic network may be used 
to project traffic congestion arising after an incident, and to explore alternate courses of action.  

Embedding the simulation computations within the physical system being monitored or managed 
offers the opportunity for the computations to be used in tighter control loops using disaggregated 
data compared to approaches using back end servers or the cloud. Further, placing the 
computations nearer to data streams lessens reliance on long-range communications capabilities, 
and can mitigate privacy concerns by eliminating the need to communicate and store sensitive data 
on centralized servers. 

Data-driven online simulations are growing in importance. Sensor data and analytics software 
process live data streams to construct or infer the current state of the system. Simulations are then 
used to project future system states, e.g., to improve the monitoring systems to better track the 
physical system as it evolves, or to be used as a means to optimize or improve the system. These 
simulations must run much faster than real time to be useful. Paradigms such as DDDAS can be 
expected to grow in use into the foreseeable future. 
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Mobile computing platforms present new challenges for simulation applications. The simulations 
must be able to produce actionable results in real time. This necessitates automation of many of 
the steps in a modeling simulation study. For example, input data must be analyzed and processed 
rapidly to parameterize and drive the simulation models. Experimentation plans for analyzing 
possible future outcomes must be rapidly created and executed. Simulation runs must be mapped 
to available computing resources, and analyses of output data must be completed and interpreted 
with minimal delay, and translated into action plans. Data from the physical system offers the 
opportunity to automatically calibrate, adapt, and validate simulations by comparing observed 
system behaviors with those predicted by the simulations. 
Energy consumption is another area of increasing concern. In mobile computing platforms 
reducing the energy required for the computation will increase battery life, and/or can allow 
smaller, more compact batteries to be used. However, most of the work to date in energy 
consumption has focused on low-level hardware, compiler, and operating system issues. Relatively 
little work has been completed to understand the energy consumed by simulations. Better 
fundamental understandings of the relationship among energy consumption, execution time, data 
communications, and model accuracy are needed. These relationships must be better understood 
for both sequential and parallel/distributed simulations. Approaches to optimize energy 
consumption consistent with the goals and constraints of the simulations in terms of timeliness in 
improving results are needed. 
Neuromorphic Architectures 
Neuromorphic computers are a radical departure from the traditional von Neumann computer 
architectures. They are essentially the hardware realization of neural nets, modeled loosely on 
animal nervous systems, and are capable of doing tasks such as image processing, visual 
perception, pattern recognition, and deep learning vastly more quickly and energy efficiently than 
is possible with traditional hardware. 
At this point it is too early to do more than speculate about how neuromorphic computation will 
be incorporated into simulations once they become better understood and more widely available. 
But one possible use case might be in autonomous vehicles such as self-driving cars or aerial 
drones which may need extensive image processing in embedded simulations to predict in real 
time the behavior of other nearby vehicles. Those tasks may not be directly programmed in a 
traditional rule-based manner, but may instead make use of the learning capability inherent in 
neuromorphic chips to adapt to local conditions and to the world as it changes over time. Another 
example is a simulation of a system where visual processing is critical, such as satellite aerial 
surveillance. The systems themselves may make use of neuromorphic computation, but 
simulations of those systems will likely need it as well, since otherwise the simulation will 
probably run many times slower.  

4.2 Pervasive Simulation 
Embedding Simulations (into literally everything) 
A key observation in the “post digital revolution society” is that information and communication 
technologies (ICT) have become pervasive, i.e. interwoven with human behavior, or in other 
words: the “fabric of everyday life” to such an extent, that the separating view of a “physical 
world” being connected with a “digital world” is ceasing. Today we talk about one “cyber-
physical” world (Cyber-Physical Systems, an NSF program developed by Helen Gill in 2006), 
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referring to the tight entanglement of real world physical objects (things, appliances) and processes 
(services), with their digital data representation and computations in communication networks (the 
“cyber”). Embedded, wirelessly connected tiny compute platforms equipped with a multitude of 
miniaturized sensors collect data about phenomena, analyze and interpret that data in real time, 
reason about the recognized context, make decisions, and influence or control their environment 
via a multitude of actuators. Sensing, reasoning and control, thus, are tightly interconnecting the 
physical and digital domains of the world, with feedback loops coupling one domain to the other. 
Connecting the “physical” with the “digital” based on embedded electronic systems, which in 
addition to executing preprogrammed behavior also execute simulations we call pervasive 
simulation. Pervasive simulations have clear synergies and overlaps with mobile and dynamic data 
driven application systems discussed earlier. 
Collective Adaptive Simulations 
Taking the plenty-hood of todays embedded platforms with their computational, sensory, 
reasoning, learning, actuation and wireless communication capacities (smart phones, autonomous 
vehicles, digital signage networks, stock exchange broker bots, wearable computers, etc.), it is not 
just considered possible, but already a reality that these are programmed to operate cooperatively 
as planet scale ensembles of collective adaptive computing system (CAS). CAS research asks 
questions on the potential and opportunities of turning massively deployed computing systems into 
a globe-spanning “super-organism,” i.e. compute ensembles exhibiting properties of living 
organisms such as displaying a “collective intelligence.” Essential aspects of CAS are that they 
often exhibit properties typically observed in complex systems, such as (i) spontaneous, dynamic 
network configuration, with (ii) individual nodes acting in parallel, (iii) constantly acting and 
reacting to other agents, and (iv) highly dispersed and decentralized control. If there is to be any 
coherent behavior in the system, it must emerge from competition and cooperation among the 
individual nodes, so that the overall behavior of the system is the result of a huge number of 
decisions made every moment by many individual entities. Pervasive simulation raises CAS to 
collective adaptive simulations. 
Massive Scale Pervasive Simulations 
The International Telecommunication Union (ITU) predicts there will be 25 billion devices online 
within the next decade, outnumbering connected people 6-to-1 (International Telecommunication 
Union 2012b). This will lead to a pervasive presence around us of objects and things (e.g., RFID 
tags, sensors, actuators, mobile phones), which will have some ability to communicate and 
cooperate to achieve common goals.  This paradigm of objects and things ubiquitously surrounding 
us is called the Internet of Things (IoT). The ITU defines IoT as a “global infrastructure for the 
information society, enabling advanced services by interconnecting (physical and virtual) things 
based on, existing and evolving, interoperable information and communication technologies” 
(International Telecommunication Union 2012a). The IoT covers different modes of 
communication, including: between people and things, and between things (machine-to-machine 
or M2M).  The former assumes human intervention, and the latter none (or very limited).   
A primary aim of IoT is to deliver personalized or even autonomic services by collecting 
information from and offering control over devices that are embedded in our everyday lives. The 
reliance of IoT on simple, cheap, networked processors has implications for security; the 
potentially invasive nature of the information gathered has implications for privacy; and our 
reliance on machine-to-machine systems to make decisions on our behalf makes mechanisms for 
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expressing and reasoning about trust essential.  The need for trust has long been recognized, as 
stated recently by Moulds (2014), the “… pivotal role in … decision making means it is essential 
that we are able to trust what these devices are saying and control what they do. We need to be 
sure that we are talking to the right thing, that it is operating correctly, that we can believe the 
things it tells us, that it will do what we tell it to, and that no-one else can interfere along the way.”   
Privacy, Security and Trust 
As pervasive simulations become more commonplace, it is essential that they be secure or at least 
tolerant of cyber threats. Privacy and trust issues must be adequately addressed to realize 
widespread adoption. 
As the world becomes more connected, we will become dependent on machines and simulations 
to make decisions on our behalf.  When simulations use data from sensors, devices and machines 
(i.e., things) in the network to make decisions, they need to learn how to trust that data as well as 
the things with which they are interacting.  Trust is the belief in the competence of a machine or 
sensor to act dependably, securely and reliably within a specified context (Grandison and Sloman 
2000). Trust is a broader notion than information security; it includes subjective criteria and 
experience. Currently securing sensors and devices is accomplished through information security 
technologies, including cryptography, digital signatures, and electronic certificates. This approach 
establishes and evaluates a trust chain between devices, but it does not tell us anything about the 
quality of the information being exchanged over time.  
As the number of sensors connected to the network grows, we will see different patterns of 
communication and trust emerge.  If we assume a hierarchical connection of components: sensors 
are at the end-nodes, which communicate data to aggregators. Sensors may be unintelligent (sense 
environment and send data to aggregator) or they may be intelligent (sense environment, reason 
about the data, and communicate with aggregators). Aggregators are capable of collecting data 
from sensors, reasoning about that data, and communicating with other aggregators. Having 
aggregators communicate with each other enables trust decisions to be made in a more distributed 
manner, reasoning about trust across geographic areas.  
Data from the sensors and aggregators will be fed into models and simulations that are making 
predictions and/or decisions that will impact our lives. Data from sensors or aggregators may be 
in conflict with each due to: malfunction, bad actors, tampering, environmental conditions, context 
conditions, and so on. Whether or not the simulation should trust this data must be established by 
an agent that is capable of a trust evaluation prior to it being deemed useful as information. Further, 
if simulations have a role in controlling or giving commands to some sensor, actuator or device in 
the IoT system (i.e., a cyber-physical system) then the data the simulation uses from external 
sources in which to make those decisions, must be trustworthy such that it is not purposely misled 
into issuing malicious commands.  

Foundational Research Concerns  
In order to develop a deep scientific understanding of the foundational principles of pervasive 
simulations, we need to understand the trade-offs between the potentials of top-down (by design) 
adaptation means and bottom-up (by emergence) ones, and possibly contributing to smoothing the 
tension between the two approaches. We need to understand how and to what extent pervasive 
simulations – when involving billions of components – can create a “power-of-masses-principle,” 
and possibly express forms of intelligence superior than that of traditional artificial intelligence. 
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Furthermore, understanding properties concerning the evolutionary nature of pervasive 
simulations, e.g. open-ended (unbounded) evolutionary simulation systems, the trade-off and 
interaction between learning and evolution, and the effect of evolution on operating and design 
principles are of foundational importance. Understanding the issue of pluralism and diversity 
increase in complex pervasive simulation systems as a foundational principle of self-organization, 
self-regulation, resilience and collective intelligence is needed. Last but not least, laying down new 
foundations for novel complex pervasive simulation theories for complex, adaptive, large-scale 
simulation super-organisms (including lessons learned from applied psychology, sociology, and 
social anthropology, other than from systemic biology, ecology and complexity science) remains 
a key challenge for the scientific community. 

Systems Research Concerns  
In order to develop principles and methods for the design, implementation and operation of globe-
spanning simulation super-organisms we identify systems research concerns such as (i) 
Opportunistic Information Collection: Systems need to be able to function in complex, dynamic 
environments where they have to deal with unpredictable changes in available infrastructures and 
learn to cooperate with other systems and human beings in complex self-organized ensembles. (ii) 
Living Earth Simulation: The provision of a decentralized planetary-scale simulation infrastructure 
strongly connected to the worlds online-data sources (search engines, power grids, traffic flow 
networks, trade centers, digital market places, climate observatories, etc.) is needed as a means to 
enable a model-based scenario exploration in real time - at different degrees of detail, varying 
time-scales, integrating heterogeneous data and models. (iii) Collaborative Reasoning and 
Emergent Effects in Very-Large Scale Pervasive Simulations: Reasoning methods and system 
models are needed that combine machine learning methods with complexity theory to account for 
global emergent effects resulting from feedback loops between collaborative, interconnected 
simulations. (iv) Value Sensitive Simulations: Research is needed on ethics, privacy and trust 
models for simulations that are robust and resilient to common threat models in planetary scale 
simulations.  
Towards pervasive simulation applications, we have to look at the specifics of design, 
implementation and operational principles rooted in the very nature of application domains of 
societal relevancy: e-health eco-systems, fleets of self-driving vehicles, reindustrialization 
(Industry 4.0), physical internet (intelligent logistics), digital economy, energy management and 
environmental care, citizen science, combinatorial innovation, liquid democracy, etc. 

4.3 New and More Complex Simulation Paradigms: A Plethora of Models 
As we simulate ever larger and more complex systems, from thousands of interacting components 
to millions and billions, the complexity of the models we must build and execute also dramatically 
increases at all levels in the layered stack of simulation software. Large simulations must 
frequently combine different modeling paradigms and frameworks, at different temporal and 
spatial scales, and different synchronization and load balancing requirements. They must interface 
with other non-simulation software, such as databases, analysis packages, visualization systems, 
and sometimes with external hardware systems or humans. And a single execution of a model is 
not sufficient.  We always need a structured ensemble of many independent executions in a proper 
simulation study. Among the greatest R&D challenges we face is the creation of simulator 
platforms, frameworks, tool chains, and standards that allow this diversity of paradigms to 
interoperate in a single simulation application. The software challenges are made even greater 
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because of the hardware computing architectures on which complex simulations run are also 
changing rapidly, as was discussed earlier. 

Complex Simulations 
Simulations are becoming ever more complex as they are applied to new domains and grow in 
scale and fidelity required. The additional complexity is multidimensional, often with multiple 
kinds of complexity in the same model, leading to a variety of architectural requirements beyond 
correctness, fidelity, and performance. Examples of this complexity include:   

• Federated models — models composed (recursively) of separately developed submodels 
that are then coupled in structures that mimic the way the real systems being simulated 
are composed of coupled subsystems. 

• Multi-paradigm models – models that contain subsystems designed according to different 
paradigms, e.g. queuing models coupled to Petri net models and numerical differential 
equation models. 

• Multiscale models— models with significant phenomena occurring at different time or 
space scales, often differing by orders of magnitude. 

• Multiphysics models — models in which multiple different physical phenomena, e.g. 
fluids, solids, particles, radiation, fields, etc., all coexist and interact. 

• Multi-resolution models — models in which it is necessary to be able to adjust a 
resolution parameter to allow a trade-off between time- and space-resolution or degree of 
detail for improved performance. 

• Multi-synchronization models — parallel models that use multiple synchronization 
paradigms, e.g. a hybrid or federation of different time-stepped, conservative event-
driven, and/or optimistic event-driven synchronization algorithms. 

• Mixed discrete and continuous models — models in which some parts are described by 
numerical equations describing state changes that are continuous in time, while other 
parts are discrete, in which all state changes are discontinuous in time. 

• Real time models — models that must produce results by specific real time deadlines, 
often in embedded systems. 

• Hardware-in-the loop (HWIL) — a special case of a real time model in which a 
simulation is coupled to a physical device with which it must synchronize and 
communicate at a real time speed determined by the needs of the device.  

• Human-in-the-loop — a simulation that interacts with humans in real time, at speeds and 
with response times keyed to human behavior and reaction times, and with I/O keyed to 
human sensory and action modes. 

• Models as components of other computations — models that are subsystems of a larger 
computation that is not itself a simulation, e.g. an animation system, or a control system. 

• Models containing large non-simulation components — for examples models that run 
whole (parallel) speech understanding or visual systems inside a single event. 

• Virtual machines as model components — an important special case in which the system 
being simulated involves computers or controllers that run particular software, and the 
execution of that software has to be faithfully duplicated, including timing, for the 
simulation to be correct. 
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Some of these complexity dimensions are reasonably well understood, at least in principle. But 
others are poorly understood even theoretically, and considerable research will be required to 
clarify them.  In most of these dimensions there are no widely accepted standards and no robust 
tool chains for building, executing, debugging or validating them. When such models are built 
today, they are usually one-offs that are dependent on the specific details of the particular 
application needs and are likely to contain ad hoc design decisions and engineering compromises 
that make the simulation brittle, unportable, and/or unscalable. 
 

Abstraction 
Layer 

Function 

model layer The code of a particular model (or component).  

model 
framework layer 

Collection of model classes, components, and libraries for a 
single application area, such as network simulation, or PDE 
solution, etc. 

simulator layer Provides a single paradigm for simulation time, space, naming, 
parallelism, and synchronization for use in one component of a 
(possibly) federated simulation. 

component 
federation layer 

Provides interface code to allow independently-created 
submodels, possibly written in different languages, to 
communicate, synchronize, and interoperate in various ways to 
become a single federated model. 

load 
management 
layer 

Within one parallel model execution, measures resource 
utilization (time, energy, bandwidth, memory) at runtime and 
dynamically manages or migrates loads to optimize some 
performance metric. 

ensemble layer Runs many instances of the same model as an ensemble in a 
single large job, for such purposes as parameter sensitivity 
studies, parameter optimization, variance estimation, etc. 
Handles scheduling, failures, accounting, and time estimates, 
allocates file directories, decides on ensemble termination, etc. 

operating 
system / job 
scheduler layer 

Runs independent jobs in parallel. Provides processes, 
interprocess communication, I/O, files systems, etc. 

 

Table 4.1 Abstraction Layers of a Simulation Software Stack. 

To manage this kind of simulation complexity, we need to develop simulation-specific software 
engineering standards, abstractions, principles and tools. For example, one step might be to define 
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standards for simulation software as a stack of software layers, in which each layer provides and 
exposes additional services for use by the layers above, and abstracts or hides some features from 
the layers below. This follows the pattern set by the layering of general purpose system and 
application software, or the TCP/IP and OSI protocol stacks. Table 4.1 shows a set of abstraction 
layers that might crudely exemplify such a simulation software stack. 
Presumably there could be various alternative systems at each layer, just as there are different 
protocols at each layer of the TCP/IP stack. The point is not to suggest this particular organization 
for the simulation stack. Any such standard should be the result of lengthy and careful 
consideration among the stakeholders in the simulation community, perhaps under the auspices of 
professional societies such as the Association for Computing Machinery (ACM). But there is an 
urgent need for software engineering principles specific to simulation to help manage the 
complexity that currently limits the kinds of simulations we can realistically attempt. 

Unification of Continuous and Discrete Simulation 
One of the basic simulation questions that will require considerable research to clarify is the 
relationship between continuous and discrete simulations. On the surface they seem strikingly 
different.  Continuous simulations treat state changes as continuous in time, whereas discrete 
simulations treat state changes as discontinuous. The fidelity of continuous simulation is 
dominated by numerical considerations (error, stability, conservation, etc.), whereas for discrete 
models it is dominated by detailed correspondence with the system being modeled and also by 
statistical considerations. The two kinds of simulation are sufficiently different that there are very 
few people who are expert in both. 
Despite the differences, it is common for complex models to combine aspects of both discrete and 
continuous submodels. Frequently, for example, one part of a system, e.g., electric power 
distribution, or aircraft aerodynamics, is described by differential equations and represented by a 
continuous simulation, but the digital control system for those same systems (power grid, aircraft) 
is better represented by discrete models. The entire coupled simulation is thus a mix of continuous 
and discrete models. 
The problem in coupling continuous models to discrete ones is that the continuous side is usually 
programmed as a time-stepped simulation, while the discrete side is likely to be event driven, and 
the two do not share a common synchronization mechanism. To start with, we need robust, high 
performance parallel integration algorithms on the continuous side of the coupling that can freely 
accept inputs from the event-driven discrete side at arbitrary (unpredictable) moments in 
simulation time falling between two time steps. Some, but not all, integration algorithms have the 
property that at any simulation time one or more new, shorter time steps can be interpolated 
between two pre-planned ones without loss of accuracy or other key properties. However, in 
practice, even if the integrator has that property, the actual integration codes were not developed 
with that capability in mind and they do not incorporate the necessary interpolators and 
synchronization flexibility. 

A more ambitious research agenda is to unify the theory and practice of parallel continuous and 
parallel discrete event simulation. A few dozen scattered papers have been published related to 
this theme, but the issue is still not widely recognized and it will certainly require a major 
international research and development effort to clarify the issues and build appropriate tools. 
Unification would require development of a variety of scalable parallel variable rate integrators, 
both explicit and implicit, that are numerically stable. They need to support variable, dynamically 
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changing spatial resolution as well (in the case of PDE solvers). To execute optimistically, or 
couple efficiently to an optimistically synchronized model, a unified discrete and continuous 
simulator will have to support rollback as well. 
Co-simulation and Virtual Simulation 
Co-simulation stems from modeling embedded systems where verification of hardware and 
software functionality as a system is performed simultaneously before and during the design phase 
to ensure the final manufactured system will work correctly.  The approaches developed for co-
simulation, as well as the tools developed for describing the models and simulating the correct 
functionality, use VHDL, VERILOG, and SystemC.  The use of these tools and methodologies for 
co-simulation of embedded systems is rather mature.  Although some of the existing tools such as 
VHDL and Verilog do not have standard interface features for communication between hardware 
and software, SystemsC and some industry-developed tools used in the design of this type of 
system have been in practice for some time.   
Compared with the digital realm, hybrid modeling and co-simulation of continuous and discrete 
systems and their synchronization haven’t been addressed to the level necessary to provide 
accurate results when used for the design of mixed and hybrid complex systems.  The complexity 
of continuous/discrete systems makes their co-simulation and validation a demanding task and the 
design of heterogeneous systems challenging. The validation of these systems requires new 
techniques offering high abstraction levels and accurate simulation from a synchronization and 
intersystem communication point of view.  This is especially necessary for the development of 
cyber-physical systems, which are a combination of continuous components that may be defined 
by a set of ordinary or partial differential equations, discrete components (such as 
microcontrollers) for control purposes, and embedded software for local and remote operation via 
the Internet.  

Appropriately sharing design parameters between discrete and continuous subsystems for access 
by either subsystem at the correct time, occurrence of the correct event, and initiation of events by 
either subsystem are among the issues needing to be researched.  In addition, the following issues 
require further research:  scheduling events to occur at a specific time (time events) or in response 
to a change in a model (state events); events that are described with predicates (Boolean 
expressions), where the changing of the local value of the predicate during a co-simulation triggers 
the event; modeling abnormal behavior, such as those caused by a random event, such as faults or 
misuse; and defenses against the misuses including fault tolerance mechanisms for protection 
against them.   
One of the most important difficulties in continuous/discrete co-simulation is the time 
synchronization between the event-driven discrete simulation and the numerical integration into 
the continuous solver which influences the accuracy and the speed of the simulation.  The exchange 
of events between the discrete and the continuous models is especially critical for co-simulation.  
The continuous model may send a state event, whose time stamp depends on its state variables 
(e.g., a zero-crossing event); and the discrete model may send events, such as signal update events, 
that may be caused by the change of its output or the sampling events (Nicolescu, et al, 2007 and 
Gheorghe et. al, 2007).  
Since designs are becoming more complex, it is expected that some of the methodologies 
developed for co-simulation of embedded systems will be adaptable for co-simulation of cyber-
physical systems and will verify the stability, controllability, and observability of such systems 
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under various operating environments.  Challenges in this area particularly include the 
development of a single tool for co-simulation of continuous, discrete, and embedded software 
components of cyber-physical systems to ease synchronization events needed among these three 
subsystems. 

Simulation Ensembles 
A complex model code will almost always have inputs that describe initial conditions, parameters 
that control or modulate the system’s behavior during simulation time, and random seeds that 
initialize random variables controlling stochastic behavior. A serious simulation study involves 
hundreds, thousands, or even more executions of the same model code, i.e. an ensemble of 
simulations, to explore and quantify the behavioral variation that the model can produce.  

Ensembles of simulations are required in at least these circumstances, and others as well: 

• to broadly explore and survey that space of behaviors that the model produces with 
different inputs and parameters; 

• to examine the sensitivity of model behavior to perturbations of inputs or parameters; 

• to find optimal input parameter values that maximize some output metric; 

• to measure the mean, variance, correlation, and other statistical properties of the models’ 
outputs over a large number of executions with different random seeds; 

• to search for or measure the frequency of rare events that can occur in the behavior of the 
model; 

• to conduct uncertainty quantification studies; 

• to guide and track training progress in human-in-the-loop training simulations; 

• to do runtime performance studies, including scaling studies. 
Because ensemble studies are almost universal, the simulation community should recognize 
ensemble studies as the fundamental unit of simulation, rather than concentrate primarily on the 
single execution. It is the resources and costs required of the ensemble that matters, not those 
required for any individual run. Thus, to reduce resource utilization it is often much more important 
to optimize the number of simulations in the ensemble rather than the performance of individual 
simulations.  Likewise, if time-to-completion of the entire study is critical, then it is more important 
to design the study so that more parallelism is derived from running simulations in parallel, even 
if that means reduced (or no) parallelism within a single simulation.  

Methods to automate the creation and execution of simulation experiments from job submission 
to resource allocation to execution of computational experiments including multiple runs are 
needed. We need to define standards and build tools to support the ensemble-level of simulation.  
We should be able to run a single job in a form portable to multiple platforms, to conduct an entire 
ensemble study, or at least a good part of it. It should choose inputs, parameter values, and random 
seeds, dynamically allocate nodes on a parallel machine as needed, launch individual simulations 
on those nodes, calculate their time estimates, allocate file system space for their outputs, monitor 
their normal or abnormal termination, and decide as some simulations terminate and free nodes, 
which next simulations to run. The code or script that manages the ensemble may be interactive, 
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or may conduct the entire sensitivity or optimization or variance estimation study autonomously, 
deciding what simulations to run, in what order, and when to stop. 

 

4.4 Beyond Big Data: Synergies Between Modeling, Simulation and Data Analytics 
Data analytics and machine learning algorithms provide predictive capabilities, but are 
fundamentally limited because they lack specifications of systems behavior. Modeling and 
simulations fill this gap, but do not exploit new capabilities offered by new machine learning 
algorithms. Approaches that synergistically combine these methods offer new approaches for 
system analysis and optimization. 
Simulation Analytics 
Traditional simulations compute aggregated statistics that are reported back to analysts. Recently, 
new HPC-based approaches for analysis of disaggregated data and sample paths through 
simulations exist, potentially providing much finer grained analysis results.  As an example, large-
scale high fidelity multi-agent simulations are being increasingly used in epidemiology, disaster 
response, and urban planning for policy planning and response. These simulations have complex 
models of agents, environments, infrastructures, and interactions. The simulations are used to 
develop theories of how a system works, or carry out counter-factual experiments that entail the 
role of various “system level interventions.” In this sense simulations here can be thought of as 
theorem provers.  They are also used for situation assessment and forecasting. The eventual goal 
in each case is to design, analyze and critique policies. The policies can be viewed as decisions 
taken by policy makers ranging from small groups to local and national government agencies. To 
use simulations in this setting one often resorts to carrying out statistical experiments; these 
experiments can be factorial style experiments, but they can also be sequential experiments and 
use adaptive designs. Computation trees are examples of this. Even a moderate sized design leads 
to a large number of runs; this coupled with simulations of systems at scale produce massive 
amounts of data. 

As simulations become larger and more complex, however, we encounter a number of challenges. 
First, if a simulation is too computationally intensive to run a sufficient number of times, we do 
not obtain the statistical power necessary to find significant differences between the cells in a 
statistical experiment design.  Second, if the interventions are not actually known ahead of time, 
we do not even know how to create a statistical experiment. This can be the case, e.g., when the 
goal of doing the simulation is to find reasonable interventions for a hypothetical disaster scenario. 
Third, as the system evolves in time, it is often necessary to incorporate new information leading 
to interactive systems with certain real-time requirements. New methodologies and new techniques 
are needed for the analysis of such complex simulations. Part of the problem is that large-scale 
multi-agent simulations can generate much more data in each simulation run than goes into the 
simulation, i.e., we end up with more data than we started with.  Although we have discussed these 
issues in the context of multi-agent simulations of large socially-coupled systems, they are 
applicable to other classes of biological, physical and informational simulations as well. Additional 
discussion can be found in (Marathe, et al. 2014, Parikh, et al. 2016). 

A broad challenge is that of sense-making.  The basic issue is actively studied in artificial 
intelligence (AI). Broadly, there are three parts to the problem: Simulation analytics pertains to 
developing new algorithmic and machine learning techniques that can be used to support the 
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above tasks.  They involve: (i) how to design a simulation that computes the right thing and 
summarization of simulation data, (ii) find interesting patterns in the data sets, (iii) discovering 
potentially new phenomenon - how to analyze simulation results to extract insights and (iv) 
integrating the data with real world observations to provide a consistent partial representation of 
the real world under study. We discuss each of these topics below; also see (Barrett, et al. 2011, 
Barrett et al. 2015). 

• Summarization: Summarization of simulation data is needed as massive amounts of data 
are being produced by these systems; it is expected that the simulated data can be orders of 
magnitude larger than the data that was used to drive the simulations. What does 
summarization mean in this context? How does one summarize the data? How does one 
retain important information and find it in the first place? The challenges here lie in 
developing and adapting statistical science and machine learning techniques on one hand 
and algorithmic techniques on the other. The basic topic of summarization has now been 
studied in the data mining literature. Summarizing simulation based data can of course use 
these techniques but also has aspects that might facilitate the development of specific 
methods.  

• Finding Interesting Patterns: An important question arising within the context of simulation 
analytics is to identify interesting patterns. These patterns might point to anomalies or help 
with summarization or help discover potentially new phenomenon. The question here 
revolves around data representations and pattern representations, and efficient and provable 
algorithmic techniques to find these patterns. 

• Discovering Potentially New Phenomenon: This is related to the previous problem but 
takes into account the problem semantics to discover a potentially new phenomenon. For 
example, a good pattern finding algorithm might be able to find clusters of a certain size 
repeated in certain simulations. Knowing that these simulations pertain to epidemiological 
outbreaks or star formation might provide new clues on super spreaders in a social network. 

• Information Synthesis: An overarching problem is to try and synthesize the simulated 
information produced by different simulation components. The synthesis of data is an 
important issue and one could view simulations as an approach to build a coherent view of 
bits and pieces of data, i.e. gathered by measuring aspects of the real world (either 
systematically or as a part of convenience data). In this context, the notion of information 
needs to be broadened not just as numerical data but also procedural and declarative data; 
information that pertains to how things work or how things behave. Indeed, simulations 
provide a natural way to both interpolate sparse data to form a coherent view but also allow 
us to extrapolate this data to develop potential possible worlds. Information synthesis 
comes up in physical systems but is most apparent when dealing with modeling and 
reasoning about biological, social and information systems; e.g. urban transportation 
systems, public health, banking and finance.  

• Believability: Why should one believe simulation results? There is much discussion of this 
topic in other sections and hence the focus here is on developing methods that can allow 
policy analysts a way to see patterns produced by simulations that can increase confidence 
in the simulation results. For instance, stochastic simulations might produce many possible 
branches as the simulation evolves. Is there a way to summarize these branches so that we 
can make sense of why this might have happened?  
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Model and Data Representation 
Integrating algorithms for simulation and data raises questions concerning the most effective 
representation of models and data. Representations are needed to facilitate use of formal methods. 
Another challenge concerns the creation of domain specific languages and efficient translators to 
accelerate the creation and exploitation of models. Data and model representations have been 

studied in other contexts as well, including: databases, digital libraries, semantic web, etc. Many 
of the concepts studied there are equally applicable. We will focus on the following topics: (i) the 
physical and logical way to store and represent numerical, declarative and procedural data, (ii) 
formal methods to reason about the data and models within the simulation environment, (iii) data 
and model synthesis for coherent system representation. The digital library and semantic web 
community has made significant advances in this area. Informally digital libraries refer to 
systematic organization of data and associated data along with methods to coherently access these 
data sets. In this sense digital libraries are different from traditional databases.  They are usually 
built on top of a logical representation of data in the form structured or semi-structured data; see 
(Ledig et al., 2011a, Ledig et al., 2011b).  
An important research direction is to develop digital library concepts and frameworks to support 
simulation and modeling. This would require  (i) logical and physical organization of data from 
raw data sets that may be distributed across different locations to structured (e.g. RDBMS) and 
semi-structured data sets that provide a logical organization of data using the Resource Description 

Figure 4.1: Conceptual layers based on 5S framework for a digital library to support simulations 
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Framework (RDF) and its extension; (ii) a hierarchy of progressively rich services for content 
generation, curation, representation and management and (iii) languages and methods to describe 
and develop complex workflows for integrating raw and simulated data sets, and manipulating 
these data sets while keeping the efficiency of system in mind. See figure 4.1. 

Logical methods based on traditional database concepts have been useful in this context. Jim Gray 
and his colleagues make an excellent argument to used databases to organize the input as well as 
output data (Hey, Tansley and Tolle, 2009). This context can be extended to support not just 
organization of the data but to actively guide simulation during execution; these database-driven 
simulations provide a new capability in terms of expressiveness and human efficiency without 
compromising overall system efficiency. The use of RDF and its extensions to store and 
manipulate data are very promising – indeed graph databases have become extremely popular for 
storing certain kinds of data sets. The tradeoffs among extensibility, expressiveness and efficiency 
between these representations is a subject of ongoing research (beyond purely theoretical terms). 
 
Services: As discussed in (Leidig, et al. 2011a, Leidig et al., 2011b, Leidig et al., 2011c, Hasan, et 
al. 2014), minimal digital libraries (DL) are expected to provide a set of DL services that meet the 
anticipated use case scenarios. User groups will be comprised of domain scientists who will use 
these services to generate complex work flows to support policy designs. Metadata structures and 
provenance information connect input data and simulation data along with policy related 
experimental metadata.  A list of services is shown in Figure 4.2. The idea is that these services 
form a rich and composable set of APIs that are in a sense organized to progressively support 
higher-level services within the list. 
 
 

Figure 4.2. Examples of digital library services needed to support complex simulations. 
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Large-Scale Data and Stream Management 
The introduction of large-scale data and data streams within simulations present new data 
management challenges. Completing this work is a recent initiative on this topic (see 
streamingsystems.org/finalreport.html). Four basic topics were identified: (i) programming 
models, (ii) algorithms, (iii) steering and human in the loop, (iv) benchmarks. Much of the 
discussion applies to issues pertaining to the current document and as a result, we will keep the 
discussion brief.   

As such streaming in the context of M&S applies to streaming data that might be used to feed the 
simulations, e.g. data arriving for sensors as a part of the IoT vision that measure attributes of a 
social or a physical system. But streaming also applies to computing and reasoning about simulated 
data; often the size of these data sets is prohibitive. As a result, they are best viewed as streams 
and need to be processed on the fly to produce meaningful summarization. 
Qualitative Modeling 
Modeling physical systems and the decision making process based on the results of simulations 
using those models are, for the most part, based on numerical quantities which quantitatively 
describe the relationship between inputs and outputs of the system.  While such models are 
adequate for physical systems, they fail to meet the needs of the simulation community in regard 
to modeling and simulation of complex systems, such as those in cognitive science, knowledge 
engineering, health sciences, artificial intelligence, and many more.  In these systems, models that 
describe the relationship between the inputs and observed outputs are in qualitative or linguistic 
form.  This class of models is closer to human thinking than quantitative models and is easy to 
understand.   
While the properties of these models are a better fit with human thinking and diagnosis in human 
terms, no efficient computational algorithms for the construction and execution of these models 
currently exist.  Efficient tools to support the development of these models for qualitative data 
mining and feature extraction, pattern recognition, sensors, and sensor networks are in their 
infancy, especially when complex systems are considered.   

Designing complex dynamic systems that require skills obtained through experience and the issues 
involved in translating human skills into the design of automatic controllers are challenges that 
remain.  The transfer and reconstruction of skills may be performed using traces that were collected 
from an operator’s actions (Bratko and Suc 2003). However, such transfer has only been tried for 
simple systems; and their suitability for complex systems needs to be tested.   
Similar to skill transfer, the characterization of intuitive knowledge of the physical world, 
advanced methods for reasoning which use that knowledge to perform interesting and complex 
tasks, and development of computational models for human common sense reasoning need to 
mature through efficient and better tools. 
Discretization is used to convert things which can be represented and reasoned about symbolically.  
It provides a means of abstraction to develop models for situations involving only partial 
knowledge where few if any details are known. In these cases, qualitative models can be used for 
inferring as much as possible from minimal information. For example, “We are at McDonalds” 
versus “We are at McDonalds at Manhattan Ave,” (Forbus 2008).  Challenges remain in 
developing models which can represent such partial knowledge in more descriptive form, and the 
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tools for building models capable of understanding analogies and metaphors still needs to be 
researched.  

Some of the approaches to qualitative modeling include qualitative mathematics which are simple 
and can build the right model for a given situation (Bratko and Suc 2003).  However, these models 
lack generality (i.e., each case requires a new model); and not all of the model-building skills are 
captured in the characterization.    

The other challenges which remain in qualitative modeling are related to relevance, ambiguity, 
ontology modeling, and mature qualitative mathematics for complex system modeling.  Ontology 
modeling based on traditional mathematics tends to be informal where informal decisions are used 
to decide what entities should be included in a situation, what phenomena are relevant, and what 
simplifications are sensible.  Qualitative modeling will make such implicit knowledge explicit by 
providing formalisms that can be used for automating (either fully or partially depending on the 
task) the modeling process itself. 
The ontological frameworks for organizing modeling knowledge, research on automatically 
assembling models for complex tasks from such knowledge, and application of qualitative models 
of particular interest to cognitive scientists, including how they can be used to capture the expertise 
of scientists and engineers and how they can be used in education, remain to be addressed. Open 
questions focusing on the relationships between ideas developed in the qualitative modeling and 
other areas of cognitive science need to be addressed.  
Still challenges remain for accurate and precise mixed quantitative/qualitative modeling and 
simulation for applications in complex systems, such as those in health sciences (e.g., the 
cardiovascular system) and cognitive science, which require further basic and fundamental 
research (Nebot, Cellier and Vallverdu 1998).  
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5 Uncertainty in M&S 
5.1 Mathematical Foundations of Uncertainty in M&S 
Modeling and simulation of complex real-world processes has become a crucial ingredient in 
virtually every field of science, engineering, medicine, and business. The basic objectives of model 
development are commonly two-fold. The first objective is to explain from a scientific perspective 
relationships between independent/controllable model input variables and dependent responses or 
other Quantities of Interest (QOIs). The second objective is to use the models and simulation for 
prediction and decision making. Whether used for explanation or prediction, a model can never 
fully explain (partially observed) past events or predict future events. It is therefore of central 
importance to understand the epistemological limitations of models and the uncertainty inherent 
in their predictions. 

The workshop participants agreed that probability theory is the only theory of uncertainty 
consistent with the established normative tenets of epistemology.  Probability is defined as a finite 
measure on a general space. Normative principles, which underlie the Kolmogorov axiomatization 
of probability measures (Alexandrov et al. 1999), provide the philosophical and analytical 
justification that will agree with the tenets of mathematical analysis. Thus, probability theory is 
unique and serves the specific purpose of quantifying uncertainty via the measure theory that 
underlies modern philosophy and mathematics.  There was a general consensus among the 
workshop participants that non-probabilistic approaches such as those based on intervals, fuzzy 
sets, or imprecise probabilities, lack a consistent theoretical and philosophical foundation. 
Even when the workshop participants agreed on Bayesian probability theory as a mathematical 
foundation for uncertainty in M&S, there were differences in the philosophical interpretation of 
this theory.  In the engineering and M&S communities, much emphasis has been placed on 
Validation and Verification (V&V) and Uncertainty Quantification (UQ) (ASME 2016; NAS 
2012).  V&V consists of activities that aim to ascertain whether a model is “correct” and 
“credible.”  Similarly, UQ aims to quantify the uncertainties inherent in using a model and examine 
how these uncertainties are reflected in the model’s predictions. Some workshop participants 
pointed out that the treatment of uncertainty in the engineering and M&S community often starts 
from a perspective of objective probability (or statistical analysis), which is inconsistent with the 
Bayesian perspective.  Such treatment stems from the premise that uncertainty can be quantified 
objectively, and that such quantification can be based on data from repeated (past) experiments.  
From a Bayesian probability theory perspective, the notion of a probability as the limit of a relative 
frequency in a large number of repeated experiments cannot be justified.  This is particularly the 
cases when “extrapolation” is needed in prediction or when data about experiments cannot be 
collected, for instance, as in an engineering design context in which human and economic factors 
play an important role, and the artifact being designed does not yet exist. Instead, it is important 
to recognize that probabilities express subjective beliefs.  Even when these beliefs are sometimes 
strongly informed by large amounts of related and relevant data, and when this data has been 
incorporated through Bayesian updating, they remain an expression of subjective beliefs. 

The workshop participants argued that even though UQ practice in engineering is gradually being 
influenced and enriched by rigorous methods drawn from modern statistics, probability, and 
philosophy, and the problem is increasingly being approached from a Bayesian perspective 
(Kennedy and O'Hagan 2001; Oden et al. 2016), some existing V&V and UQ literature appears to 
stylize ad hoc methods and lacks a consistent theoretical and philosophical foundation. One such 
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example is the identification of uncertainty in the UQ and V&V literature in promoting a taxonomy 
that includes various definitions of both aleatory and epistemic uncertainty. Drawing distinction 
between aleatory and epistemic uncertainty, for the purposes of predictive modeling is important 
only if the modeler seeks to employ classical Fisherian (frequentist) methods where the 
quantification of aleatory uncertainty is the focus. Over the last five decades, Fisherian methods, 
which are philosophically aligned with objective probability as interpreted by von Mises, have 
been largely replaced by Bayesian approaches. This overcomes the philosophical shortcomings of 
classical methods (e.g., Bayesian confidence replaces Fisherian hypothesis testing). From a 
Bayesian perspective, there is no need to delineate between aleatory and epistemic uncertainty as 
both are readily characterized within modern probability theory. Similarly, the UQ and V&V 
literature has introduced various ad-hoc metrics of model validity.  Since predictive models are 
developed as an aid to decision making, it would seem logical to define the notion of validity in a 
decision-making context. One would then base the treatment of uncertainty on value rather than 
validity as is further elaborated in Section 5.2. 

The workshop participants would like to point out that, although probability theory provides the 
foundation for dealing with uncertainty, there are practical challenges in the application of 
probability theory in M&S.  While physical processes (e.g., thermal, electrical, chemical, 
mechanical, multi-physics) are understood through models constructed from the laws of physics, 
our “certainty” about predicting the fidelity of physics-based models has no such foundation—no 
“physics of uncertainty” exists. Instead, uncertainty is a subjective assertion.  The only physics-
based assertions available for the characterization of uncertainty are “independence” (often stated 
through “conditional independence”) and stationarity. Independence (along with stationarity) is a 
key ingredient of those few stochastic processes that yield to analysis (e.g., Brownian motion, 
Levy processes, regenerative processes, Markov processes, extreme value processes, branching 
processes) for which we have (perhaps functionally retrievable) probability laws.  However, 
independence is rarely justified in engineered systems.  This becomes a more daunting issue in 
M&S of complex systems, where sophisticated physics-based models when viewed as trajectories 
in a stochastic domain have insufficient independence structure to yield a functional 
characterization of probability law.   
In summary, there is a need to unify behind a Bayesian perspective on uncertainty in M&S. 
Currently, activities such as model calibration, validation, uncertainty propagation, experimental 
design, model refinement, and decision making under uncertainty are seen as an afterthought to 
model development. While agreeing on Bayesian probability theory as a foundation and on the 
mathematical models that should be applied in practice, there were philosophical differences 
regarding the meaning of probability.		This has led to a significant fragmentation in the community 
where new ad-hoc algorithms and models are continually proposed, but result in very little reuse 
by other practitioners. It is therefore important for the M&S community to be well-informed 
consumers of the available probability theory (as developed and accepted by philosophy, 
mathematics, and science) as opposed to developing competing methods that are at best redundant 
with existing methods or at worst invalid. 

5.2 Uncertainty in the Context of Decision Making 
Most often, M&S is ultimately used to guide decisions in engineering, medicine, policy, and other 
areas. Systems engineers make risk-informed design decisions. Medical professionals consider 
uncertainty when designing treatment strategies. Uncertain climate models influences policy 
decisions. It is clear that consistent consideration of uncertainty results in better decisions.  
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If model development were carried out independently of its eventual use in decision making, then 
one would conclude that reducing uncertainty is always better. In such a scenario, the modeler 
develops the best possible model under the budget constraints, and provides it to the decision 
maker, whose task is to bring in value judgments and make a decision using the available model. 
However, this is an inefficient approach for addressing uncertainty.  It was explicitly recognized 
during the workshop that M&S must be considered in the eventual context of use (COU), which 
defines the role and scope of the model in the decision-making process, and the resources available. 
Modelers must decide how much effort and resources to expend based on the potential impact on 
the decision. Based on the impact, they may then decide to refine the model with the goal of 
reducing uncertainty. In making these decisions, the role of the modeler is not simply to quantify 
model uncertainty, but to manage uncertainty. Uncertainty management (UM) is a broader activity 
in M&S that involves (i) establishing the decision COU and the modeling goals, (ii) identifying 
the effects of uncertainty on the decision, (iii) determining options for reducing uncertainty and 
the associated cost, (iv) evaluating the effects of these options on the goals, and (v) use of rigorous 
techniques to make consistent modeling decisions.  
M&S processes are purpose-driven activities. The value of a modeling activity depends on the 
specific COU for which a model is developed. If the goal is to support selection among different 
alternatives, then information should be gathered only to the point that the best alternative can be 
determined. Within engineering design, for example, the primary COU of models is to help 
designers select among multiple design alternatives that maximize the designer’s inputs. 
Therefore, the choice of model fidelity is dependent on designer’s values, which are quantified by 
his or her preference function.  

Various approaches have been well established within decision theory for modeling preferences. 
One of the approaches for quantifying preferences and value tradeoffs under risk and uncertainty 
utilizes utility theory (Keeney and Raiffa 2003), which is based on axioms initially presented by 
von Neumann and Morgenstern (vonNeumann and Morgenstern 1944). Utility theory forms the 
basis for rigorous approaches for estimating preference structures based on principles such as 
certainty equivalence. It is a foundation of microeconomics, and is increasingly being adopted by 
many application domains such as engineering design and systems engineering.  
Although utility theory can be used to formalize the preferences of a decision maker for whom a 
model is being developed, this can be challenging due to a number of reasons. First, the model 
developer may not have direct access to the decision maker or his/her preference structure during 
the model development process. This is particularly true when a model, initially developed to 
support one decision, is used for a different decision. Second, the preferences of the decision maker 
may evolve over time, or as more information becomes available. Third, modeling efforts may be 
driven by multiple uses, and hence, multiple target decisions. Fourth, modeling efforts may 
sometimes be driven by external factors, unrelated to the target decision. These challenges prevent 
direct application of the existing approaches, and need further investigation by the research 
community. 
After quantifying the preference structure, the next step is to evaluate the impact of modeling 
choices on the target decision. Models can improve the value of decisions, but also incur cost. 
They require time as well as computational, monetary, and human resources. The tradeoff between 
the value of a model and associated costs leads to a broad question: How much effort should be 
put into modeling activities to support decision making? This question can be addressed by 
modeling uncertainty management itself as a decision-making process. Different models, at 
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different fidelities, result in different accuracies and costs. The choice of model will have an impact 
on the expected outcome of the decision.  More accurate model predictions tend to lead to more 
valuable decision outcomes but also cost more.  If the increase in the expected value or utility of 
the decision outcome is larger than the expected cost of modeling, the modeling activity is worth 
pursuing.  One can think of this process as efficient information gathering:  Choose the information 
source (e.g., a model and corresponding simulation) that maximizes the net value of information 
(Lawrence, 1999). 
While this criterion for making modeling decisions is easy to state, implementing it during the 
model development process may be challenging. The criterion requires a comparison of cost and 
improvement in the decision. It may be difficult to quantify both of these quantities in the same 
units. The cost is generally related to (i) cost of collecting data, (ii) computational effort required 
to characterize the uncertainty in the predictions, and (iii) cost of employing subject matter experts 
to provide uncertainty assessments. Methods are needed for combining these cost attributes within 
a single measure. In addition, other modeling choices that influence the expected value of 
information need to be made: deciding from which model to sample, deciding how much 
experimental data to gather, deciding whether to refine a model or not, choosing the level of model 
fidelity, selection of general modeling approach (e.g., continuous simulation, agent based 
simulation, etc.), deciding a model validation strategy, deciding whether to reuse existing models 
or to develop new customized models, choosing the level of abstraction for a model, deciding 
which multiscale models to integrate, deciding to compose models at different scales, etc. Each 
decision can be modeled from the perspective of value of information maximization. This general 
strategy has been utilized in techniques such as Bayesian global optimization based on sequential 
information acquisition (Jones et al. 1998), for model selection decisions (Moore et al. 2014), and 
for making different model calibration and verification decisions. Bayesian approaches are gaining 
particular importance due to the ability to integrate different sources of uncertainties (parameters 
and data) and to incorporate prior knowledge (Farrell et al. 2015).  

The decisions listed above are usually made sequentially rather than in a single step. For example, 
the level of abstraction of the model is chosen before specifying the details of the parameter values. 
The decision-making process can be modeled as a decision network, where different decisions 
may be made by different individuals, perhaps within different teams, or even different 
organizations. In addition to the individual decisions, the structure of the decision network also 
affects the outcomes. The key question from the uncertainty management standpoint is: How can 
resources for M&S activities be allocated efficiently to maximize the value gained from the 
network of decisions? This is itself a computationally challenging, dynamic decision making 
problem.  
The organizational context in which M&S activities are framed presents additional challenges. For 
instance, M&S may be part of the systems engineering process, which in turn is a part of the overall 
business process. Therefore, modeling activities may compete for resources with many other 
activities within the organization, or time constraints may be imposed based on external factors 
such as market competition. There is therefore a need to establish techniques for partitioning the 
budget for different activities and targets within the context of organizational goals. 
In summary, there are three key decision-related research challenges in M&S. The first challenge 
is to consistently deduce the preference functions for individual uncertainty management activities 
from overall goals within organizations where multiple entities are involved in decision making 
and their preferences may be conflicting. The second is related to mapping uncertainty in physical 
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quantities to the utility functions. The third is due to the complexity of sequential decision-making 
processes with information acquisition. Addressing these challenges would help in partitioning 
and allocating organizational resources for modeling and decision making under uncertainty. 

5.3 Aggregation Issues in Complex Systems Modeling 
Aggregation of information is an integral part of M&S of complex systems. The common approach 
for managing complexity is to follow a divide-and-conquer strategy, which involves partitioning 
the modeling activity based on various criteria, such as type of physical phenomena, level of detail, 
expertise of individuals, and organizational structure. The models of the partitioned system are 
then integrated into system-level models to provide a holistic representation of the system 
behavior. Based on the criteria used for partitioning the modeling task, the techniques are referred 
to as multi-physics, multi-disciplinary, multi-fidelity, and multi-scale techniques. These 
techniques are gaining increasing attention in many application domains ranging from 
computational materials science to critical infrastructure design (Felippa et al., 2001). In 
computational materials science, for example, models are developed at multiple levels including 
continuum, meso- and micro- scales and atomistic levels.  
Aggregation of information is associated with a number of challenges in M&S. First, composition 
of models requires an understanding of physical phenomena at different levels, and how they can 
be seamlessly integrated across different levels. This is referred to as scale bridging within the 
multiscale modeling literature, and strategies ranging from hierarchical to concurrent modeling are 
being developed (Horstemeyer 2010). Second, there is a need for rigorous approaches for modeling 
uncertainty across different scales. Since different individuals, teams, and organizations develop 
models, the sources of uncertainty and the domain of applicability of individual models may be 
different. Modeling assumptions may not be consistent across different models. These 
inconsistencies across models can result in erroneous predictions about the behaviors at the 
aggregate level. 
A greater challenge in such divide-and-conquer strategies is that even if consistency across 
different models is achieved, the fundamental nature of aggregation can result in erroneous results 
due to the path dependency problem. Saari (2010) shows that multilevel methodologies can be 
treated as generalizations of aggregation processes. Although each lower-level model provides 
strong evidence for seemingly logical outputs, the conclusions at the aggregate level can be 
incorrect. The aggregate level output could merely reflect the way in which lower-level models 
are assembled rather than the actual system behavior (Saari 2010, Stevens and Atamturktur 2016). 
The primary cause of the inaccuracy is that separation caused by divide-and-conquer strategy loses 
information.  

The potential inaccuracies resulting from aggregation have been studied in detail in relation to 
aggregation of preferences for group-decision making. It has been shown that aggregation 
procedures can result in biases in decisions (Saari and Sieberg 2004; Hazelrigg 1996). The 
implication for simulation-based design is that commonly used decision-making methods based 
on normalization, weighting, and ranking are likely to lead to irrational choices (Wassenaar and 
Chen 2003). This is particularly important in M&S because, as discussed in Section 5.2, the model 
development process involves many decisions made by different decision makers. The aggregate 
system-level model represents an aggregation of beliefs and preferences of individual lower-level 
model developers. Therefore, the inaccuracies resulting from preference aggregation is a 
fundamental challenge in M&S of complex systems. In summary, there is a need to recognize and 
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address the challenges associated with aggregation of physics-related and preference-related 
information in modeling complex systems. 

5.4 Human Aspects in M&S 
Human aspects in M&S are important for two reasons. First, humans are integral parts of socio-
technical systems, such as electric power grids, smart transportation systems, and healthcare 
systems. Therefore, accurately modeling human behavior is essential for simulating the overall 
system behavior. Second, the developers and users of models are human decision makers. 
Therefore, the effectiveness of the model development and usage process is highly dependent on 
the behavior of the decision makers.  
With the rapid rise of smart networked systems and societies (Simmon et al. 2013), which consist 
of people, internet-connected computing devices, and physical machines, modeling humans within 
the overall system has become an essential part of M&S activities. Within such cyber-physical-
social systems, humans receive information over the network, interact with different devices, and 
make decisions that affect the state of the system. The key challenge in modeling such systems is 
to determine how to incorporate human behavior into formal models of systems. Modeling human 
behavior is challenging because of complex and uncertain physiological, psychological, and 
behavioral aspects. Humans are generally modeled with attributes such as age, sex, demographic 
information, risk tolerance, and behaviors such as product and energy usage. Such an approach is 
common in agent-based models. Another class of models is human-in-the-loop models, where 
humans are part of the simulation.  

As discussed earlier, M&S is a decision-making process, and the decision makers are humans. 
Humans are known to deviate from ideal, rational behavior. For example, decision makers exhibit 
systematic biases in judgment of uncertainty (Kahneman et al., 1982), inconsistencies in 
preferences, and in the process of utilizing the process of expected utility theory. These deviations 
from normative models can be attributed to a number of factors such as cognitive limitations, 
performance errors, and incorrect application of the normative model (Stanovich 1999).  

The gap between normative and descriptive models of human decision making has been well 
documented within the fields of behavioral decision research and psychology. Behavioral 
experiments have provided insights into how humans deviate from normative models, which have 
been used to develop psychological theories to explain these deviations. These deviations have 
been modeled in descriptive theories such as prospect theory, dual process theory, and many 
others. Alternate theories about decision making based on simple heuristics have also been 
proposed (Gigerenzer et al. 1996). These heuristics extend from simple one-step decisions to multi-
step decisions with information acquisition at each step. Behavioral studies have also been 
extended to interactive decisions modeled using game theory (Camerer 2003). Recently, 
psychologists have started exploring neuro-science as a way to understand human behavior in 
general, and decision making in particular (Camerer et al. 2005).  
While there has been significant progress on understanding humans as decision makers, the 
utilization of this knowledge in M&S activities has been limited. There are a number of open 
questions such as (i) how do these biases affect the outcome of modeling decisions? (ii) how can 
these biases be reduced? (iii) how can the effects of these deviations from rationality be reduced 
within the M&S process? (iv) what is the best way of presenting and communicating uncertainty 
information to the decision makers? (v) what is the effect of domain specific expertise and 
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knowledge on deviations from rational behavior? and (vi) are there differences in biases between 
novice and expert modelers?  

From an organizational standpoint, there are multiple individuals involved in the modeling 
process. Different individuals may have different beliefs, may be driven by different values, and 
may be influenced differently by different types of biases. These values, beliefs and biases get 
embedded in their individual models. Further research is necessary to establish how these interact 
within an organization, to ensure consistency across values and beliefs, and to overcome biases of 
individuals. This is clearly not a comprehensive list, but it highlights the importance of considering 
human aspects in M&S, and provides some pointers for further investigation.  
In summary, human considerations are important for creating better models of systems involving 
humans, and for simulation of social-technical systems. Additionally, human considerations are 
important for better understanding of biases that exist during the modeling decisions made by 
humans. Addressing human aspects within M&S would help in designing better control strategies 
for smart networked systems and societies, better M&S processes, efficiently allocating 
organizational resources, and making better model-driven decisions. Research towards answering 
these questions would require collaboration between domain-specific modeling researchers and 
researchers in social, behavioral, and psychological sciences. 

5.5 Communication and Education of Uncertainty in M&S 
An additional challenge regarding uncertainty in M&S is: how to effectively communicate model 
predictions among various stakeholders?  Especially in model reuse or when passing the models 
from model developers to decision makers, it is important to state clearly the key underlying 
assumptions along with their potential impact on the predicted QOIs. Sensitivity of key outcomes 
to the alternative modeling assumptions should also be assessed and presented effectively. 
Visualization tools need to be developed for illustrating the uncertainty sources, how they 
propagate, and their impacts over the entire domain of interest. 
Related to the topic of communication of uncertainty is education for both students and faculty.  
At present, undergraduate students are typically taught the existing models related to each course 
subject without being introduced to the significance of the modeling process or a critical 
assessment of associated assumptions and uncertainties. For example, in engineering design 
courses, students are most often introduced to ad-hoc approaches to deal with uncertainty, such as 
the use of “safety factors.”  Courses on probability and statistics are often elective but not required, 
and students often take advanced science and engineering courses before they have gained 
exposure to probability and statistics. Moreover, probability and statistics courses for engineering 
undergraduate students deal largely with data analysis and do not introduce many concepts that 
are important to prediction and decision making under uncertainty. 
A modern curriculum on probability in engineering and science is therefore needed to equip 
students with the foundation to reason about uncertainty and risks. A modern curriculum should 
foster an appreciation of the role that M&S could play in addressing complex problems in the 
interconnected world. The curriculum should also address effective communication of uncertainty 
and risk to modelers, decision makers, and other stakeholders. 

5.6 Other Issues: Integration of Large-Scale Data  
The advent of ubiquitous and easy-to-use cloud computing has more readily enabled simulations 
to leverage huge real-world datasets, i.e., “big data.” Naturally, real-world datasets may be used 
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to inform the models of the simulated system and its inputs, or could also be used to validate these 
models by comparing output behavior with real-world observations. A challenge of big real-world 
datasets is that they may be incomplete or noisy and include samples taken in different contexts so 
that they need to be “detrended” based on covariate information (contextual metadata). Moreover, 
many or most of the sample-features available may be superfluous to the simulation objectives. 
Noisy and superfluous features may result in inaccurate (e.g., overfitted) and needlessly complex 
models, again considering the specific simulation objectives. Techniques have been developed by 
data scientists to reduce or combine features of a sample dataset, e.g., using the classical methods 
of multidimensional scaling or principal component analysis.  Future work in this area includes 
model-specific techniques of feature selection. Note that large datasets may not only have large 
numbers of samples but samples with enormous numbers of features (high feature dimension), so 
that future work in this area also includes scalable (low complexity) and adaptive techniques, the 
latter for dynamic, time-varying settings. 
Large-scale data sets are often also used for deriving complex empirical relationships, using 
machine learning algorithms.  Overfitting is a common concern in such scenarios.  Cross-
validation or hold-out testing provides a direct demonstration of a model’s ability to predict under 
new conditions not encountered in the training set.  Such methods use a majority of the data to 
calibrate or correct a model while holding some data to predict experimental or observational 
outcomes that were not used in the model calibration process. Characterizing uncertainty in 
extrapolative settings and rare events are challenging topics that require new research approaches 
that incorporate rigorous mathematical, statistical, scientific, and engineering principles. 
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6 Model Reuse, Composition and Adaptation 
The motivations for the reuse of models are well-founded.   Models are knowledge artifacts, and 
as such their reuse provides the opportunity for scientists, engineers and educators to “stand on the 
shoulders of giants.”  Models are also typically manifest as software that has been developed with 
significant effort and subjected to rigorous testing and verification and validation.  The 
attractiveness of the potential cost and labor savings associated with the reuse of this software is 
quite understandable. 
The reuse of models is confounded, however, by the fact that they are peculiarly fragile in a certain 
sense – they are typically context-sensitive, highly purposeful abstractions and simplifications of 
a perception of a reality that has been shaped under a possibly unknown set of physical, legal, 
cognitive and other kinds of constraints by a modeler, or modeling team; quite often a model’s 
function is sensitive to many unstated assumptions.  The end result is that model reuse can be 
fraught with significantly more complexity than, say, reusing the implementation of a sorting 
routine. 

While some communities of practice (e.g., micro-electronics design, defense training) can 
arguably be viewed as success stories in the development and adoption of both the technologies 
and business practices for model reuse, general solutions to this important problem remain elusive. 
There has been much significant work in the area of model reuse, and in software reuse more 
broadly.  While it is beyond the scope of this effort to provide a comprehensive survey, several 
notable works are cited herein.   In this report, we focus on three distinct areas for recommended 
further study: 

• Advancements in the theory of reuse. Without a firm theoretical foundation, we cannot 
fully know the fundamental limits of what we can hope to accomplish with reuse.  
Properly formulated, good theory may also be exploited to produce robust and reliable 
reuse practices.  

• Advancement in the practice of reuse.  In this context we consider: (1) modeling and 
simulation (M&S) broadly, (2) data, and (3) discovery and knowledge management.  

• Advancements in the social, behavioral, and cultural aspects of reuse. Here we consider 
how incentives may stimulate or impede reuse. 

6.1 Advancements in the Theory of Reuse 
Reuse has been defined as “Using a previously developed asset again, either for the purpose for 
which it was originally developed or for a new purpose or in a new context” (Petty, Morse, Riggs, 
Gustavson, & Rutherford, 2010)  and reusability as “the degree to which an artifact, method, or 
strategy is capable of being used again or repeatedly” (Balci, Arthur, & Ormsby, 2011).  In the 
former definition, an asset is “a reusable collection of associated artifacts”.  Assets may be 
software components, data sets, documentation, design diagrams, or other development artifacts, 
but for brevity and simplicity we use the term here primarily to refer to software components.   
In the context of modeling and simulation, an asset may be either a software component that 
implements all of part of a model (e.g., a software component that implements a physics-based 
model of a jet aircraft engine) or all or part of the software needed to support a model (e.g., a 
component that implements an XML-based scenario initialization operation); when a distinction 
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is needed, the former category will be referred to as model components and the latter as support 
components. 

Metadata is supplemental information about a component that may be used for a number of 
purposes.  In modeling and simulation, a model component’s metadata may describe the model’s 
function, intended use, assumptions, and uncertainties, in a way that enables appropriate reuse and 
reduces inappropriate reuse of the component (Taylor S. J., et al., 2015). 

A theory of reuse for M&S does need to be formed from “whole cloth.” Several theories from 
computing and mathematics support the development of a theory for M&S reuse.  These theories 
include computability theory, computational complexity theory, predicate logic, algorithmic 
information theory, model theory, and category theory. 

Prior Theoretical Work Relating to M&S Reuse 
Past theoretical work relating to modeling and simulation reuse is briefly summarized, and several 
key results are described next. 
Composability 
Composability is the capability to select and assemble simulation components in various 
combinations into simulation systems to satisfy specific user requirements (Petty & Weisel, 2003).  
In a system of composable components the different simulation components can be composed 
from different sets of models, each suited to some distinct purpose, and the different possible 
model compositions will be usefully valid.  Here valid is meant in the modeling and simulation 
sense, i.e., a valid model replicates the desired aspects of the phenomenon or system it models 
with sufficient accuracy to be useful (Balci, 1998).  Although composability and reusability are 
not the same idea (Balci, Arthur, & Ormsby, 2011) (Mahmood, 2013), composability can be an 
important enabler for reuse.  For close to two decades, composability has been an important 
objective for simulation developers, especially in the defense-related modeling and simulation 
community; it was identified as such at least as early as 1999 (Harkrider & Lunceford, 1999) and 
was recently described as “still our biggest simulation challenge” (Taylor S. J., et al., 2015).  
Composability applies to both model components and support components, but much 
composability research has focused on mechanisms for composing models and the validity of the 
resulting composite models. 
In parallel with software engineering efforts attempting to implement frameworks for 
composability, theoretical work in the early 2000s produced some elements of a theory of 
composability based on formal definitions and reasoning.  Starting from mathematical logic and 
computability theory, the goal of that work was to develop a deductive theory that would enable 
the determination in a mathematical, algorithmic way of certain characteristics of interest of a 
composition of models, especially whether their combined computation was valid.  That work 
achieved several results: 

• Based on an examination of existing composability terminology and levels of 
composable components, common definitions of composability and related terms were 
proposed (Petty & Weisel, 2003). 

• Formal definitions of model, simulation, and validity consistent with their common 
informal meanings were developed to serve as the basis for the theory (Petty, Weisel, & 
Mielke, 2003). 
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• For several classes of models and forms of validity (including the general cases), the 
question of whether models that are separately valid remain valid when composed was 
resolved (Weisel, Mielke, & Petty, 2003). 

• The computational complexity of selecting models to be composed was determined (Page 
& Opper, 1999) (Petty, Weisel, & Mielke, 2003). 

• Software engineering approaches to achieving composability in practice were surveyed 
(Balci 2016). 

• A simple form of composition was shown to be theoretically sufficient to assemble any 
composite model (Petty, 2004). 

Two key results from the preceding list will be discussed in more detail in this section, and one in 
the next section: 

• It is a common assumption, sometimes made intentionally and sometimes unintentionally 
by simulation developers, that if two models have been separately determined to be valid, 
then those models (or the components implementing them) may be composed and the 
resulting composition will also necessarily be valid.  This is in fact not true.  To address 
this specific question a series of related theorems were developed that considered several 
different classes of models, including a “computable” class that contains all models that 
can be executed on a digital computer, and that considered several different formal 
measures of validity, including a “trajectory metric” that formalizes the typical 
practitioner’s notion of error accumulating over a simulation execution.  It was proven that 
in all but the most trivial cases the composition of two (or more) separately valid models 
cannot be assumed to be valid (Weisel, Mielke, & Petty, 2003).  In other words, two models 
that are individually valid may nevertheless produce invalid results after they are 
composed.  To be clear, this result does not show that compositions of separately valid 
models cannot be valid; rather it shows that they cannot be assumed to be valid.  The 
implication of this result is simple, and is generally understood at an intuitive level by 
experienced simulation practitioners; even if the components of a composite model are 
known or assumed to be valid, the overall composite model must also be validated as a 
whole. 

• Software developers have produced sophisticated software frameworks for combining, or 
composing, models, with the intention of making such compositions easier to assemble and 
execute (Petty, Kim, Barbosa, & Pyun, 2014).  Similarly, there are a number of different 
mathematical forms of function composition.  The parallel is more than an analogy; recall 
that from a theoretical viewpoint, any model that executes on a digital computer is a 
computable function.  It would be reasonable to assume that different software frameworks 
or mathematical forms of model composition would make a difference in what can and 
cannot be achieved in terms of model composability.  In fact, they do not, at least at a 
theoretical level.  In a theorem that uses induction on the number of models to be composed, 
it was proven that simple composition, i.e., composition with the mathematical form of 
f(g(x)), or more generally, f1(f2(…fn(x)…), is sufficient to assemble any composite model 
(Petty, 2004).  The implication of this result is that theoretical investigation of model 
composition can consider simple composition without any loss of generality. 
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Composability and the related concepts of interoperability and integratability have been 
distinguished, with the first focused on modeling semantics and the other two focused on technical 
connectivity at the software and hardware levels respectively (Page, Briggs, & Tufarolo, 2003).  
These concepts have been subsumed in a single framework, known as the Levels of Conceptual 
Interoperability Model, that reinterprets the issues in terms of the degree to which models can 
exchange and consistently understand simulation data (Tolk & Muguira, 2003).  The verification 
of a composition of components with respect to its requirements specification was examined in 
(Mahmood, 2013).  In that same work, the notion of pragmatic composability considers the context 
within which a composition executes.  The role of conceptual models in achieving reuse and 
composability was described in (Balci, Arthur, & Ormsby, 2011). 

Component Selection 
If a set of models, or equivalently, the components implementing those models, are to be 
composed, they must be available in a repository of components, and the components to be 
composed must be selected from among those available in the repository (Clark, et al., 2004).  This 
is known as component selection.  Component selection is the computational problem of selecting 
from a repository containing a set of available components a subset of those components to be 
composed so that the resulting composition will satisfy a given set of objectives for a simulation 
system.  This deceptively simple-seeming problem arose during the study of composability 
previously mentioned, but it is treated separately here because it is a general software engineering 
issue, applicable to any repository of components, whether or not those components are model 
components or support components (Kaur, Singh, & Singh, 2014). 
Note that there are actually two computation problems in component selection.  The first and 
implicit problem is to determine which requirements a component satisfies, either in advance of 
component selection or on request when a set of requirements are presented.  The second and 
explicit problem is to select a set of components to meet a given set of requirements.  Both of these 
problems are well-known in software engineering; (Pressman & Maxim, 2015) summarizes them 
as “How do we describe software components in unambiguous, classifiable terms?” and “[H]ow 
do you find the [components] that you need?” respectively. 

Work on component selection from a theoretical perspective proceeded in two stages.  The earlier 
and seminal work defined four variants of the component selection problem based on two forms 
of objectives computability and two forms of composition (Page & Opper, 1999).  Follow-on work 
identified two additional variants of the problem and defined a general form of it that subsumed 
all six variants (Petty, Weisel, & Mielke, 2003).  This work led to two key results: 

• To select components to compose that collectively meet a set of objectives, the objectives 
met by each component must be determined.  Unfortunately, it is easy to see that such a 
determination may be problematic.  Suppose a desired objective for a component is that it 
complete execution (rather than enter an infinite loop) for all inputs.  This is the well-
known “halting problem”, which has been proven to be incomputable in general.  Even 
objectives that in principle can be algorithmically decided may require a computation time 
that is superpolynomial and thus infeasible in practice (Page & Opper, 1999).  The 
implication of this result is that the determination of the objectives met by a component 
may have to be done by means other than purely algorithmic, such as heuristic examination 
of the components themselves or by external labeling with metadata that identifies the 
requirements the component satisfies. 
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• Even if the objectives met by each component in the repository are somehow known, 
component selection remains difficult.  In (Page & Opper, 1999), the specific form of 
component selection most similar to the practical application was shown to be NP-
complete by reduction from SATISFIABILITY.  In (Petty, Weisel, & Mielke, 2003), a 
general form of component selection was shown to be NP-complete by reduction from 
MINIMUM COVER.  The implication of this result is the same as any NP-complete 
problem; the computational problem (in this case component selection) cannot be solved 
algorithmically in general, and heuristics that produce acceptable selections for most 
instances of the problem will have to be developed. 

Research Topics in M&S Reuse Theory 
Three research topics related to advancing the theory of modeling and simulation reuse and 
applying that theory in practical settings are proposed.  They are listed from “most theoretical” to 
“most practical,” and a set of relevant research questions for each topic is listed. 

Composability Theory 
Understanding the theoretical limits of composability, i.e., the composition of models and the 
validity of such compositions, is essential.  Work has been started, but a fully coherent, 
comprehensive, and mature theory of composability has not yet been developed.  Relevant research 
questions include: 

1. What are the theoretical characteristics or attributes of a model or component 
composition, beyond simply a composition of computable functions, and how do they 
affect reuse? 

2. What theoretical formalisms are most effective at describing and analyzing 
composability? 

3. Can models at different levels of abstraction or based on different modeling paradigms 
be composed without loss of validity?  (Fujimoto, 2016) 

4. Can the operations and problems of modeling and simulation reuse be recast in the terms 
and concepts of algorithmic information theory, category theory, and model theory, and 
if so, what insights would that provide? 

5. Although as noted earlier the overall validity of a model composition is not assured 
simply by the validity of the model components, can anything about the validity of the 
composition be inferred from the components and the way in which they are composed?  
(Tolk, et al., 2015) 

Metadata and Reuse 
Metadata is often described as enabling reuse, and a rigorous theoretical approach to metadata is 
conjectured to be more likely to succeed that ad hoc specifications.  Predicate logic is arguably 
most often among the formalisms proposed for metadata, but it has not yet been demonstrated to 
be usable in practical settings.  Theoretical limits proven in (Overstreet & Nance, 1985) may 
constrain what can be expected from metadata, but this warrants further investigation.  Relevant 
research questions include: 
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1. What formalism(s) are suitable for expressing component metadata? 

2. What characteristics of a model should be expressed in metadata? 

3. Can developing a standard vocabulary, perhaps defined using some form of ontology, 
increase the effectiveness of metadata? 

4. Can component metadata be algorithmically or heuristically generated from or verified 
against a component? 

5. How can the assumptions made in a model be expressed in metadata and used in 
component selection and model composition? 

Reuse Automation 
Algorithms and frameworks that automate reuse operations, including component selection and 
composition verification and validation would likely expand the frequency and value of reuse.  
Relevant research questions include: 

1. Can model selection, composition, and code generation be automated?  (Fujimoto, 2016) 

2. What forms of theoretical composition correspond to practical reuse patterns? 

3. Can reuse patterns themselves be reused, in the manner of design patterns? 

4. Can the validity of a proposed composition of models be algorithmically confirmed? 

5. Can heuristics be developed to circumvent theoretical obstacles and provide reasonable 
performance in most practical situations? 

6. Can constraints imposed on model development (e.g., standards) improve the 
composability of the models once developed?  (Fujimoto, 2016) 

6.2  Advancements in the Practice of Reuse 
In this section, we consider some of the challenges to the day-to-day practice of reuse in a modeling 
context.   We separate the discussion into three distinct areas: 

• Modeling and simulation – in which we deal with issues confronting the reuse of 
representations of models and their implementation in simulation languages and 
frameworks. 

• Data – in which we deal with the issues confronting the reuse of those elements that are 
consumed and produced by models. 

• Knowledge management and discovery – in which we address the issues involved in 
archiving and discovering artifacts (models, simulations, data) that may be reused. 

Challenges in the Practice of Reuse of Models and Simulations 
We identify research challenges associated with the reuse of model representations and their 
implementation as simulations in four areas: (1) multi-formalism, multi-scale modeling, (2) reuse 
across communities of interest and the implementation spectrum, (3) exploitation of M&S web 
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services, and (4) quality-centric approaches to component evaluation. Each of these is discussed 
below. 

 

A. Based on Model Representation Development Approach 

 1. Discrete M&S Logic 

 2. Continuous M&S Differential equations 

 3. Monte Carlo M&S Statistical random sampling 

 4. System Dynamics M&S Rate equations 

 5. Gaming-based M&S Logic 

 6. Agent-based M&S Knowledge, “intelligence” 

 7. Artificial Intelligence-based 
M&S 

Knowledge, “intelligence” 

 8. Virtual Reality-based M&S Computer generated visualization 

B. Based on Model Execution  

 9. Distributed / Parallel M&S Distributed processing / 
computing 

 10. Cloud-based M&S Cloud software development 

C. Based on Model Composition  

 11. Live Exercises Synthetic environments 

 12. Live Experimentations Synthetic environments 

 13. Live Demonstrations Synthetic environments 

 14. Live Trials Synthetic environments 

D. Based on What is in the Loop  

 15. Hardware-in-the-loop M&S Hardware + Simulation 

 16. Human-in-the-loop M&S Human + Simulation 

 17. Software-in-the-loop M&S Software + Simulation 
 

Table 6.1. M&S Areas (Types) (Balci, Introduction to Modeling and Simulation, n.d.) (Balci, Arthur, & 
Ormsby, Achieving Reusability and Composability with a SImulation Conceptual Model, 2011) 
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Multi-Formalism, Multi-Scale Modeling 
As a topical matter, M&S is incredibly broad.  It spans dozens of disciplines and countless potential 
objectives and intended uses (ACM SIGSIM, 2016).   To our knowledge, a definitive, exhaustive 
taxonomy for M&S has not been formulated.  For the purposes of this report, we adopt the 
characterization given in Table 6.1.  While necessarily incomplete, it is indicative of the breadth 
of M&S.  Each area noted in the table possesses its own characteristics and methodologies, is 
applicable for solving certain classes of problem, and has its own community of users.  Many M&S 
areas have their own societies, conferences, books, journals, and software tools. 
The current era of “net-centricity” has produced a proliferation of “systems of systems” in which 
disparate systems with diverse characteristics are composed and integrated over networks, e.g., the 
Internet, virtual private networks, wireless networks, and local area networks.   

We face serious technical challenges in achieving reusability, composability, and adaptability for 
developing simulation models representing such network-centric systems of systems.  Different 
systems or system components may be required to be modeled by using different M&S types 
and/or at vastly different spatial and temporal scales. For example, one component may be 
modeled using discrete M&S, another using Computational Fluid Dynamics, another in Finite 
Element, and still another using system dynamics. Achieving interoperability across these 
modeling approaches is an open problem. 
New methodologies, approaches, and techniques must be created to enable the development of an 
M&S application or component by way of reusing, composing, and adapting different types of 
M&S applications or components. 

Artifact Reuse Across Communities of Interest and the Implementation Spectrum 
Many different types of M&S applications are commonly employed in a Community of Interest 
(COI) such as air traffic control, automobile manufacturing, ballistic missile defense, business 
process reengineering, emergency response management, homeland security, military training, 
network-centric operations and warfare, supply chain management, telecommunications, and 
transportation. Reusability, composability, and adaptability are critically needed to facilitate the 
design of any type of large-scale complex M&S application or component in a particular COI, and 
significantly reduce the time and cost of development. 

An M&S application or component is developed in a COI under a certain terminology (e.g., agent, 
job, missile). In another COI, the same M&S application or component may be developed from 
scratch without any kind of reuse because the terminology does not match although they are 
basically the same applications or components.  
Challenges in reuse across the wide spectrum of implementations are also important. In M&S 
application development, we should aim to reuse, compose, and/or adapt an artifact, development 
process, design pattern, or framework such as: (1) a simulation program subroutine, function, or 
class, (2) a simulation programming conceptual framework, (3) a simulation model/software 
design pattern, (4) a simulation model component or submodel, (5) an entire simulation model, or 
(6) conceptual constructs for simulation in a particular problem domain. 

Figure 6.1 depicts how well reusability can be achieved at different levels of M&S application 
development. 
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Figure 6.1. Levels of Reusability versus Achievability (Balci, Arthur, & Ormsby, Achieving Reusability 

and Composability with a SImulation Conceptual Model, 2011). 

At the programming level, classes (under the object-oriented paradigm) and subroutines/functions 
(under the procedural paradigm) are extracted from a library using an Integrated Development 
Environment (IDE) such as Eclipse, NetBeans, or Microsoft Visual Studio. However, reuse at this 
level is extremely difficult due to the many options in programming languages (e.g., C, C#, C++, 
Java), differences in operating systems (e.g., Unix, Windows), and variations among hardware 
platforms (e.g., Intel, SPARC, GPU, FPGA) supporting language translators. An artifact 
programmed in Java and executing under a Unix operating system on a SPARC workstation cannot 
be easily reused in an M&S application being developed in C++ under the Windows Operating 
System on an Intel-based workstation. 
M&S programming frameworks may be categorized according to the underlying programming 
paradigm, e.g., Object-Oriented Paradigm (OOP), Procedural Paradigm (PP), Functional Paradigm 
(FP), and so forth. Balci (Balci, 1988) describes four conceptual frameworks under the PP for 
simulation programming in a high-level programming language: event scheduling (ES), activity 
scanning (AS), three-phase approach (TPA), and process interaction (PI). A simulation 
programmer is guided by one of these frameworks by reusing the concepts supported in that 
conceptual framework. However, an artifact programmed under one framework cannot be easily 
reused under another. 
Reuse at the design level is feasible if the same design paradigm is employed for both the M&S 
application development and the reusable artifacts or work products. The reuse is also affected by 
the design patterns employed. For example, an M&S application being designed under the Object-
Oriented Design (OOD) approach can reuse work products created under the OOP. Unified 
Modeling Language (UML) diagrams are provided as an international standard to describe an 
OOD. UML diagrams assist an M&S designer in understanding and reusing an existing OOD. 
However, reuse at the design level is still difficult since it requires the reuse of the same design 
paradigm. For example, a continuous simulation model consists of differential equations, and may 
not integrate easily with OOP components. Monte Carlo simulation is based on statistical random 
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sampling. A System Dynamics simulation model represents cause-and-effect relationships in 
terms of causal-loop diagrams, flow diagrams with levels and rates, and equations. An agent-based 
simulation model represents agents and their interactions.  Different types of simulation models 
are designed under different paradigms, and one paradigm cannot be easily accommodated within 
another. Yilmaz and Ören (Yilmaz & Oren, 2004) present a conceptual model for reusable 
simulations under the conceptual framework of a model-simulator-experimental frame. 

M&S component level reuse is intended to enable the assembly (composition) of a simulation 
model by way of employing already developed model components in a similar fashion as an 
automobile is assembled from previously produced parts. A component may correspond to a 
submodel or a model module. Reuse at this higher level of granularity is beneficial because it 
reduces development time and cost over that of reuse at the class or function level. However, this 
approach to reuse still poses difficulties since each reusable component can be implemented in a 
different programming language intended to run under a particular operating system on a specific 
hardware platform. 

M&S Commercial Off-The-Shelf (COTS) (e.g., Arena, AutoMod, and OpNet) and Government 
Off-The-Shelf (GOTS) products enable reuse of components within their IDEs. Such an IDE 
provides a library of reusable model components. A user can click, drag, and drop an already 
developed component from the library and reuse it in building a simulation model. However, such 
reuse is specific only to that particular COTS or GOTS IDE, and portability to another IDE would 
become a user’s responsibility. 

Reuse at the application level is feasible if the intended uses (objectives) of the reusable M&S 
application match the intended uses of the M&S application under development. For example, the 
U.S. Department of Defense (DoD) provides the DoD M&S Catalog (Modeling and Simulation 
Coordination Office (MSCO), 2016) containing previously developed M&S applications. Some of 
these applications are independently certified for a set of intended uses. Some are not well 
documented and come in binary executable form only. Even if the source code is provided, 
understanding the code sufficiently well to modify the represented complex behavior is extremely 
challenging. Reusability of earlier developed M&S applications is dependent on run-time 
environment compatibility and the match between intended uses. 
A network-centric M&S application involves M&S components interoperating with each other 
over a network, typically for the purpose of accommodating geographically dispersed persons, 
labs, and other assets.  The High Level Architecture (HLA) is a DoD, IEEE, and NATO standard 
for developing network-centric M&S applications by way of interoperation of simulation models 
distributed over a network (IEEE, IEEE Standard 1516, 1516-1, 1516-2, and 1516-3).  If a 
simulation model is built in compliance with the HLA standard, then that model can be reused by 
other models interconnected through the HLA protocol over a network. 

Service Oriented Architecture (SOA) is yet another architecture based on the industry standard 
web services and the eXtensible Markup Language (XML). SOA can be employed for developing 
a network-centric M&S application by way of reuse of simulation models, submodels, 
components, and services over a network. For example, Sabah and Balci (Sabah & Balci, 2005) 
provide a web service for random variate generation (RVG) from 27 probability distributions with 
general statistics, scatter plot, and histogram of the requested random variates. The RVG web 
service can be called from any M&S application that runs on a server computer over a network 
using XML as the vehicle for interoperability. Reuse, composability, and interoperability are fully 
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achieved regardless of the programming language, operating system, or hardware platform. 
However, this type of reuse is possible only for network-centric or web-based M&S application 
development. 
New methodologies, approaches, and techniques must be created to enable the development of an 
M&S application in a COI by way of reusing, composing, and adapting other M&S applications 
or components created in other COIs. New methodologies, approaches, and techniques are needed 
to enable the development of an M&S application through reuse, composition, and adaptation of 
M&S applications or components across the spectrum of implementation levels. 

M&S Web Services 
This research challenge deals with how to reuse, compose or adapt. Initiated in the early 2000s. 
the U.S. National Institute of Standards & Technology (NIST) Advanced Technology Program 
(ATP) cited many advantages of component-based development that could be realized conditioned 
on the following (NIST, 2005): 

1) Establishment of a marketplace for component-based software development so that the 
technology users can realize significant economic benefits through 
a) reduced software project costs,  
b) enhanced software quality, and 
c) expanded applicability of less expensive technology. 

2) Increased automation and productivity in software development enabling  
a) improved software quality characteristics,  
b) reduced time to develop, test, and certify software, and 
c) increased amortization of costs through software component reuse. 

3) Increased productivity of software project teams by 
a) permitting specialists in the application domain to create components incorporating 

their expertise, and 
b) providing a focus on discourse in development at a level far more higher-level than a 

programming language. 
4) Expanded markets for software applications and component producers by promoting 

a) the creation of systematically reusable software components,  
b) increased interoperability among software components, and 
c) convenient and ready adaptation of software components. 

More than a decade later, many of the advantages NIST ATP identified have not been realized in 
spite of significant research investments.  Component-based software development remains an 
“unsolved problem” largely due to the vast and varied landscape of programming languages, 
operating systems, and hardware available. 

Component-based development of M&S applications may also be considered an “unsolved 
problem” due to several factors: 

1) Components that need to be assembled with each other are coded in different programming 
languages intended to run under different operating systems on different hardware platforms. 

2) The level of granularity and fidelity (degree of representativeness) provided in a component 
is not compatible when assembled with other components having different levels of 
granularity and fidelity. 
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3) A component available only in binary form with no source code and documentation creates 
uncertainties when conducting verification and validation processes. 

4) The intended uses of a component do not match the intended uses of the other components 
when the components are assembled together. 

5) A component providing much more functionality than needed degrades execution efficiency. 

The U.S. Department of Defense has created a number of M&S repositories (APL, 2010).  Reusing, 
composing, or adapting resources from these repositories has been hindered because of (1) the 
differences in programming languages, operating systems, and hardware, (2) classified nature of 
many models and simulations and associated data, (3) lack of organizational push for reuse, (4) 
lack of contractors’ interest in reuse, and (5) lack of effective documentation. 
Within the software engineering community, reuse is considered by many to be a “solved problem” 
for cloud-based software development under the Service-Oriented Architecture (SOA).  A 
software application can be implemented as a web service and other applications can reuse via 
XML or JSON communications. The programming language used in developing the software 
application, the operating system it runs under, and the server computer hardware it runs on are 
transparent to the calling application.   
To effectively engender reusability, composability, and adaptability problems, the M&S 
community should pursue the web services paradigms that have been successfully applied within 
the general software arena. 
Quality-Centric Approaches to Component Evaluation 
An existing M&S application can be reused without any change if and only if its credibility is 
substantiated to be sufficient for the intended reuse purpose. 

An existing submodel (model component) can be reused without any change if and only if  
(a) its credibility is substantiated to be sufficient for the intended uses for which it is created, 

and  

(b) its intended uses match the intended uses of the simulation model into which it will be 
integrated. 

Any change to the M&S application will require it to be verified, validated, and certified again.  
Any change to the existing submodel will require not only the submodel, but also the entire 
simulation model to be verified, validated, and certified again.  

Traditionally, Verification and Validation (V&V) are conducted to assess the accuracy of a model. 
However, accuracy is just one of dozens of quality indicators affecting the overall usefulness of 
an M&S application. Arguably, accuracy is the most important quality characteristic; however, 
we cannot ignore the importance of other quality indicators such as adaptability, composability, 
extensibility, interoperability, maintainability, modifiability, openness, performance, reusability, 
scalability, and usability. 
It is crucially important that M&S application development be carried out under a quality-centric 
approach rather than just the traditional accuracy-centric approach. It should be noted that a 
quality-centric approach embodies the accuracy-centric approach since accuracy is a quality 
characteristic by itself. 
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New methodologies, approaches, and techniques must be created under a quality-centric paradigm 
for assessing the overall quality of an M&S application by employing quality indicators such as 
accuracy, adaptability, composability, extensibility, interoperability, maintainability, 
modifiability, openness, performance, reusability, scalability, and usability. 

Data Reuse in Practice 
The increasing volume, velocity, and variety of available data present both great opportunities and 
challenges. This is true across all areas of government, academia, industry, and is equally true of 
models and simulations. The value of M&S can rely heavily on the availability and quality of input 
data.  Similarly, M&S can be prolific sources of output data.   The United Nations Economic 
Commission for Europe (UNECE) projects global data to reach 40 Zettabytes (that is 40 Billion 
Terabytes) by 2019 (see Figure 6.2 below). The business and culture of government at large, the 
defense industry, and Modeling and Simulation domain are suffering under the weight of this data 
“glut”.  Organization’s existing practices for managing, analyzing, and sharing data are becoming 
increasingly ineffective in the face of the mountains of data they must contend with on a daily 
basis.  New strategies, approaches, and technologies are needed to meet this challenge.  

 
Figure 6.2. United Nations Global Data Growth Projections in Zetabytes. 

 
During a recent address, President Obama noted that, “Understanding and innovating with data 
has the potential to change the way we do almost anything for the better” (Strata + Hadoop World 
2015).  This begins by thinking about data differently. Data is the foundation of information, 
knowledge, and wisdom (see Figure 6.3 below). Within the U.S. Army, data are an enterprise asset, 
information is an enterprise currency, and knowledge is an enterprise resource (Office of the Army 
Chief Information Officer/G-6, Feburary 2016).  How we manage, analyze, and share data is what 
allows us to work our way up the information pyramid, such that we are using data and “technology 
to make a real difference in people’s lives” (White House Office of Science and Technology Policy 
(OSTP), May 2012). 
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Today’s amazing mix of cloud computing, ever-smarter mobile devices, and collaboration tools is 
changing the consumer landscape and bleeding into government as both an opportunity and a 
challenge.  Challenges from data can be thought of in terms of managing, analyzing and sharing. 
In turn, these challenges drive research opportunities that have the potential to change how we 
think about data. 
Managing Data 
Data management practices refer to the storing, identifying, organizing, correcting and validating 
data. Vast amounts of data are produced across government, defense and modeling and simulation 
(M&S) organizations. Currently, many models and simulations use a series of inconsistent ad hoc 
data structures to log and store data based on legacy files and formats. These data structures range 
from flat files to relational/hierarchical databases across a multitude of formats and from an even 
wider variety of sources.  In addition, the data structures for each simulation event are unique, and 
do not include meta-data descriptions making direct comparison of data between events extremely 
difficult and highly problematic.  Consider the challenge of ad hoc data structures that are 
inconsistent from simulation event to simulation event and how it would impact model and/or 
simulation scenario development, integration, analysis, verification and validation of the models, 
simulation and data generated for a single system.  Now imagine this challenge across a system of 
systems. It could quickly turn into a time intensive effort that produces questionable results of 
limited value that impact the credibility of the models, simulation, and data produced.   
Traditionally, after simulation events, users of models and simulations employ a technique called 
data reduction.  The concept of data reduction is to reduce large amounts of multi-dimensional 
data down to a corrected, ordered, simplified form.  This is typically done by editing, scaling, 
summarizing, and other forms of processing into tabular summaries.   In this process, the raw data 
is often discarded along with the hidden knowledge one may obtain from it.   

As data storage costs have approached zero, data management opportunities have exploded. 
Society has started to shift away from minimal data storage concepts to now storing everything, 
including all of the raw data produced such that we are now in an era of big data.  This has 
magnified the need and opportunity for more robust and advanced technologies in metadata 
identification, organization, and validation.  This produces a data set with properly formed data, 
sorted for processing, and the data model required for the analysis and sharing components of data 
reuse.  
Effective active data management practices will promote data reuse, data integrity, complex 
analytics, and is the foundation of data science.  This allows for data scientists to use these rich 
data sources and apply advanced analytic techniques to derive additional insights that traditional 
analysis techniques fail to uncover.   
Analyzing Data 
Data analysis refers to the process of inspecting data with the goal of discovering useful 
information, suggesting conclusions, and supporting decision making. In other words, how to most 
effectively move decision makers to the top of the knowledge pyramid where wisdom can be 
applied to accomplish goals by making decisions.  Exploratory, inferential, and predictive data 
analytics are the three main bodies of analysis used in modeling and simulation.   
In exploratory data analysis for simulations, the goal is to describe the data and interpret past 
results.  These are generalizations about the data that are good for discovering new connections, 
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defining new M&S scenarios for testing and grouping observed events into classifications.  
Examples include the number of successes vs. number of attempts in a simulation, census data, 
and number of times events occurred when conditions are met. 
In inferential data analysis for simulations, the goal is to make inferences about the systems 
behavior based on a limited number of simulation events.  This is critical due to the complexity 
and computational resources required to test every variable parameter for every possible condition 
within a complex system or system of system simulation.  Examples of this include polling and 
failure rate analysis. 

In predictive data analysis for simulations, the goal is to use previously collected data to predict 
the outcome of a new event.  This helps with gaining deeper understandings of the interactions of 
the complex systems or system of systems.  This involves measuring both the quantity and the 
uncertainty of the prediction.  Examples of this include credit scores, behavior predictions, and 
search results. 
Data reuse can help organizations be more effective at data analysis and deriving wisdom from 
data; this can be due to cost savings associated with complex system tests, in addition to leveraging 
system experts external to organizations. An enabler of efficiently traveling upwards in the 
knowledge pyramid is Data Science.  Data science is an interdisciplinary field about processes and 
systems to extract knowledge and insights from data by employing techniques and theories drawn 
from computer science, mathematics, and statistics.  Algorithm and Statistical based techniques 
such as data mining are leveraged in order to transition from data to the information and ultimately 
the knowledge components of the pyramid.   
As our systems become more interconnected, and the models and simulations of these systems 
become more sophisticated, richer and richer data sets are produced.  These systems are often 
loosely coupled, composed of multi-mission and multi-role entities, across organizations and often 
display nonobvious behaviors when operating in a complex environment.  Exploring these 
relationships is a key component of a technique called data mining.  Data mining complex 
simulations typically involves four common classes of tasks: anomaly detection, clustering, 
classification, and regression.  Anomaly detection is focused on data errors or outliers that may be 
interesting to an analyst, e.g., failure modes.  Clustering is a method of assigning similarity scores 
to groupings of like events. Classification is the task of generalizing known structures to apply to 
new data, for example, predicting causes and effects on system performance.  Regression attempts 
to find a function, or simplified model, that can describe the behavior of the system with the least 
amount of error.   
The opportunities to leverage these data science techniques within government, defense, and the 
M&S domain are vast.  Research opportunities include data visualization for analysis and cloud 
computing, impact on analysis spawned by big data, and data developed for one purpose to be 
reused in order to support another purpose. An example of this is where given a large enough data 
sets from a simulation suite, stochastic techniques such as metamodeling can produce a function 
or simplified model that can be used to predict certain behaviors.  These metamodels can be used 
as low cost alternatives to the large scale simulation for certain activities.  By combining 
classification and clustering, correlated behaviors and second and third order effects can also be 
discovered within your data sets.  Anomaly detection can help identify corner cases, off-nominal 
system states, and provide the ability to focus expert analysis on the cases that are more interesting. 
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Sharing Data 
The sharing component covers the entire knowledge pyramid.  It also plays a special role in 
decision making – especially as decision making becomes increasingly data-driven.  The level of 
preparation necessary for data (e.g. data, information, knowledge, wisdom) to be used for the 
decision making to take place will vary, but one thing that is required is that it must be discoverable 
and accessible.  Modern information technology architectures build upon the years of success of 
great technologies such as indexing and federated search, many perfected by companies like 
Google.  Therefore, this section will focus on the remaining challenges of sharing. 

Sharing of data, information, knowledge and wisdom across the pyramid has several different 
challenges. One which may be immutable is culture. Cultures of not sharing contribute to examples 
of events such as 9/11. Artificial cultural boundaries between agencies within the intelligence 
community created a serious impediment to protecting the country.  Post 9/11 the intelligence 
community was reformed, restructured, and given a mandate to share information in an effort to 
change the culture. As a sharing culture pertains to M&S data, many would posit that despite 
existing mandates to share M&S data (even data which has been characterized for limitations and 
constraints) within a single government department does not consistently occur let alone 
consistently occur across the entire federal government.  Such can be the challenges of policy 
versus implementation.  For example, within the Department of Defense, sharing is mandated by 
DoD Directive 8320.02, yet rarely or consistently is M&S data published (i.e. made accessible) to 
anyone beyond the very focused end user.  The unintended consequence of not sharing across the 
M&S domain is the reproduction of data and results which may already exist elsewhere that could 
have been made available and accessible for reuse.  Opportunities exist to foster a culture of 
sharing which can be addressed through education as an opportunity to avoid repeating the failures 
of the past across our community and M&S domain. Initiatives such as the National Institute of 
Health’s Big Data to Knowledge (BD2K) launched in 2012 that seek to facilitate the broad use of 
biomedical data assets by making them discoverable, accessible, and citable are great models of 
how to encourage more data sharing.   
The technical domain presents another obstacle to M&S data sharing. The sharing component 
covers the entire knowledge pyramid, but plays a special role in both the raw data and wisdom 
components.  In order to produce decision quality knowledge, data has to be converted into at least 
information or knowledge, but preferably wisdom.  A good illustration of the processing in terms 
of transformations and outcome states is shown in Figure 6.3 below.   

This illustration shows the work an organization should do on its data but does not show the sharing 
implications.  One implication is that organizations are unaware of the fact that they do not have 
good visibility into their own data.  They do not know what they do not know. As Figure 6.4 (a) 
shows, a majority of an organization’s data typically remains either unused (discovered but not 
used) or with unknown (not discovered and not used) value.  Once this shortcoming is overcome 
sharing can begin by achieving enterprise wide attributes of visibility, accessibility, and 
understandability (see Figure 6.4 (b)). 
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Figure 6.3. DIKM Pyramid Levels of Processing (Wikipedia, n.d.). 

 

 

 
 

(a.) DIKM	Pyramid	limited	visibility	into	
data. 

 

 
(b.)	Sharing	is	having	achieved	visibility,	
accessibility,	and	understandability.	

 
Figure 6.4. DIKM Pyramid Implications for Sharing (Wikipedia, n.d.). 

Conceptually, sharing of data defined as the data becoming visible, accessible, and understandable 
is quite simple and most organizations can tap the technology to achieve at least visibility and 
accessibility with commonly available information technology tools at their disposal.  However, 
understandable data is more difficult to achieve.  As mentioned previously, analysis is the gateway 
to understanding data beyond statistical summary, but it is not the solution for everything.  The 
missing ability for universally understandable data is automatic semantic exchange across systems 
which access data.  To share is to communicate.  C.E. Shannon accurately identified the challenge 
(Shannon, 1948): 

“The fundamental problem of communication is that of reproducing at one point 
either exactly or approximately a message selected at another point. Frequently the 
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messages have meaning; that is they refer to or are correlated according to some 
system with certain physical or conceptual entities. These semantic aspects of 
communication are irrelevant to the engineering problem.” 

In other words, the challenge of automated semantic data exchange (i.e. sharing of messages with 
meaning) not only depends on the data being shared but being properly interpreted contextually 
and properly used. The National Science Foundation is pursuing universal internet data models.  
Other approaches being taken includes work on automatic generation of taxonomies and reasoning 
mechanisms. This area is ripe for additional research opportunities. 

As sharing and collaboration gain traction within a community of interest, data security and 
privacy challenges naturally emerge.  To understand the implications of data security it is 
important to consider the states in which data exists.  Data can be defined as being in motion (data 
transmitted over a connection), at rest (persistent for any length of time in any form), or in memory 
(in use by any program, tool, operating system, etc.).  Threats to data in these forms can generally 
be classified into categories of privacy (unauthorized disclosure), integrity (alteration), and 
destruction (permanent deletion).   

Although destruction is always a concern for data in any setting, of particular concern in a data 
sharing paradigm is Privacy and Integrity.  The key emergent risk even in a ‘secure’ sharing 
environment in a sharing paradigm becomes misuse.  Data producers have an inherent concern 
that simulation data will not be used within the scope for which they pertain.  Additionally, data 
producers may have a concern that if not kept private, its misuse could reflect poorly on the 
producer themselves (inaccurate embarrassment).  Data integrity concerns arise for data producers 
with any reuse fearing alteration of original data.  For these reasons in a data sharing paradigm; 
security is a key area of present day and future research interest as the complexity extends far 
beyond general business use cases to highly technical scenarios. Consider for example, that a 
transport security layer may be implemented to protect data in motion between two servers, as 
accessed by several different authenticated role-based users from different geographic locations, 
and that same data might also become vulnerable over the net by a distributed cache; secure in two 
ways (in motion and private) yet vulnerable in a third (in memory). 
Data security and privacy need to be considered throughout the data lifecycle in all of its mediums 
(as exampled above), and as technology around data is quickly changing such that security/privacy 
technology need to adjust to keep pace. Data security and privacy need to be considered as a part 
of risk management processes as well in such a way that they are not statically defined, but allow 
for continual evaluation for adapting new technologies ensuring they provide proper protections 
and safeguards to prevent improper collection, retention, use or disclosure of data. Opportunities 
exist to research and develop capabilities for architecting for openness such that trust, 
accountability, and transparency about how data is collected, used, shared, secured can be 
determined.  
In conclusion, data is fundamentally changing how we conduct business and live our lives through 
advances in data quality, availability, and storage capacity.  A key component of successfully 
working with data is having the proper data science background and education.  Research 
opportunities abound in the data sciences; from metadata generation, organization, and validation 
within each data management category, to data analysis visualization, cloud computing impact on 
analysis, to data reuse in data analysis category, to automatic generation of taxonomies and 
reasoning mechanisms, effective security and privacy in a sharing category just to name a few. 
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Data enabled by technology (current and future research areas) for managing, analyzing, and 
sharing will drive new strategies and approaches empowering users to connect the dots and provide 
the right data anytime and anywhere to make more informed decisions. We can now ask questions 
of the data that we never could before; even questions about the data itself such as should we throw 
data away and if so, when? The understanding and motivation to embrace this reality across 
government, defense business and culture needs to be applied to the M&S domain. 

Discovery and Knowledge Management of M&S Assets 
Knowledge management is a key area for M&S reuse with the recognition that models and 
simulations are encapsulations of knowledge.  Although not generally considered in those terms, 
a model is a representation or interpretation of an object or physical phenomenon which engenders 
the understanding of the original.  The applicability of models lies in a consistent and coherent 
representation of the knowledge about the thing or process being modeled. 

Luban and Hincu (Luban & Hincu, 2009) emphasize the coupling between simulation and 
knowledge management.  In referencing some earlier work, they state that “although the literature 
separates simulation and knowledge management, a more detailed analysis of these areas reveals 
that there are many links between them. More knowledge about the system can be discovered 
during simulation modeling process, and model development can be facilitated by collaborative 
knowledge management tools.” 

The following sections will consider some potential research areas related to knowledge 
management as an enabler of modeling and simulation. 

Applications of Machine Learning 
The complexity of modern simulations makes it increasingly difficult for a human being to 
adequately understand the interconnections and dependencies to assure that the model or the 
simulation is a correct implementation.  As models and simulations become adaptive, assessing 
validity will require another application to monitor and analyze the running system.  Although this 
may sound counter to the purpose, the use of machine learning may offer possible solutions. 

Monitoring and assessment of running simulations 
Simulations are generally used to answer a question about the outcome of a process under 
investigation.  Whether the method is discrete event, Monte Carlo, mathematical or just 
statistical models, the aim is to provide an answer to a question. 

Although very useful, that approach assumes that the intermediate stages of the simulation 
are incidental.  However, if you take an example such as the erosion of a river bank due to 
changing hydrologic action, the intermediate erosion processes might be useful in 
understanding the end result.  Astrophysical simulations such as the collision of galaxies 
are captured as sequential time steps.  Harel and Rumpe (Harel & Rumpe, 2000) call this 
“snapshot” approach a “frozen situation at any given time during the system’s execution.” 

Research topics include non-intrusive monitoring; visualization of simulation process from 
multiple perspectives; and understanding interaction dependencies in distributed 
computing environments 
Model specification, construct validity, selection and credibility 
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Models are a substitute for the actual system which the researcher is interested in 
understanding. As such, the models have a degree of abstraction that requires some 
assessment of the quality of the model for the intended purpose.  Balci (2004) describes 
quality assessment as “situation dependent since the desired set of characteristics changes 
from one M&S application to another. M&S application quality is typically assessed by 
considering the M&S application requirements, intended users, and project objectives.” 

The Capability Maturity Model Integration (CMMI) defines a process that is intended to 
assure that the resultant modeling and simulation application is well defined and 
documented.  Of course this assumes that the CMMI process was followed and executed 
by individuals that were trained and followed the proscribed procedures.  Assigning a level 
of validity based on the model construct would generally require a test or demonstration 
that the model is consistent with the actual object or process.  The specification and 
construction validity of a model or simulation is therefore highly dependent on the process 
and underlying assumptions used in the formulation of the model. 

The selection of a model by a user is therefore based on the confidence of the user that the 
model was designed, constructed, and assessed by a set of reasonable criteria including a 
quality control process.  Since there is generally no currently accepted numerically defined 
method for applying a confidence figure (e.g. 95%), it is left to the user to determine if the 
model or simulation is sufficient for their purposes.  The confidence that the user has in the 
model is also reflected by the validity associated with that model. Research topics include 
numerical confidence of quality and measures of appropriateness. 
Attribute labeling with authoritative vocabulary 
In the area of reuse of models the major stumbling block is generally language.  A simple 
example would be building a model car. The instructions for assembly might include the 
phrase “attach the hood to the support on the firewall.”  This phrase is perfectly 
understandable to someone familiar with American English however the term “hood” in 
the United Kingdom would be replaced with “bonnet.”  The same piece serves the same 
function but utilizes different labels. 

When someone constructs a model which does not use the language of mathematics, 
attribute labeling, descriptions, etc. become problematic.  In addition, the modeler is 
influenced by their domain expertise which shapes a person’s view of the world.  Looking 
at a stream bed, a hydrologist considers the erosion factors due to grazing impacts while 
the geologist considers the subsurface geology as a contributing factor. 
Model reuse will be a consistent problem if there is no agreed upon way of describing a 
particular component of the model or the model itself.  Research in this area focuses on the 
attribute labeling through the use of an authoritative or controlled vocabulary.   

Patricia Harping (Harping, 2010) with the Getty Research Institute provides a good 
example of the need for a controlled vocabulary for managing their art collections and the 
need for both descriptive and administrative data.   

“Data elements record an identification of the type of object, creation information, 
dates of creation, place of origin and current location, subject matter, and physical 
description, as well as administrative information about provenance, history, 
acquisition, conservation, context related to other objects, and the published 
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sources of this information. […] Art and cultural heritage information provides 
unique challenges in display and retrieval. Information must be displayed to users 
in a way that allows expression of nuance, ambiguity, and uncertainty. The facts 
about cultural objects and their creators are not always known or straightforward, 
and it is misleading and contrary to the tenets of scholarship to fail to express this 
uncertainty. At the same time, efficient retrieval requires indexing according to 
consistent, well-defined rules and controlled terminology.” 

How does the above relate to models and simulations?  Models, as with art, require 
descriptions of what they are and how they are intended to be used as well as what inputs 
and outputs are required.  The use of an authoritative vocabulary that would allow both 
within-domain and cross-domain identification and usage would be exceedingly useful for 
model reuse.  It must be recognized that a controlled vocabulary such as used in many 
database applications would be inadequate for model development.  As stated above, the 
domain of the user influences choice in the modeling process.  The vocabulary should 
therefore be derived from the model domain while providing consistency in the description 
or labeling.  Research topics include the development of ontologies and authoritative 
vocabularies. 
Syntactic and Semantic Consistency 
The development and use of models is dependent on the language elements of syntax and 
semantics.  Although often misunderstood, syntax and semantics express different aspects 
of a model.   
Model syntax specifies the allowable expressions that are used in the construction of the 
model. When developing a model, the modeler must follow a set of rules that provide well-
formed expressions.  These rules form the basis of an abstract syntax such as one defining 
a data structure.  By following the syntactic rules, a model instance can be constructed 
using a logical set of elements expressed in a modeling language.  The language might be 
mathematical, graphical, or an artificial language (e.g. programming language such as 
FORTRAN). 

Semantics supplies the meaning of the model.  The relationships between the things or 
processes being modeled is known as the semantic mapping. The second aspect of 
semantics is being able to determine how other models might be derived from the current 
model.  This is known as semantic derivation but in general usage, many still use the term 
semantic mapping. The relationship between things is of major importance to the modeling 
and simulation community from a reuse standpoint. 

As an example, computer-aided design (CAD) drawings are descriptive models of a 
physical object.  For complex systems such as an aircraft, the relationship between the 
various component models and the system is critical.  The specification of a voltage level 
for a component (e.g., a radar) will have a cascading effect on other components, such as 
a battery, wiring, connectors, and also in other calculations such as center of gravity and 
mass. 

Semantic associations of a model which could be derived or interrogated by the user would 
increase the reusability of models by providing insight into the relationship of one model 
to another. 
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Syntax and semantics also have a major influence on the model and simulation consistency.  
Kuester and Engels (Kuester & Engels, 2004) describe the issue of consistency with the 
syntactic and semantics aspects. The authors stated that they “… can make a distinction 
between syntactic consistency and semantic consistency. Concerning horizontal 
consistency problems, syntactic consistency ensures that the overall model consisting of 
submodels is syntactically correct. With regards to vertical consistency problems, syntactic 
consistency ensures that changing of one part of the model within the development process 
still results into a syntactically correct model. With respect to a horizontal consistency 
problem, semantic consistency requires models of different viewpoints to be semantically 
compatible with regards to the aspects of the system which are described in the submodels. 
For vertical consistency problems, semantic consistency requires that a refined model is 
semantically consistent with the model it refines.”  

In the increasingly common use of distributed simulation, consistency becomes more 
problematic.  Anthony, et al. (Anthony, et al., 1994) state that “it is generally more difficult 
to check and maintain consistency in a distributed environment. Forcing consistency tends 
to restrict the development process and stifle novelty and invention. Hence, consistency 
should only be checked between particular parts or views of a design or specification, and 
at particular stages, rather than enforced as a matter of course.”   The semantic relationship 
of the models in the distributed environment might provide a pathway for developing 
consistency checking in this simulation domain. Research topics include ontological model 
descriptions and relationship mapping. 

Context Management 
Context as defined by the Merriam-Webster dictionary is the interrelated conditions in which 
something exists or occurs (e.g. environment, setting).  For the development of models and 
simulations, there should exist a contextual framework which captures key model and simulation 
attributes.  From a reuse standpoint, the contextual framework is essential for proper understanding 
of why the model was developed and how it was expected to be used. 
A potential list of attributes that make up a contextual framework for a model might include: 

1. Assumptions:  what has been taken to be true? 
2. Constraints: what conditions or restrictions have been applied to construction or use? 
3. Intention: what was the purpose for which the model was developed? 
4. Usage risk: what are the established and generally accepted application boundaries? 
5. Model fidelity: what is the accuracy with which the model replicates the original? 
6. Trust / Confidence: what measure can be used to assure the user of proper operation? 
7. Pedigree / provenance: who constructed or altered the model, what was changed, why 

was it changed, how was it changed, when was it changed?  

The contextual framework provides the user community with enough information to make 
informed decisions and this is a critical aspect in model reuse.  In general, very little information 
is available with models, including ones which might be used to determine a life or death situation.  
It is an anecdotal assumption that many models in use today were developed by someone who is 
dead and no one knows how the model was constructed.  Reconstruction of the contextual 
framework can be done to some extent, but will only result in a partial set of knowledge. 
Techniques for automatic context generation are needed. 
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Domain Knowledge Extension for Collaboration and Enhanced Decision Making  
The primary use of models and simulation is to understand or convey information concerning 
a thing, process, or theory.  The end product is a decision by the user as to the credibility of 
the model or simulation.  The decision maker, whether an individual or group using models 
and simulations as a decision aid must therefore believe that the results are reflective of the 
domain of interest.  In cases where the model is obviously incorrect (e.g., water flows uphill), 
the results would be discarded by the decision maker.  However, when the model or simulation 
provides what appears to be a correct result or at least a result which on the surface appears 
correct, how much credibility should be attributed to the model output? 
Blatting, et al. (Blatting, et al., 2008) make the case that “… since credibility is subjective, 
different decision makers may well assign different degrees of credibility to the same M&S 
results; no one can be told by someone else how much confidence to place in something. The 
assessment of M&S credibility can be viewed as a two-part process. First, the M&S 
practitioner makes and conveys an assessment of the particular M&S results. Then, a decision 
maker infers the credibility of the M&S results presented to them in their particular decision 
scenario.”   

The previous sections have outlined areas in which the practice of modeling and simulation 
might be improved by research in certain areas.  Knowledge management is an important 
aspect of the use and reuse of models and simulation as a decision making process. 
Reuse Through Model Discovery 
Scudder, et al. (Scudder, Gustavson, Daehler-Wilking, & Blais, March 23-27 2009) made the 
case that discovery would be achieved only through consistent and relevant metadata which 
in turn requires consistent labeling and a markup syntax.  The basic concept is similar to other 
data discovery approaches which rely on the developer community to adhere to a defined set 
of rules for describing their models. A problem with standardizing model descriptions is 
getting agreement across modeling domains. 

One definition of a model is representation of something (e.g., a system or entity) by 
describing it in a logical representation (e.g., mathematical, CAD, physical).  The nature of 
the representation leads to the problem of discoverability as a form of the description.  For 
example, how would you embed the necessary information in a mathematical model that 
would allow for discovery?  The use of an indirect association (think of a catalog) would 
provide an access point but would also require a governance process that would maintain the 
associations as more models are added or if the models change. 
Taylor et al. (Taylor S. , et al., 2015) identified another aspect of reuse which is that some 
models would require specialized knowledge to use.  As models have become more 
ubiquitous, the model interfaces have become easier to use.  When the user was required to 
construct a very specific formatted file of input data, they had to understand the data and how 
it would be used in the model.  With the graphic interface, it is easy to construct a model that 
anyone could run, but that doesn’t insure that the output results would be valid.  In addition, 
if the user discovered six models purporting to provide the same answers, how would the user 
determine which model is the best or most accurate? 
The same authors make the case for reuse through standard ontologies and data models.  The 
development of ontologies can be problematic due to the need for consensus among the 
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domain subject matter experts.  The initial barrier of developing the ontologies is outweighed 
by the significant gain in reuse and composability due to inherent relationship mapping. 

6.3 Advancements in the Social, Behavioral and Cultural Aspects of Reuse  
Even when all the strictly technical challenges of reuse have been resolved, social, behavioral and 
programmatic barriers may still prevent realization of the full potential of reuse. The social and 
behavior challenges identified in this subsection must be addressed with, if not ahead of, the 
technical challenges identified in the rest of this section of the report.   There will be no substantive 
progress against the reuse challenge as a whole if the current workforce members who are most 
successful or influential within their respective domains are not concerned about M&S as a larger 
discipline. All of which is unlikely to happen unless funding comes to pay people to work the 
larger, broader, philosophical, and theoretical understanding of models, what they are, and how 
they work. 

This subsection addresses identifying and teaching the skills necessary for a model or simulation 
producer to increase the ease of reuse by others if the producer (person or organization) chooses 
to and can afford to do so.  So long as designing and documenting for reuse are not required and 
funded, these actions will be difficult to justify in the current contractual M&S culture.  

In comparison to research on technical challenges, research in this area will require human 
experimentation, e.g., design of educational materials and testing of efficacy. Some challenges in 
this area may benefit from research into mental models of software users and developers in other 
communities including the open source community. 

Programmatic 
The lack of representation of non-DoD M&S domains in the ongoing conversation about reuse 
necessarily narrows the scope of knowledge and success that can be expected. Before addressing 
governance and ROI, it may be productive to survey other M&S domains concerning their status, 
needs, and challenges in the programmatic area.  
Governance 
The US federal government and especially the Department of Defense (DoD) are significant 
consumers of M&S, and commensurately stand to benefit the most from increased reuse. Federal 
procurement and acquisition policy currently rewards non-reuse behavior and, in some ways, 
punishes1 design and implementation for reuse. While the resolution of these issues is outside the 
scope of technical research, recognition of them is key when considering mechanisms for 
improving social and behavioral aspects, especially for identifying the strict limits policy imposes 
on the efficacy of activities to shape behavior change. The CNA report (Shea & Graham, 2009) is 
a good source for understanding this issue. This barrier may not exist or be considerably lower 
outside the federal government market place. 
Return on Investment (ROI) / Cost Benefit Analysis 
Decision makers often ask about a new endeavor, “What’s the ROI?” Answering this question in 
a manufacturing context where there are clear metrics of increased cost for process changes and 
(presumably) reduced unit costs is straightforward. The answer is considerably less clear in a 

                                                
1 Title 31 U.S. Code § 1301 restricts the use of current funds to fund future anticipated, but not yet 
realized, requirements. 
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context of cost avoidance, and where the precise cost of producing a model or simulation without 
reuse might be unknowable. The research challenges in this area include: 

1. Defining a broadly acceptable framework for performing cost benefit analysis for reuse that 
does not rely on unknowable metrics. 

2. Recognizing that different domains may have different mechanisms of practice, i.e. different 
protocols for reuse. These differences might lead to differing measures of effectiveness and / 
or methods for assessing effectiveness. 

Risk and Liability 
The risks and liabilities of reusing M&S developed by other organizations and / or for other 
domains and intended uses are too numerous to cite here. The challenge in this area is to determine 
where existing legal precedent applies and where new law must be established, an enterprise that 
can only be undertaken in collaboration with legal professionals, not by technical experts alone. 
Technical experts may contribute to this undertaking by providing and developing appropriate 
mechanisms for assessing the technical aspects of risk and failure. A notable example of extant 
work in this area is the Risk Based Methodology for VV&A (The Johns Hopkins Applied Physics 
Laboratory, April 2011). Intellectual property (IP) rights are also a consideration in this area. A 
user may discover the need to modify a reusable asset for their specific intended use. Without 
acquiring appropriate IP rights prior to reusing the asset, the user will have (unintentionally) 
accepted a risk or liability that is costly to mitigate. The CNA report (Shea & Graham, 2009) 
covers this topic in some detail.  
Social and Behavioral 
Motivating Behavior Change 
Recognizing the constraints imposed by governance, reuse can only succeed through shaping 
changes in stakeholder behavior and decision making regarding reuse. 
Specific research challenges associated with the social behaviors of producers, consumers, 
integrators, and decision makers necessary to build and sustain a viable community of reuse 
include: 

1. Design for reuse 

a. What reward structures and / or response costs encourage this behavior? 
Could approaches such as gamification create a positive feedback loop 
between individual and group behavior? 

b. What skills and / or techniques are necessary to achieve reusable designs? 

c. What infrastructure and mechanisms are necessary to provide constructive 
feedback to designers of reusable assets? 

2. Documentation for reuse 

a. Even when an asset is designed for reuse, failure to provide sufficient 
documentation, especially discovery and composition metadata, limits its 
reusability. It is not uncommon for software developers to resist producing 
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sufficiently detailed and informative documentation once the code is working. 
The lack of documentation impedes verification and validation (V&V), and 
subsequently, reuse. The challenges in this area are similar to those in design 
for reuse, but require separate consideration. 

3. Reusing / adoption of reusable resources 

a. What reward structures / incentives encourage this behavior in the absence of 
governance constraints? 

4. Implied threat of reuse to potential stakeholders 

a. Reward structures and incentives represent the positive side of encouraging 
reuse, but reuse can also represent an implied threat to potential stakeholders, 
e.g. loss of funding, control, and / or perceived status. Research in this area 
needs to identify implied threats, and assess whether rewards and incentives 
can counteract them. 

b. While trust may not directly counteract perceived threats, it may ameliorate 
them. In this context, trust applies to individuals, organizations, accuracy of 
metadata, and quality of reusable assets. 

5. Different levels / types of motivation and concerns 

a. Research in the preceding areas must account for the fact that different 
stakeholders will have different levels and types of motivations and concerns. 

Education and Outreach 
Finally, the results of the research described in the preceding subsection must be delivered to the 
target audience(s) and measured for efficacy. This research should address the varying challenges 
of identifying target students, delivering effective education, and measuring its efficacy based on 
the students’ roles within a community of reuse: 

• Producers 

• Consumers 

• Integrators 

• Decision makers / policy makers 

The education and evaluation process should investigate various outreach mechanisms including 
expert endorsements, and social media and networking. The LVCAR Asset Reuse report (APL, 
2010) describes several such mechanisms. 
Impact 
Addressing the research challenges identified in this subsection has the potential to achieve the 
following positive impacts: 
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• Creating a verifiable body of knowledge and standardized processes for calculating the 
benefits of reuse 

• Motivating a culture of reuse and rewarding stakeholders who engage constructively 

• Providing stakeholders with constructive methods for overcoming resistance 

The cultural norms resistant to reuse are entrenched and unlikely to change without arming 
individuals motivated to change it with concrete tools. 
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7 Concluding Remarks 
Long established as a critical technology in the design and evaluation of systems, modeling and 
simulation is now at a critical crossroads. M&S technologies face increasing challenges resulting 
from the scale and complexity of the modern engineered systems that need to be designed, 
understood, and evaluated. At the same time, technological advances offer the potential for M&S 
technologies to not only meet these challenges, but also to provide even greater value in new areas 
such as the management of operational systems than is offered today. 
As articulated in this document, advances in conceptual modeling are needed to provide a common 
language for experts in different disciplines to come together to create, analyze, and manage the 
complex systems that arise now, as well as those that will be created in the future. Means to 
transform these specifications into computer models and in many cases, operational components 
are needed. Advances in computational methods and algorithms are essential to handle the scale 
and complexity of modern systems as well as to exploit new technologies now arising from big 
data, the Internet of Things, and cloud computing to provide pathways for M&S to provide even 
greater benefits and value afforded by these other emerging technologies alone. Methods to better 
understand and manage uncertainty, backed with rigorous underlying theories are sorely needed 
to enable effective utilization of the capabilities provided by M&S. Finally, advances in the reuse 
of models and simulations can dramatically reduce the costs and timelines necessary to exploit 
M&S, especially in its application to engineering complex systems. Advances in these four areas 
will have far-reaching impacts in critically important areas such as the growth and development of 
cities, the realization of effective health care systems, the development and establishment of new 
approaches to manufacturing, the development of advanced aerospace systems, and development 
and acquisition of more cost effective defense systems. 

While this report has focused primarily on key research challenges, it is clear that there are other 
essential ingredients necessary for advances in M&S to result in new value and impact in society. 
A highly trained workforce is essential to both develop technological advances and transform them 
into practice. Education programs are broadly needed that address both advances in M&S 
technologies as well as their practical usage and application. Mechanisms are needed to provide 
the means and incentives to transform technological innovations into economic growth and 
development through the creation of new businesses and infusion of technology advances into 
existing ones. While the M&S industry is substantial today, it will become even more important 
and critical to economic development in the future. 
It is clear that through the Internet, social networks and other advances, the world is rapidly 
becoming more interconnected and complex, and the pace of change is quickening. While M&S 
has served society well in the past, new innovations and advances are now required to enable it to 
continue to be an indispensable tool to enable deep understandings and effective design of new 
and emerging complex engineered systems. 
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Appendix 2. Workshop Program 
 
Wednesday, January 13: Generating and Organizing Ideas 
7:30  Registration / breakfast 

8:30  Welcome / Introduction, Chris Paredis, National Science Foundation and  
Richard Fujimoto, Georgia Institute of Technology 

9:00 “Gigatechnology: Developing Sustainable Urban Infrastructure to Solve Gigaton 
Problems,” John Crittenden, Georgia Institute of Technology 

9:30 “Increasing the Impact of M&S on Health and Healthcare: Formidable Challenges 
and Realisable Opportunities,” Donald Combs, Eastern Virginia Medical School 

10:00  break 
10:30  Break Out 1 (Conceptual Models; Computation; Uncertainty/Fidelity; Reuse) 

Goal: Generate M&S research challenges related to the break out group. Intended 
to be a brainstorming session, the goal is to generate many ideas. 

12:00  lunch 
1:00  “Some Lessons Learned from DARPA’s Adaptive Vehicle Make Program” 

Michael Yukish, Penn State University 
1:30  “Three Viewpoints for Analysis and Synthesis in Systems Engineering,” Steven  
  Jenkins, Jet Propulsion Laboratory 

2:00  “Modeling of Complex Systems in the Complex Defense Enterprise” (Edward  
  Kraft, U.S. Air Force) 

2:30  break 
3:00  Break Out 2 (Conceptual Models; Computation; Uncertainty/Fidelity; Reuse) 

Goal: Continue generation of research challenges, cluster and consolidate these 
challenges into four or five major research challenges 

4:30  Day 1 wrap up 
5:00  Mixer / Reception (Front Page Restaurant) 
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Thursday, January 14: Building Consensus Around a Common Research Agenda 
7:30  breakfast 

8:30 Reports from Day 1 break out sessions: summarize major research challenges (15 
minutes per break out group); discussion 

10:00  break 
10:30  Break Out 3: (Conceptual Models; Computation; Uncertainty/Fidelity; Reuse) 

Goal: Complete discussions from the first day; develop descriptions of sub-
challenges within each major challenge, develop recommendations to be included 
in the workshop report. 

12:00  lunch 

1:00  Break Out 4: (Conceptual Models; Computation; Uncertainty/Fidelity; Reuse) 
Goal: Wrap Up discussions. Each break out session should develop an outline for 
one chapter of the workshop report and develop writing assignments as needed to 
complete the report after the workshop. Discuss next steps (e.g., sessions in 
conferences or other meeting or other ways to further disseminate workshop 
results). 

2:30  break 
3:00  Reports from Day 2 break out sessions (10 minutes each); discussion 

4:00  Adjourn, except workshop steering committee and writing leads 
4:00  Planning meeting (steering committee and group leads only) 

4:30  End of workshop 
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Appendix 3: Research Challenge Proposals 
The following are research challenges suggested by participants prior to the workshop as areas 
meriting further discussion at the workshop. 
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The research opportunities and challenges should lead to improvements in how we do the 
following: 
• specify, design, implement, verify, validate, execute, interpret, maintain, reuse, integrate, and 

manage models, model inputs, and execution results; 
• that support characterization, prediction, and other analysis; 
• of increasingly complex systems, processes, phenomena, within diverse domains of interest. 
 
The proposed research challenge is to improve our ability to evolve models so they become part 
of an expanding body of knowledge, rather than creating standalone models with little connection 
to other knowledge sources. This requires connecting models with other models in a broader 
context, and to evolve models with increased fidelity.  The following are two specific challenges 
in support of this general challenge: 
• Formalize the approach to conceptual modeling that includes modeling methods, languages, 

and standards. A well-defined conceptual model based on standards provides the foundation 
to specify, validate, integrate, and evolve the knowledge that is encoded in simulation 
software. For example, the conceptual model can specify the properties, interfaces, and 
behaviors of entities being simulated before committing to detailed software design and 
implementation. This conceptual model can be integrated with other conceptual models in a 
broader context, or be elaborated to develop higher fidelity models as the need arises. 

• Develop model management approaches including methods and standards to manage the 
conceptual models, simulation software, and simulation results across highly distributed and 
heterogeneous development and execution environments. The approach must clarify how to 
manage change due to version and variants with complex interdependencies across the 
models and knowledge sources.  
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Thoughts on critical M&S research challenges 
My research is focused on simulation in the domain of discrete-event logistics systems (DELS), 
such as warehouses, factories, supply chains—systems through which discrete units of "product" 
flow and are transformed by "processes" which are executed by "resources".  In this domain, 
simulation is essential to support distributed, multi-disciplinary decision making at all scales, from 
real-time, to tactical, to strategic, to system design, but it is not used nearly as much as it should 
be, due to the time, cost, and reliability of contemporary simulation practice.  Some of the most 
critical research challenges include: 

1. In contemporary practice, even when the system simulation requires no "new knowledge", 
the simulation model itself is still largely hand-built and ad hoc, with all the negatives 
implied, including excessive time and cost for the simulation results, inconsistency in 
application, and difficulty of re-use.  The challenge is: "How can we make the use of 
simulation for analyzing well-understood DELS as cheap and fast as FEA analyses of solid 
models?" 

2. In the DELS research literature, there is a giant void in terms of theoretical model 
interoperability, whether in terms of integrating analyses across scales of granularity (either 
physical or temporal) or in terms of integrating different types of analyses (e.g., simulation, 
queuing analysis, and optimization).  The challenge is:  "How can we achieve interoperability 
across different analytical models of the same DELS instance?" 

3. The prevailing paradigm in discrete event simulation languages is the queue, with control 
exercised as a release decision using only local information.  Intelligent control of DELS 
requires a much richer fundamental semantic model, which today can only be realized 
through ad hoc programming in the simulation language's underlying implementation 
language.  This essentially guarantees there will be no long term learning, and certainly no 
sharing across the community of users.  The challenge is: "How can we architect a simulation 
modeling language that provides native support for the kinds of complex decision making 
necessary in contemporary DELS?" 
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Model Engineering for SoS 
Model Engineering is the general term of theories, methods, technologies, standards and tools 
relevant to a systematic, standardized, quantifiable engineering methodology that guarantee the 
credibility of the whole lifecycle of a model with the minimum cost. 

Challenges in development and management of SoS models: 
Although importance of the engineering idea is gradually recognized in applications of the full 
model lifecycle, currently no complete theory and technology system and philosophy is available. 
So there are still lots of challenges in the lifecycle of the model of SoS. 

 
(1) High complexity of the referent SoS 

(2) The long life cycle of a SoS 
(3) Model heterogeneity 

(4) Complicated evolution of models 
(5) Difficult model reuse  

(6) Massive processing data 
(7) The multidisciplinary collaborative model development 

(8) Higher requirements for system performance 
A systematic methodology is needed to cope with challenges in model lifecycle management of a 
SoS. The model development and management activities change from a spontaneous and random 
behavior to conscious, systematic, standardized and manageable behavior by constructing a model 
engineering theory and methodology system in order to guarantee credibility of different model 
phases. 
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There are two key challenges for modeling dynamic systems conceptually: model engineering 
and personalization. Model engineering is figuring out how to proceed, in incremental phases, 
within a modeling process. How do we begin and how do we gradually form models? Given that 
verification and validation will always feedback into the model design activity, this leaves open 
how models are designed. Modelers hypothesize the structure of their models in some form. For 
example, a model may be defined as linear or it may be a directed graph of concepts. Many 
model types that we use in M&S are described in a complete syntactical form rather than as a 
model engineering activity indicating temporal progression. Forrester’s System Dynamics (SD) 
is unusual since not only are there specific model types in SD, but these types are defined as 
incremental structures, evolving from one form to the other. Can this same model engineering 
approach be used for other M&S model designs? Would we begin with concepts and generate a 
concept map, semantic network, or an ontology? The second modeling challenge centers on 
personalization. News is routinely made personal either through viewer profiling, or by the 
viewer making topic selections. Can this personalization be made to happen in model design? 
Some models would be “soft” or conceptual, often with different media. So, the personalization 
challenge will intersect with user experience (UX) design. How will model and UX designers 
work together? If M&S is to obtain broader impact, we need to spend time considering many 
ways of experiencing models, as well as their simulations. 
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We believe that the single most important change to achieve correct-by-construction design is the 

introduction and systematic use of cross-domain modeling. However, creating design tool chains that cover 
all potentially relevant modeling abstractions in complex systems and satisfy the needs of all application 
domains is unrealistic.  In addition, tool chains that are highly configurable to specific application domains 
are not available. Consequently, a more realistic objective is to develop horizontal integration platforms that 
allow the rapid construction of end- to-end modeling and simulation tool suites in domain-specific 
configurations. The OpenMETA integration platforms in DARPA’s Adaptive Vehicle Make program are 
shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

While significant progress has been achieved during the development of a prototype system, some of the 
challenges requiring further research are the following: 
1. Extension of the mathematical foundation of Model Integration Languages used in the Model Integration 
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2. Improved adaptivity in the Model and Tool Integration Platforms including support for goal- directed 

model composition tool reconfiguration. 
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(1) Common Virtual Proving Ground 
Understanding complex systems requires large-scale distributed and seamless transdisciplinary 
integration of knowledge components into a common, shared, composable, extensible, persistent 
modelling and simulation enterprise. 

How can the international community launch a common conceptual modelling enterprise? How 
can a conceptual model be opened, shared and advertised? How can it be augmented with 
knowledge contributed from everyone (like Wikipedia)? What guidance and education must be 
provided to the contributors? How does it need to be managed? What parts need to be secured and 
how can it be open and secure (e.g. forge.mil)? What structure should the conceptual modelling 
framework adopt (ref. https://www.cso.nato.int/pubs/rdp.asp?RDP=RTO-TR-MSG-058)? What 
base ontologies are required (ontology of physics, etc.)? How can the conceptual model 
components become executable model repositories and be plug and play into simulation 
architectures? How can the simulation conceptual model transcend seamlessly with reality to 
enable Live-Virtual-Constructive simulation applications, augmented reality, augmented 
virtuality, crystal ball applications, etc.? 
(2) Transdisciplinary Simulation Architecture 
Complex systems simulation requires seamless cross-domain interaction in order to observe 
emerging effects (e.g. Critical infrastructure protection requires connecting: country, power grid, 
internet, economy and military command and control; Combat vehicle survivability requires 
connecting: bones (human), metal, optics, electromagnetics, acoustics, cyber, etc.) 

How can simulation architectures connect models that respond to different sets of laws? What 
mechanisms are required to efficiently interact between different sets of laws (e.g. layered 
architectures)? What algorithms can model these systems accurately in a non-chaotic and realistic 
way? What level of detail is enough to see emerging behaviours when integrated? How emerging 
behaviour revealed by simulation insert in the global scientific method for validation? 
(3) New Simulation Computational Paradigms 
Complex systems simulation pushes computational load, interactivity and distribution above 
current limits. 

How challenges (1) and (2) could be better served with novel simulation computational paradigms 
(e.g. GPU computing, quantum computing and cloud computing)? 
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One challenge in modeling and simulation is make modeling accessible to engineering domain 
experts at the same time the resulting models are formal enough for automatic simulation. 
Engineers are typically not trained in formal verification and often prefer modeling terminology 
and concepts that seem far removed from formal methods.  A key hurdle in addressing this is to 
link engineering concepts and terminology with formalizations in a way that does not require 
engineers to learn all about these formalisms.  This requires modeling languages to be developed 
in layers that expose engineering-friendly concepts, with mathematical formalisms underpinning 
them to support automatic verification. 
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Conceptual Modeling - On the one hand, conceptual modeling is typically considered as the step 
before a certain formalism is chosen to represent the model formally, as one of its purposes is to 
lay the foundation to select a suitable formalism. On the other hand conceptual modeling refers 
to the concepts of the system to be modeled, like the basic entities, causal constraints etc. The 
conceptual model is also the subject of discussing and clarifying the concepts and constraints 
underlying the model to be built and thus asks for some means of representation.  This leads 
some authors to consider, e.g., DEVS or Petri Nets, as a means for developing the conceptual 
model blurring the distinction between conceptual and formal model. 
Domain specific modeling languages map central concepts of a particular application area to 
modeling constructs and combine those with a formal semantics. Thus, their increasing use 
might threaten the distinction between conceptual and formal model even more so. Thus, it 
appears timely to clarify what we expect from a conceptual modeling phase and how supporting 
this conceptual modeling could look like. 
 
Model Reuse - Reuse of models by a third party is connected with specific requirements: an 
essential one is that the meaning of a model needs to be clear. Therefore, information about the 
semantics of a model (by means of mathematics or by a formal modeling language), its 
parameters (and their sources) and initial conditions, but also about algorithms used to execute 
the model, and further information how the model has been validated are central. 
 
To facilitate model reuse the modeling and simulation publishing culture needs to change (at 
least in some areas), i.e., to include all information needed to reuse the model.  Unambiguous 
means for annotating models with this kind of information would in addition allow exploiting 
computational support for reusing models which is highly desirable.  
Therefore, description standards and ontologies are important, similarly as automatic means to 
generate, read and evaluate these annotations. 
 
Some application areas appear more advanced when it comes to supporting the reuse of models, 
e.g., in terms of the information about models that need to be included in a paper to be 
publishable, and also in terms of curated model repositories, standards for describing models, 
and for describing experiments. Can those developments serve as blueprints for other application 
domains and how far are we referring to an automatic reuse of models? 
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What is the scope of M&S?   

The open questions that M&S, as a discipline, is to address require a form other than “build a 
model of” – this is all of science.  At the core, we need to differentiate between the science of 
modeling and the science of simulation and develop theory that enables the “build a model of” 
activity for the scientists who are doing so using M&S in their fields.  So, along the simulation 
theory axis, we need to develop simulation science vice science that uses simulation; and likewise 
for modeling theory. 

Develop a unified theory for simulation formalisms 
In the strictest sense, formalism means the application of formal logic and proof theory to the 
objects studied by a particular science.  In practice, however, most scientists rigorously apply a 
more informal logic in their proofs.  Peer review confirms the results, or not.  Likewise, within 
simulation science, formalism, or a formalism, usually means a mathematically rigorous approach 
to studying the simulation object.  Several structures have been studied as formalisms, however, 
there is little consensus on the best approach.  In the same way that the various models of 
computation provide a basis for theory within computer science, considering the various 
formalisms as models of simulation will further the development of a robust theory of simulation. 
Develop a theory for model-based decision-making 

Although recent work in validation theory is looking hard at the implication of risk on the 
simulation use decision and propagation of error in simulation is getting well-deserved attention, 
more basic research is needed to develop a robust model-based decision theory.  Accuracy is well-
understood, particularly in the context of physics-based models, but use is not well-
defined.  Within the context of the decision whether or not to use a simulation to inform a decision, 
acceptability criteria are often subjective and little theory exists to objectify the decision 
analysis.  A well-developed model-based decision theory will place the validation concept in the 
language of decision theory, define use in a rigorous way, clearly differentiate objective from 
subjective elements of the use decision, and provide a defensible basis for using models and 
simulations to inform decision-making. 
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Topic 1: Use of Petascale and Exascale computing to simulate massive socially-coupled network 
of networks. 
 
Socially coupled systems are usually composed of network of networks. Furthermore these 
networks vary in time, are highly unstructured and co-evolve Thus traditional methods for 
scaling motivated by simulations of physical systems are unlikely to work well. These networks 
lack typical notions of symmetry. 
 
 Q1: How does one load balance such systems? 
 Q2: How can one incorporate interactivity? 
 
Topic 2: Calibration, UQ, SA, Validation and Verification of models to study massive socially-
coupled networked systems 
 
V&V continues to be an important question. Traditional methods for V&V that are based on 
physical laws are often not applicable when studying such systems as they are governed by 
human behavior, law and norms.  
 
 Q3: How does one build simulations for such systems that allows decision makers to have 
confidence in the outcomes. 
 Q4: Collecting more data is not the answer. What sort of theories can be developed here. Social 
sciences has worked on this problem but the a computationally motivated social theory might 
prove very useful. 
 
Topic 3: How can one synthesize realistic socially coupled networked systems 
 
Developing such network representation is challenging as data is sparse, time lagged and system 
is constantly evolving. 
 
 Q5: Availability of new emerging data sets is very promising but poses new challenges on 
integrating them meaningfully 
 Q6: Role of privacy and security are paramount for such systems and need to be further 
addressed. 
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Autonomous car is becoming realistic in the near future. It needs to be utilized in not only 
motorways but also in urban areas such as New York where many people and vehicles come and 
go. In the world, we need to consider more heavy traffic environments with much higher pedestrian 
and vehicular density (e.g. Beijing and Tokyo). Not only sensing information obtained from 
cameras and sensors installed under urban environments, those monitoring city traffic 
environments from moving vehicles, bicycles and pedestrians need to be used for constructing 
more secure and efficient traffic environments. Advanced simulation technology for building such 
an intellectual urban traffic environment in real time should be studied (challenge 1). 

 
In the real world, sensing information might be able to be obtained for several hundred meters’ 
areas (micro areas) and they can be used for modeling urban environments in the micro areas. On 
the other hand, sensing information from such micro areas might be combined and used for 
building much wider areas’ urban models (macro areas). We need to study methods for 
hierarchically urban modeling from micro areas to macro areas, and vise verse (challenge 2). 

 
In the above urban traffic environments, we also need to study modeling and simulation techniques 
to support socially vulnerable people with handicap and elderly people (challenge 3). 
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1. Challenges Related to PDES 
PDES has been used to simulate complex systems, and turns out to be a very powerful 

tool. However there are still notable challenges in runtime efficiency and ease of use in 
applying PDES to engineering complex systems. We think the following questions should be 
addressed primarily. 
(1) Emerging hybrid architecture, e.g. multi-core CPU + MIC, multi-core CPU + GPU, even 

multi-core CPU + DSP, has been used to construct the underlying platform for PDES. 
What is the best general structure and parallel mode when using PDES on these 
platforms? How to make best use of the capability of these hybrid platforms, how to 
exploit parallelism as much as possible with adherence to the local causality constraint, 
and how to accomplish automatic parallel execution on these platforms? 
a) How to accomplish automatic decomposition, distribution, data preparation and 

parallel execution of computation missions in MIC, GPU and DSP-based 
accelerators. 

b) Mechanism and algorithm that manage the collaboration between CPU and 
accelerators, and balance the communication and computation load between CPU 
and accelerators. 

c) How to adapt existed synchronization algorithms to these new platforms? Are there 
some new and more efficient algorithms� 

d) Does present event scheduling and management mechanism need to be changed a 
lot? 

(2) To advance PDES applications, is it possible to propose a PDES programing 
specification that can be widely accepted by PDES community? The specification is to 
hide the details of underling hardware and software, and provide a standard for 
developers to construct PDES applications by models which are in library format. 

(3) To support reuse and rapid-composition of models, a widely-accepted model 
specification which specifies the implementation restraints and external interfaces is 
needed, so that models can be independently developed, packed, fast assembled and 
platform-independently reused. 

(4) Is it possible to specify a standard validation process (including prospectus, methods and 
criterion) for various types of conceptions and functions of conceptual model? A model 
is considered as credible(high fidelity) only if it passed the specified validation process. 

2. Challenges Related to Cloud Simulation 
How do models exist in cloud environment if MasS (Model as a Service) is intended? A 
descriptive specification of models is needed for searching and understanding models in cloud 
environment. How to implement a cloud-based simulation platform, which makes it easy to 
construct large scale simulation applications (e.g. PDES applications) by models and run 
efficiently in cloud environment? How to achieve efficient interaction and synchronization 
among models in cloud environment?  

3. Simulation and Big Data 
Is it possible to classify Big-Data-based modeling and achieve automatic modeling from big 
data? How to accomplish model checking and validation for these kinds of models? 
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A key observation in the "post digital revolution society" is that information and communication 
technologies (ICT) has become interwoven with human behavior, the "fabric of everyday life" and 
social structures to such an extent, that the separating view of a "physical world" being connected 
with a "digital world" is ceasing. Today we talk about one "cyber-physical" world (Cyber-Physical 
Systems, an NSF program developed by Helen Gill in 2007), referring to a tight entanglements of 
real world physical objects (things, appliances) and processes (services), with their digital data 
representation and computations in communication networks (the "cyber"). Embedded, wirelessly 
connected tiny compute plattforms equipped with a multitude of miniaturized sensors collect data 
about phenomena, analyze and interpret that data in real time, reason about the recognized context, 
make decisions, and influence or control their environment via a multitude of actuators. Sensing, 
reasoning and control, thus, are tightly interconnecting the physical and digital domains of the 
world, with feedback loops coupling one domain to the other. They implement notions of 
autonomous adaptive behavior. 
Taking the plenty-hood of today’s ICT platforms with their computational, sensory, reasoning, 
learning, actuation and wireless communication capacities (smart phones, autonomous vehicles, 
digital signage networks, stock exchange broker bots, wearable computers, etc.), it is not just 
considered possible, but already a reality that these are programmed to operate cooperatively as 
planet scale ensembles of collective adaptive computing system (CAS). CAS research asks 
questions on the potential and opportunities of turning massively deployed computing systems to 
a globe-spanning super-organism, i.e. compute ensembles exhibiting properties of living 
organisms, like e.g. "collective intelligence" on their own. Essential aspects of CAS are that they 
often exhibit properties typically observed in complex systems, like (i) spontaneous, dynamic 
network configuration, with (ii) individual nodes acting in parallel, (iii) constantly acting and 
reacting to what the other agents are doing, and (iv) where the control tends to be highly dispersed 
and decentralized. If there is to be any coherent behavior in the system, it (v) has to arise from 
competition and cooperation among the individual nodes, so that the overall behavior of the system 
is the result of a huge number of decisions made every moment by many individual entities. 
In order to develop a deep scientific understanding of the foundational principles by which CAS 
operate (see the EU research priority FoCAS, www.focas.eu) we need to address evident 
foundational research concerns like: 

i. Understanding the trade-offs between the potentials of top-down (by design) adaptation means 
and bottom-up (by emergence) ones, and possibly contributing to smoothing the tension 
between the two approaches. 

ii. Understanding the “power of the masses” principle as far as participatory ICT processes are 
concerned. We need to understand how and to what extent even very simple collective 
phenomena and algorithms – when involving billions of components – can express forms of 
intelligence superior than that of traditional AI. 

iii. Understanding properties concerning the evolutionary nature of CASs, e.g. open-ended 
(unbounded) evolutionary systems, the trade-off and interaction between learning and 
evolution, and the effect of evolution on operating and design principles. 

iv. Understanding the issue of pluralism and diversity increase in complex systems as a 
foundational principle of self-organization, self-regulation, resilience and collective 
intelligence. 

v. Laying down new foundations for novel CAS theories for complex adaptive systems modeling 
large-scale socio-technical super-organisms (including lessons learned from applied 
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psychology, sociology, and social anthropology, other than from systemic biology, ecology 
and complexity science). 

 
In order to develop principles and methods for the design, implementation and operation of globe-
spanning CAS we identify systems research concerns like:  

i. Opportunistic Information Collection: Systems need to be able to function in complex, 
dynamic environments where they have to deal with unpredictable changes in available 
infrastructures and learn to cooperate with other systems and human beings in complex self-
organized ensembles. 

ii. Living Earth Simulation: The provision of a decentralized planetary-scale simulation 
infrastructure strongly connected to the worlds online-data sources (search engines, power 
grids, traffic flow networks, trade centers, digital market places, climate observatories, etc.) is 
needed as a means to enable a model-based scenario exploration in real time - at different 
degrees of detail, varying time-scales, integrating heterogeneous data and models. 

iii. Collaborative Reasoning and Emergent Effects: Reasoning methods and system models are 
needed that combine machine learning methods with complexity theory to account for global 
emergent effects resulting from feedback loops between collaborative, interconnected devices 
and their users. 

iv. Awareness: Whereas today’s context-aware systems are able to make sense of the activity of 
single users and their immediate environment, future systems should be able to analyze, 
understand and predict complex social phenomena on a broad range of spatial and temporal 
scales. Examples of the derived information could be: shifts in collective opinions and social 
attitudes, changes in consumer behavior, the emergence of tensions in communities, 
demographics, migration, mobility patterns, or health trends. 

v. Cases: Look at the specifics of design, implementation and operational principles rooted in 
the very nature of application domains of societal relevancy: e-health eco-systems, fleets of 
self-driving vehicles, reindustrialization (Industry 4.0), physical internet (intelligent logistics), 
digital economy, energy management and environmental care, citizen science, combinatorial 
innovation, liquid democracy, etc. 
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1) Unification of discrete and continuous M&S: A key challenge in my view is the unification 
of methods for continuous and discrete simulation.  Historically they have been very different, 
with different software paradigms and different expertise required.  Yet more and more we find 
that the models we have to create for problems of national importance are mixed discrete and 
continuous.  Too often these models are created by ad hoc problem-specific techniques that do not 
generalize and may have a weak theoretical underpinnings.   
 
We really need a unification both at the mathematical level and at the software engineering 
level.  At the mathematical level we need to be able to discretize differential equations into event-
driven rather than time-stepped simulations, while maintaining stability, accuracy, and 
conservation (if necessary). We must allow arbitrary discontinuous state changes to be acceptable 
as events in otherwise continuous simulations. And at the software engineering level, we need to 
be able to combine in one parallel framework (a) time-stepped methods, (b) conservative event-
driven methods, and (c) optimistic event-driven methods. 
 
2) Ensemble studies: Serious simulation studies require running a particular model many times 
in an ensemble with different parameters, different inputs, different boundary and/or initial 
conditions, and different random seeds. The ensemble may be designed for various different 
purposes, e.g. parameter exploration, parameter sensitivity studies, parameter optimization, 
probability distribution parameter estimation, uncertainty quantification, etc. The outputs of the 
ensemble runs will generally be input to some post processing system for validation, statistical 
analysis, visualization, etc.   
 
Hence, the proper unit of a simulation study is not the individual run, but the ensemble. And the 
ensemble is ideal for parallel execution since each simulation run in the ensemble is almost always 
independent of the others. 
 
The challenge, then, is that we need a way to construct a single job that runs an entire ensemble of 
simulations, and any post processing required as well.  The ensemble runtime system needs to be 
able to allocate file system directories (or database tables) for the inputs and outputs to the 
individual runs, allocate processors to the various simulations, decide what order they are to be 
run in, estimate their resource needs, launch them, and handle their normal and abnormal 
terminations without terminating the whole job.  It amounts to building a special purpose parallel 
runtime system devoted to the support of simulation studies. 
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M&S Grand Challenges 
  

• Simulation Everywhere 
Despite simulation being successfully practiced across many commercial sectors, it is by 
no means pervasive.  Arguably this might be because it is not “embedded” into school’s 
curricula or lifelong learning in industry.  The challenges are therefore (1) can M&S be 
successfully introduced into schools (e.g. in a similar way to the successes of SCRATCH 
and similar languages) and (2) can professional development courses be made available to 
introduce and support M&S in lifelong learning (software vendors have good examples of 
these – can these be leveraged to develop online credit courses for M&S.  In support of this 
are two parallel challenges – (3) how can M&S be disseminated into areas that do not 
typically use or fully exploit M&S (areas of healthcare and manufacturing, SMEs, etc.) and 
(4) how can successful academic/industrial collaboration be supported (e.g. how does a 
academia and industry understand how to get the best out of collaboration (knowledge 
transfer). 
 

• What use is reuse? 
Reusability in M&S is arguably well understood in some areas (e.g. defense) but not in 
others.  Is it actually possible to reuse M&S investment in areas such as manufacturing and 
healthcare?  There are a very small number of examples (in manufacturing) where 
reusability has been very successful.  These tend to be data-driven or use “template” models 
to create simulations.  The challenges are therefore (1) where is reusability actually 
possible and desired from a stakeholder point of view (rather than just making assumptions 
from a “distance”), (2) what key reusability use cases and demonstrations can be created 
to best disseminate the “power” of reusability to a community, (3) what underlying 
technology should be used to create the most flexible approaches to reusability (especially 
bearing in mind that almost all commercial simulations are created using off-the-shelf 
simulation software!) 
 

• Cyberinfrastructures for M&S 
As with Big Data there is a growing need for flexible, on-demand high performance 
computing (HPC) for M&S.  There are instances where attempts have been made to provide 
cloud-based HPC for M&S.  However, in Europe there has been significant investment in 
worldwide e-Infrastructures to provide common federated (single sign-on) high 
performance grid and cloud computing infrastructures.  Several projects have successfully 
leveraged this investment to provide common HPC platforms for M&S.  This work has a 
major overlap with DDDAS.  There is still significant work to do and leads to the following 
challenges (1) how can US cyberinfrastructure (or indeed e-Infrastructures) be exploited to 
support M&S, (2) how can these infrastructures be used to support vast simulation 
experimentation, (3) how can these infrastructures be used to analyze huge amounts of 
simulation output data, (3) how can these infrastructures be efficiently connected to 
Internet of Things applications (e.g. Industry 4.0), (4) how can hybrid distributed 
simulations of reusable simulations be best supported, and (5) what are the key use cases 
across academia and industry that can best disseminate the impact of these infrastructures? 
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• Large-scale simulations on emerging computing platforms. Hardware performance improvements 
now arise almost entirely from increased parallelism rather than clock speed improvements. This 
has resulted in the creation of massively parallel supercomputers containing unprecedented 
numbers of processors or cores. Modern machines are increasingly heterogeneous architectures 
including specialized hardware, e.g., graphical processing units. Effective exploitation of platforms 
containing millions of cores for large-scale simulation applications remains a major challenge in 
the parallel simulation research community. Many applications that arise in practice are highly 
irregular, representing another area with major challenges. Cloud computing offers the ability to 
make parallel and distributed technologies broadly accessible to users without incurring the 
expense of purchasing and operating high performance computing platforms, but existing cloud 
platforms present new computational challenges, due to the shared nature of the computing 
platform and emphasis on high bandwidth communication rather than low latency. The difficulty 
of developing efficient parallel simulation codes remains a significant impediment to widespread 
adoption. Domain-specific programming languages designed for efficient parallel execution may 
help to address this issue. 

• Online decision-making using real-time distributed simulation. Increasingly the operations 
of complex systems such as cities are continually being optimized and improved through a 
cycle that involves data collection, prediction, and action in real time. The emergence of 
ubiquitous computing, wireless sensor networks, and vast amounts of data enable 
simulations to be embedded into operational environments at unprecedented scales. 
Distributed simulation can play a large role in the online management and optimization of 
operational systems in areas such as transportation, energy, and law enforcement, however 
much additional research is required to explore these areas. 

• Energy and power efficient parallel and distributed simulation. Embedded simulation 
applications such as those described above call for careful consideration of power and 
energy consumption. Energy consumption affects battery life in mobile computing 
platforms and power is a major expense in modern data centers. Yet power and energy 
consumption has received very little attention in parallel and distributed simulation to date. 
Little is known concerning the power and energy characteristics of parallel and distributed 
simulation algorithms, nor how to effectively manage these aspects of the program’s 
execution. 
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Fidelity and Uncertainty 
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The problems of model calibration, validation, uncertainty quantification, model refinement and 
experimental design are closely related and they cannot be studied in isolation. The development 
of methodologies and algorithms for any of these problems needs to be informed by this natural 
relationship to fulfill the promise of modeling and simulation in accelerating scientific discoveries 
and decision making.  In the following few guiding principles and opportunities are presented as 
well as the current challenges associated with them. 
  
Model Calibration and Validation. In general, model calibration and validation are seen as an 
Afterthought to model development. The validation process focuses on characterizing the 
discrepancy between model predictions and observations usually approaching the model as a black 
box. While these discrepancies are due to various errors – modeling errors, measurement errors, 
discretization errors – the main contributor is the inadequacy of the model. Current strategies in 
calibrating black box models, such as Kennedy and O’Hagan framework based on the external 
discrepancy, fall short in providing a comprehensive uncertainty representation that can support 
reliable predictions of unobserved quantities of interest and usually yield biased estimates of 
physical parameters. The two processes should be developed around the following question: What 
entitle us to trust model predictions? Fortunately, for physics-based models the answer is simple 
– a set of highly reliable conservative laws (mass, momentum, energy) that shape the construction 
of the model. However, the final model needs to be augmented with less reliable constitutive 
models that are not based on first principles, leading to structural uncertainty.  This presents an 
opportunity to develop calibration and validation methodologies based on an internal discrepancy 
formulation that exploits the source of the model error (see Reference). The internal discrepancy 
approach removes the constraints associated with the external discrepancy approach: (1) its 
stochastic solution satisfies physical constraints, (2) it reduces inference bias and under-estimation 
of uncertainty, and (3) it provides reliable extrapolated predictions for the QoI. 
 
Fast Uncertainty Quantification Algorithms. Bayesian calibrations in the context of internal 
discrepancy formulation pose a number of computational challenges as it yields intractable 
likelihood functions. These types of problems are out of reach for Markov Chain Monte Carlo 
algorithms, as they either require an integration of the likelihood function at every step or to 
operate in high dimensional spaces. New algorithms are needed to address the problem of 
calibrating probabilistic models with intractable likelihood functions. 
 
Model Refinement through Automatic Hypothesis Generation. While the location where 
uncertainty is introduced and should be modeled is clear at this point, the most appropriate form 
of probabilistic model for the internal discrepancy generally is not. New methodologies based on 
state-of-the-art machine learning algorithms need to be developed to automatically generate new 
internal discrepancy models as data becomes available. The correlation structures captured by the 
newly calibrated model discrepancies can guide future model refinements. This opens the 
opportunity to perform experimental design strategies to obtain informative measurements with 
the goal of discriminating alternative models, which brings us full circle back to model calibration. 
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1. Quantification of various sources of uncertainty that are beyond parameter uncertainty, 

such as those associated with the modeling and prediction, the design process itself, and 
the changing market. 

2. Consideration of “unknown” uncertainty due to lack of knowledge, e.g., those associated 
with the emergent behavior of a complex system.   

3. How can one trust the quality of data and the underlying model used to quantify the 
uncertainty, e.g., the use of Gaussian Random Process model to quantify the uncertainty 
due to lack of data?   

4. Computational challenge associated with high dimensionality and high nonlinearity still 
remains.  This challenge is particularly critical for problems that involve uncertainty in 
both the spatial and temporal domains such as in design of advanced materials systems. 

5. Design can be viewed as an information seeking process, the complexity of a design 
problem will be escalated to designing both the design artifact and the information 
seeking activities.  This is a very complex decision making problem due to its dynamic 
nature, i.e., decisions made in an early phase will have a direct impact on the subsequent 
phases. Methods are therefore needed to manage such complexity.	
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Advancing Regulatory Science In MEDICAL APPLICATIONS: 

There is a great need to assess the credibility of models and simulations (M&S) for medical 
applications in order to expand their use in development, assessment and regulatory evaluation.  
Furthermore, if we want to foster good science for M&S, we must leverage the expertise in 
industry, academia and government, and develop a strategy to assess credibility from a sound 
scientific and engineering standpoint.  Establishing credibility for M&S will give confidence to 
the medical community and enable the advancement and evolution of M&S tools. 

There is a generic hierarchy to the development and implementation of M&S, which can be 
presented as follows:  

I. system configuration (e.g., geometry of device, anatomy)  
II. system properties (e.g., biological, chemical, physical properties of metals, 

polymers, tissue, cells) 
III. constitutive laws and governing questions, (e.g., nonlinear plasticity, viscoelastic) 
IV. system conditions (e.g., inflow wave form, environment) 
V. numerical implementation (e.g., discretization, solvers) 
VI. model & simulation output (e.g., velocity profile, strain distribution, toxicity) 
VII. output validation, where comparators for medical applications could be 

• bench-top test data 
• animal study data 
• clinical data 

VIII. determine credibility for predictions in the context of use (COU) 
 
Establishing credibility (the trust in M&S results) follows a similar framework, which includes 
assessing the pedigree of input data, verifying the software, verifying calculations, validating the 
M&S outcomes with an appropriate comparator, quantifying uncertainty and performing 
sensitivity analyses to establish robustness (VVUQ), and assessing the level of VVUQ rigor 
needed to support the predictions in the COU.  While many challenges remain for advancing M&S 
tools for medical product design and evaluation, developing a methodology for assessing 
credibility is an essential first step to expanding and increasing M&S efforts in regulatory science 
and submissions. 
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1. Often the motivation behind the use of simulation is to study situations for which we 
have no empirical data. Thus, the typical view of simulation validation as comparing 
simulation inputs and outputs to empirical data is insufficient. Structural validation is 
necessary. While this point has been acknowledged in the literature, there do not appear 
to be an accepted set of principles or standard approaches to guide structural validation of 
simulations. 

2. When modeling and simulating complex socio-technical systems, it is usually necessary 
to consider multiple distinct viewpoints simultaneously. Examples include an economic 
view, an organizational view, a physical view, etc. The differences among these views 
are not wholly attributable to differences in scale. Consequently, the relationships 
between the different views are not always clear. This can make composing the different 
views into a single integrated simulation difficult or impossible. Thus, the challenge is 
how to make inferences about the system under these circumstances.  While this has been 
accomplished on an ad hoc basis, there should be a more systematic approach to doing 
so.  
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1. There is a critical need for dynamic, automated, and "smart" federated model component 
registration supported by model's and simulation's meta-data and a framework side (or agent 
based, self-forming, negotiated/ad-hoc) inferencing or ontologically driven mechanism.  For 
example, a question that arises in section 2.4 of " How can one characterize the uncertainty of a 
model that is reused (possibly with some adaptations to a new context)?"  Simple answer, it starts 
from developing simple meaningful mathematically based metrics that characterize the model.  
First syntactical metrics, then semantic, then pragmatic. 
 
There are many branches to addressing this challenge.  Another example for a deeper 
branch...Numerical methods for ordinary differential equations are methods used to find 
numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is 
also known as "numerical integration", although this term is sometimes taken to mean the 
computation of integrals. Most of our models and simulations use some form of numerical 
methods for approximations, this leads to uncertainties in our solutions. The following questions 
around uncertainties exist: a.)What uncertainties affect our confidence in predicting outcomes? 
and b.)What are their impacts on System Level Outcomes? Can we ignore them? (what is their 
significance in the collective system) 
 
When this thought process is applied at the System of System level additional uncertainties are 
introduced. As SoS missions often involve new intended uses that are seldom envisioned by the 
individual system and model developers, these incongruities from the disparate system 
developers can cause all sorts of various SoS level artifacts and uncertainties. Again, the key 
questions that eludes the community is "What are their impacts on the System of System Level 
Outcomes? Can we ignore them? How do we correctly characterize and/or assess SoS a.) 
additive, b.) compounding, or c.) internally propagated (no greater error but introduces similar 
size error elsewhere in the SoS) errors". 
 
If this is the case, numerical approximations, high-run count simulations, and other "quicker" 
lower fidelity solutions have the potential to be leveraged to at least bound the problem space in 
a quicker fashion and allow more detailed simulations to focus on a very focused area of interest 
 
We ultimately need decision quality data generated by our modeling and simulation systems and 
fundamental to that discussion what is "good enough" and how to quantify the uncertainty 
associated with any system representation 
 
2. Model and Simulation and the Human Dimension. The Army has a need to optimize human 
performance to support the dynamic, asynchronous battlefield of the future.  It is establishing a 
framework and processes to assess, integrate, and synchronize its training and education, science 
and technology, holistic health and fitness, medical and personnel policies, programs, and 
initiatives in support of the Army Profession.  I believe that this core value applies to all 
industries and professions and model and simulation is a key enabler to success.  This becomes 
even more critical for our industrial base when you consider the needs, wants, and desires of the 
"next-generation" of the workforce and the vastly different world view that that generation has 
compared to previous generations as a results of its data exposure.  People are ever industry's 
most agile, adaptive, and valuable resource. Modeling and simulation technologies remain an 
essential enabler; however, there are few technological solutions that exist to provide leaders 



	 139	

with a significantly enhanced physical or cognitive edge on the battlefield (for the Army) or in 
any corporate setting. (from the US Army CAC White paper on The Human Dimension). The 
cognitive demands on a solider (or any leader) grow more important as strategic uncertainty 
grows.  We need to actively and deliberately engage the modeling and simulation community to 
facilitate addressing this uncertainty and mitigating it for our Soldiers and leaders. 
 
3.  As complex system level behaviors become more dependent on the underlying components, 
more sophisticated models and simulations are required to gain a deeper understanding of the 
overall system behavior.  As the simulations become more complex, more data is produced and 
more data analysis is required to draw valid, useable conclusions from the model and simulation 
runs.  Traditional approaches to analyzing large quantities of data focused on data reduction 
techniques to provide one-dimensional answers, fail to explore all the interconnected behaviors 
that may exist in the systems.  New "big data" technologies developed by industry shift the focus 
from data reduction to data management and data analytics.  The classification and 
interconnected behavior analysis techniques leveraged by search engine companies, online sales, 
and other industries can have profound impacts on gaining a deeper understanding of our 
interconnected simulations and help us understand the additional emerging behaviors of our 
complex systems. The Defense Science Board report on Technology and Innovation Enablers for 
2030, dated, October 2013 identifies big data analytics as one of its key R&D investment 
opportunities to support anticipation of surprise for the future defense of the Nation. Models and 
Simulations are key generators of decision quality data that can benefit significantly from the 
application and understand of big data methods.  
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1. Pragmatic Composition of Simulation models  
Component based model development is quite successful because it favors reuse and simplifies 
the logical complexity of the modeling process. Model Composability has been studied in depth 
at syntactic and semantic levels [1] [2] [3] however pragmatic level of composability is still an 
open research challenge. Pragmatic Composability refers to a context based meaningful 
composition of the components. It evaluates the difference of actual effect of the messages with 
the intended effect during component interactions. It also evaluates the consistency of behavior of 
composed components under a specific context. The research of pragmatic level of composability 
involves in-depth study of computational linguistics, cognitive technologies and contextual 
computing [4]. An important issue at this level is pragmatic ambiguity. Pragmatic ambiguity arises 
when the message is not specific, and the context does not provide the information needed to 
clarify the intent, due to which the components do not interact according to the desired objectives. 
The pragmatic reuse of components is only valid when the composability is evaluated at the 
pragmatic level where the components are known to share correct contextual knowledge and 
resolve pragmatic ambiguities. 
 
 [1]  F. Moradi, "A Framework for Component Based Modelling and Simulation using 

BOMs and Semantic Web Technology," Stockholm, 2008.  
[2]  C. Szabo, "Composable simulation models and their formal validation," Singapore, 

2010.  
[3]  I. Mahmood, "A Verification Framework for Component Based Modeling and 

Simulation - "Putting the pieces together"," KTH-Royal Institute of Technology, 
Stockholm, Sweden, 2013.  

[4]  R. Porzel , Contextual Computing Models and Applications, 1 ed., Berlin Heidelberg : 
Springer-Verlag , 2011.  
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1. Conceptual modeling - Composability is still our biggest simulation (vs modeling) 
challenge. But its roots are in conceptual modeling; we cannot compose what we cannot 
model. Rather than address the fundamental problem, individual projects that need this 
capability at some level are resorting to scope narrowing to be able to deliver the 
functionality they need when they need it. We must develop the authoritative atomic 
elements that will form the basis of conceptual models. This is predominantly an issue of 
funding, political will, and hard work. 

2. Selected applications / security – For all the attention cyber security receives as a matter 
of individual and national security, it’s still an isolated domain of modeling and 
simulation. Most cyber simulations are virtual simulations confined to cyber ranges. 
Progress is needed on multi-resolution models, constructive models, and interoperability 
solutions for integrating cyber ranges as assets in federated simulations. 
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For many modeling and simulation (M&S) developers, questions regarding the future 
interoperability and composability of their solution are not the main concern during design and 
development. They design their M&S system or application to solve a special problem and 
provide a solution. There is nothing wrong with this perception. However, there are many 
reasons why it is preferable to design interoperability and composability from the early phases 
on, e.g., by using open standards for the communication of information or by using standardized 
interfaces to common services. The main driving factor for this is the wish to enable the reuse of 
existing solutions. Why should we invest something into rewriting a solution that already exists?  
However, models are the purposeful simplification and abstraction of a perception of reality that 
is shaped by physical, cognitive, and often legal constraints, resulting in a conceptualization that 
becomes the basis for the implemented simulation. Implementation by itself is a series of choices, 
compromises, and heuristics. In addition, computer simulation is bounded by decidability and 
computational complexity. In order to reuse a simulation solution it is pivotal to unambiguously 
capture the assumptions and constraints on all these levels preferable in machine readable form. 
Ontologies have been identified to be specifications of conceptualization and are therefore 
promising candidates to support these endeavors. 

The grand challenge to be solved is identifying a formal description that captures all required 
information to enable reuse of simulation solutions in a new context. 
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Data-Adaptable Models for Efficient Reuse, Composition, and System-level 
Optimization: Complex sensing and decision applications operate on vast data streams with 
dynamic characteristics with context dependent requirements. As the availability and quality of 
the sensed data changes, the underlying models, simulations, and decision algorithms 
should continually adapt in order to meet desired high-level requirements. Due to the complexity 
of such systems, traditional techniques are often incapable of producing a solution that remains 
optimal, or near optimal, in the presence of dynamically changing data, numerous algorithms 
exhibiting tradeoffs between computational efficiency and quality. New modeling approaches are 
needed to: capture available expected data types and data sources, define end-to-end 
application task flows, specify and discover alternative algorithms for tasks, 
associate quality metrics for data inputs and algorithmic outputs, specify an algorithm’s data and 
quality requirements to support efficient composition of algorithms across for difference 
applications tasks, estimate the computational requirements given available computing resources, 
and 

 
Runtime Optimization of Adaptable Systems: The performance and operation modalities 
of dynamic data-driven applications are largely dependent on the availability and, importantly, the 
quality of the incoming data. As these aspects of the data change at runtime, the underlying 
application should adapt its configuration by implementing more suitable data processing 
algorithms, or configuring data sensing devices in order to meet performance and quality 
constraints. Furthermore, the availability and capability of the underlying computational resources 
may change at runtime, requiring runtime methods to re-optimize the system implementation in 
response. Efficient runtime optimization methods are needed to ensure near optimal operation 
across all expected operation modalities. As runtime optimization will incur some overhead 
to execute the optimization algorithms and to reconfigure the system implementation, the runtime 
optimization process must be integrated within system-level modeling and design methodologies 
at the earliest design stages. 
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• Computationally integrating models at multiple levels of abstraction with differing 

representational ontologies. 
• Assumption management for legacy models developed for one purpose but potentially relevant 

for new purposes. 
• Assessing construct validity for models where predictive validity cannot be reasonably 

assessed. 
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Over the last 20 years, modeling and simulation has seen dramatic improvement in concurrent 
application and the use of HPC systems, but still in very specialized segments. My colleagues and 
I have been struggling with making M&S more usable across a wider range of disciplines.  Our 
work has been directed at the development of new products in the defense and aerospace industries 
but is applicable across most industries. 
Challenge: Language ambiguity 
The major aspect in the use of models across domains is the inconsistent use of language. For 
instance, there is no truly agreed upon definition of what constitutes a model in such a manner that 
it is discoverable and easily used within a new environment. Much of this is due to a lack of 
consistent terminology regarding the description of the model and the inputs and outputs associated 
with it. Although everyone can agree on how a CFD model is used, each model there is no 
consistent definition of the inputs and outputs of the model to unequivocally declared the model 
to be of type “CFD.” In addition, if the CFD model requires an input of an aerodynamic surface, 
how should it be described? A CAD model (what constitutes a CAD model for this purpose?). 
Potential Solution: Ontological Representation 
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Position paper on M&S Research Challenges 

Two M&S research challenges remain paramount, in my opinion, in spite of their long history of 
being designated as grand challenges.  They are:  reuse and composability (previously mentioned 
in [1]); and verification and validation (previously mentioned in [2]). 

Reuse and composability.  Reuse is “using a previously developed asset again, either for the 
purpose for which it was originally developed or for a new purpose or in a new context” [3].  
Composability is “the capability to select and assemble simulation components in various 
combinations into valid simulation systems to satisfy specific user requirements” [4].  Despite 
substantial efforts, almost always well-intentioned and well-executed, such as those in [5], reuse 
and composability have not been fully achieved; indeed, the latter was recently described as “still 
our biggest simulation challenge” [1].  There are daunting engineering requirements, i.e., an 
effective and universal discovery mechanism and standardized content and format for software 
component metadata, identified more than a decade ago [6], that remain unrealized today [1].  
There are also unavoidable theoretical obstacles; it has been formally proven that the composition 
of two valid models cannot be assumed to be valid [7] and the process of selecting components 
from a repository is NP-complete [8] [9]. 

Furthermore, we must acknowledge that not all the impediments to reuse and composability are 
technical.  Developing reusable or composable software components is more costly than 
developing components without those requirements, and the benefits of the resulting reusability 
and composability often do not accrue to the organization that incurred the initial cost.  Using 
reusable software developed earlier can reduce the cost of a subsequent project, which can 
counterintuitively be a disincentive to organizations seeking to maximize project size and thus 
funding level.  Clearly, achieving reuse and composability depends in part on a compelling 
business case (or cases) to motivate them [6]. 

Verification and validation.  Verification is “the process of determining that a model 
implementation and its associated data accurately represent the developer’s conceptual description 
and specifications” [10].  Validation is “determining the degree to which a model or simulation 
and its associated data are an accurate representation of the real world from the perspective of the 
intended uses of the model” [10].  The credibility utility of a model depends on verification and 
validation [11].  The use of a model that has not been properly verified and validated entails 
potentially substantial risk.  A wide variety of specific methods for verification and validation are 
available (see [11], [12], or [13] for surveys), but despite this range of methods, not all model 
validation situations are covered.  Even when methods are available, not all simulation 
practitioners know which methods are suitable for a given model or a given application.  This is 
especially problematic for statistical methods, which are too often applied in situations where the 
assumptions of the statistical methods are not met. 

As with reuse and composability, proper verification and validation of a model are also often 
impeded by non-technical issues.  Verification methods that are suitable and effective are 
frequently not applied because of time and cost limitations in a development project that has fallen 
behind schedule.  Likewise, although independent verification and validation is recommended by 
experts, e.g., [2] and [13], too often they are not performed independently, but rather done by the 
model’s developers who despite their best intentions are unconsciously motivated to confirm that 
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their work is correct, and overseen by sponsors who despite their best intentions are unconsciously 
motivated to show that their investment in the model’s development has been a good one. 
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