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Background - Sepsis

●Dysregulation of inflammatory signaling network 
dynamics

●Affects ~1 million people/year
●Mortality rate: 28-50%
●Treatments:

●Focused on manipulating single mediator/cytokine
●Single dose or very short course (<72 hrs)

●Reasons for failure:
●Nonlinear inflammatory signaling network
●Chaotic “error” propagation due to individual 
response

Extreme-scale Model Exploration With Swift (EMEWS) Workflow

EMEWS combines existing machine 
learning/model exploration libraries (i.e., 
Keras, Tensorflow) with the Swift/T 
parallel scripting language to run scientific 
workflows in an HPC environment. This 
work was performed on the Edison 
supercomputer at NERSC.
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Background – Modeling Philosophy

●Model Content: parameterization of internal model 
rules

●Model Context:  description of the environment in 
which a biomedical simulation operates

●Defining the boundaries of model content and 
context is necessary to represent biological 
heterogeneity in complex dynamical models

Nested AL Workflow Pseudocode

1.  Initialization of initial dataset I (consisting of the  
Internal Parameterizations), training pool P, 
number of samples added on each step m, the 
final size of the dataset f, network architecture, 
and learning parameters.

2. Train network on I. 
3. While |I|<f:

a. obtain the rank rj for every xj in P using an  
 acquisition function, A

b. Sample point set S; |S|=m with maximal 
 variance ranks rj 
i.  Perform AL to determine boundaries of CR 
    space using External Parameterization 

 dataset
ii. Return volume, center-point of CR space 

c.Add S to I 
d.Remove S from P
e.Train NN on I
f. Calculate stopping metrics, stop if appropriate

Results

Model and Methods
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Model Content is shown on the left as an influence 
diagram between key elements in the simulation.  
Model context is illustrated above and represents the 
environmental circumstances under which an in silico 
patient develops sepsis.

Genomic variability is simulated via augmentation 
or inhibition of key elements in the model’s internal 
cell signaling network.  Different internal 
parameterizations can lead to vastly different CR 
spaces

In order to test the generalizability of our 
lower-level AL scheme, we tested on a 
variety of synthetic data.   Red: class 1; 
Teal: class 2; Green: sampled pts; Dark 
Blue: predictions for class 2

Active Learning:
●Used when there is lots of unlabeled data, 
data expensive to label

●Algorithm adaptively queries data
●Lower level AL determines the clinically 
relevant region of parameter space for a 
given internal parameterization

●Lower-level AL seeks to minimize 
uncertainty in class prediction (clinically 
relevant or not)

●Upper-level AL predicts CR volume and 
centroid location. 

●Upper-level AL samples parameterizations 
which maximize output variance 

Machine Learning 
Model
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Training Set

Unlabeled 
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We tested a variety of machine learning models to be used in the lower-
level AL module.  Artificial Neural Networks were the superior option for 
this problem, both in terms of simulation accuracy and efficiency, and in 
terms of total wall-time necessary to complete the calculation. The Upper-
Level AL scheme determines the centroid location with very minimal error; 
error in predicted volume appears to stabilize slightly above 90%. 

AL Visualization Example

The lower-level AL achieves >95% accuracy while sampling 
an average of  2% of the possible external 
parameterizations.  The upper-level AL regression stabilized 
after seeing approximately 2000 samples out of over 40 
million evenly discretized internal parameterizations.  Using 
nested active learning instances, we have generated 
comprehensive map linking model content and context 
using only 1/1,000,000 of the simulations that would 
have been required using brute-force.  We anticipate that 
more advanced techniques will lead to greater gains in both 
efficiency, accuracy, and utility.
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