Application of Quantitative Systems Pharmacology in Early Clinical Development for Immuno-Oncology Drug Combinations

2019 Multi-Scale Modeling Consortium Meeting Brian J. Schmidt, PhD March 6th, 2019

Agenda

- Introduction to mechanistic modeling vis a vis QSP
 - QSP at BMS
 - General considerations for developing and applying models
- QSP application workflows (very high level)
- I-O QSP model application examples
 - Drug x

QSP at **BMS**

- 8 Dedicated QSP modelers in the Quantitative Clinical Pharmacology group
- Substantial & continual investment in platform development and approaches

Oncology & Immuno-Oncology

- 3 I-O Platforms
- Antibody-Drug Conjugate Platform
- Physiologically-Based Tumor Receptor Occupancy

Cardiovascular Disease

- Heart Failure
- Thrombosis

WHO ARE 101, WORKING FOR?

Additional Platform Resources

Diabetes/Metabolic Diseases

Immunoscience

- Rheumatoid Arthritis
- Immunogenicity
- Crohn's Disease
- Ulcerative Colitis
- Psoriatic Arthritis
- Systemic Lupus Erythematosus

Fibrosis

- Nonalcoholic Steatohepatitis
- Pulmonary Fibrosis

Quantitative Systems Pharmacology (QSP)

Molecular and Genomic Medicine Biochemistry, molecular and cell biology Genomics and genetics Signaling and metabolic pathways Physiology and pathophysiology

Pharmacology

Medicinal chemistry Structures and properties of targets Fundamentals of drug action Practical drug discovery

Quantitative Reasoning and Computational Biology

Bioinformatics and statistics Dynamical systems and networks Simulation methods Noise and stochastic processes Sorger, P.K., et al. (2011) "Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms." An NIH White Paper by the QSP Workshop Group

"Quantitative analysis of the dynamic interactions between drug(s) and a biological system that aims to understand the behavior of the system as a whole, as opposed to the behavior of its individual constituents" (van der Graaf & Benson 2011, J Pharm Sci)

QSP model introduction (1)

Drug Discov Today (2013) 18(3-4): 116-127

WHO ARE **10** WORKING FOR?

- Mechanistically link target modulation to disease outcome
- Pathway modeling informed by quantitative measurements:
 - In vitro measures (in-house, literature)
 - Mini-models to extract pathway parameters
- Multiple clinical datasets for modeled assets:
 - Lesion response
 - Gene expression
 - IHC
- Model scales vary
 - Narrowly focused (single asset with well-defined, narrow biology)
 - In-between: asset-level combinations
 - Focus on prioritized biomarkers
 - Stage development
 - Can work towards bigger platforms
 - Disease-scale platform
 - Larger biomarker panels

QSP model introduction (2)

Drug Discov Today (2013) 18(3-4): 116-127

WHO ARE **10** WORKING FOR?

- System focus: provide predictions and analyses before trial data are available for a new intervention/therapy
- Calibrate model for related therapies
 - Lesion responses, for example on nivolumab
- Evaluate model performance from withheld data
- Stronger extrapolation principal if data available for therapies that perturb related pathways
- Challenges and risk mitigation
 - Many parameters
 - Mini-models for parameter extraction from experiments
 - Train on outcomes
 - Only accept solutions that agree with observed clinical outcomes
 - Availability of data
 - Initially focus on tumor types where the best data are available and accessible
 - Clearly communicate where additional pathway or outcome training & validation data will be beneficial

Agenda

- Introduction to mechanistic modeling vis a vis QSP
 - QSP at BMS
 - General considerations for developing and applying models
- QSP application workflows (very high level)
- I-O QSP model application examples
 - Drug x

Methods: virtual patient cohort (1)

- Alternate model parameterizations are sampled (biomarker diversity)
- Multiple interventions (therapies) are simulated for each virtual patient

Methods: virtual patient cohort (2)

- Alternate model parameterizations are sampled (biomarker diversity)
- Multiple interventions (therapies) are simulated for each virtual patient
- Biomarker and response data are used to:
 - Guide reasonable parameter bounds
 - Set acceptance criteria on simulated outcomes
 - Plausible VPs must pass numerous acceptance criteria from data

Methods: virtual population

- Simulations also need to match observed statistics
- Often accomplished with "prevalence weight" to create a virtual population
 - Simultaneous fit
 - Multiple biomarkers and response for each therapy
 - Multiple therapies
 - Uses multiple statistical tests and dependent on data to match
 - Summary statistics
 - Distributions
 - Bins
 - Multivariable

Agenda

- Introduction to mechanistic modeling vis a vis QSP
 - QSP at BMS
 - General considerations for developing and applying models
- QSP application workflows (very high level)
- I-O QSP model application examples
 - Drug x

I-O platform 1: initial development to support dose expansions & ongoing trials for drug x

Questions ۲

- What is the anticipated dose response of drug x in anti-PD-1 progressed MEL? _
- What is the role of biomarkers in the response?
- Multi-step approach ٠

12

Overview of I-O platform 1

Implemented nivolumab mechanism

Implemented ipilimumab mechanism

Bristol-Myers Squibb

Algorithmic VPop development

WHO ARE **10** WORKING FOR?

Is the incorporated physiologically feasible mechanistic variability able to explain the observed biomarker/response diversity?

Run on 64 core server using QSPToolbox: https://github.com/BMSQSP/QSPToolbox "expandVPopEffN.m"

Cheng Y, et al. (2017) QSP Toolbox: Computational Implementation of Integrated Workflow Components for Deploying Multi-Scale Mechanistic Models. AAPS J 19(4), 1002-1016.

OSP Lead: Yougan Cheng

Response calibration

- Focus on 3 month time point (first lesion scans; minimize dropouts)
- Calibrate to all patients where we have data at 3 months
- Calibrate to on-treatment VPs

The VPop is fitted against various biomarker *bins, mn/sd and distributions* (a total of 51) simultaneous fits). The composite goodness of fit (range: 0-1) of these 51 simultaneous fits is 0.71. Typically, a VPop is considered accepted if the composite goodness of fit is greater than 0.05.

OSP Lead: Yougan Cheng

VPop captures clinical distributions

Cumulative distribution functions (CDFs) shown *QSP Lead: Yougan Cheng*

WHO ARE YOU WORKING FOR?

Nivolumab: simulated lesion response and PDL1

Model validation: BLIND PREDICTION of nivolumab & ipilimumab combo therapy

Model validation: BLIND PREDICTION of ipilimumab after progression on nivolumab

3mgpkg q3w, ipi

WHO ARE YOU WORKING FOR?

- Ipilimumab efficacy after progression on anti-PD1 therapy in melanoma:
 - 0.5 (N=8) Jacobsoone-Ulrich A, et al. Melanoma Res.
 2016
 - 0.1 (N=40) Bowyer S, et al. Br J Cancer. 2016
 - 0.22 (N=9) Aya F, et al. Future Oncol. 2016
 - 0.16 (N=47) Zimmer L, et al. Eur. J. Cancer 2017
 - 0.13 (N=97) Long V, et al. Pigment Cell melanoma Res 2017
- "In summary, although there are no prospective trials to assess the efficacy of ipilimumab in patients with metastatic melanoma whose disease progressed during frontline treatment with an anti–PD-1 agent, we can surmise that approximately 10% to 20% of patients will achieve a response to second-line ipilimumab." -Svetomir Markovic and Richard W. Joseph

QSP Lead: Yougan Cheng

Model impact for drug x (so far)

- Proximal PD model predicted some clinical immunological activity at a very low starting dose for drug x early in development, subsequently confirmed
- Current model impacts with development team
 - Model predicts drug x has a biphasic dose response in anti-PD-1 progressed MEL, so far qualitatively observed in a broader dose escalation cohort but small N
 - Model has been used to provide guidance on unexpected relationship observed between cell type y and lesion response
 - Model has been used to provide guidance on the impact of dose fractionation on cell type y and lesion response
- CURRENT CHALLENGES
 - Note calibrating tumor-type specific responses
 - Have small N and multiple tumor types in early clinical development

• gMDSC/mMDSC, M1/M2 macrophage polarization, NK life cycle, DC maturation, soluble mediators; Th subsets

Calibration of even more tumor endpoint distributions

- Truer CR classification and CR/PD censoring, here out to 6 months
- Using RNA-seq to calibrate cell markers or net protein production where it makes sense

Bristol-Myers Squibb

Acknowledgements

- Session organizers
 - Jeff Saucerman, Feilim Mac Gabhann, Colleen Kuemmel, Sarah Dunsmore
- BMS QSP & QCP
 - Yougan Cheng, Craig J. Thalhauser, Tarek A. Leil
- BMS CP
 - Akintunde Bello, Amit Roy, Ming Zheng
- Virtual Systems Pharmacology (computational infrastructure)
 - Jyotnsa Pagidala, Shep Smithline, Marko Miladinov, Brian Wong, Dan Bachalis, Radha Konduri, Russel Towell, Karun Pothacamury
- Translational Bioinformatics
 - Nathan Siemers, Don Jackson, Petra Ross-MacDonald
- Biologics Discovery California
 - Minhua Han, Christine Bee, John Engelhardt, Natalie Bezman, Paula So

