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Abstract
JSim is a simulation system for developing models, designing experiments, and
evaluating hypotheses on physiological and pharmacological systems through
the testing of model solutions against data. It is designed for interactive,
iterative manipulation of the model code, handling of multiple data sets and
parameter sets, and for making comparisons among different models running
simultaneously or separately. Interactive use is supported by a large collection
of graphical user interfaces for model writing and compilation diagnostics,
defining input functions, model runs, selection of algorithms solving ordinary
and partial differential equations, run-time multidimensional graphics,
parameter optimization (8 methods), sensitivity analysis, and Monte Carlo
simulation for defining confidence ranges. JSim uses Mathematical Modeling
Language (MML) a declarative syntax specifying algebraic and differential
equations. Imperative constructs written in other languages (MATLAB,
FORTRAN, C++, etc.) are accessed through procedure calls. MML syntax is
simple, basically defining the parameters and variables, then writing the
equations in a straightforward, easily read and understood mathematical form.
This makes JSim good for teaching modeling as well as for model analysis for
research.   For high throughput applications, JSim can be run as a batch job. 
JSim can automatically translate models from the repositories for Systems
Biology Markup Language (SBML) and CellML models. Stochastic modeling is
supported. MML supports assigning physical units to constants and variables
and automates checking dimensional balance as the first step in verification
testing. Automatic unit scaling follows, e.g. seconds to minutes, if needed. The
JSim Project File sets a standard for reproducible modeling analysis: it includes
in one file everything for analyzing a set of experiments: the data, the models,
the data fitting, and evaluation of parameter confidence ranges. JSim is open
source; it and about 400 human readable open source
physiological/biophysical models are available at 

.http://www.physiome.org/jsim/
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Introduction
The modeling of biological processes starts with defining the hypoth-
esis to be tested in an experiment. To make scientific progress, Platt 
(Platt, 1964) emphasized defining at least two distinct hypotheses 
and then designing an experiment with the power to clearly distin-
guish between these hypotheses. By so doing, at least one of the 
hypotheses must then be rejected; the rejection marks a stepping-
stone in science. If a hypothesis is not rejected then it remains as a 
potential working hypothesis, the target of further experimentation 
that eventually will lead to its rejection or improvement.

The virtue of the mathematically-defined hypothesis is that it is 
clear and precise, and therefore susceptible to contradiction. Argu-
ably, one should use mathematical “in numero experimentation” 
to define the critical laboratory experiment. Given that the experi-
ment tests whether or not the working hypothesis is compatible 
with experimental data, then failure to fit the data within a defined 
level of goodness of fit leads to skepticism about the accuracy of the 
data or more often, about the structure of the model and leads to its 
modification or to its outright rejection. Revision of the conjecture 
follows: science is advanced.

The hypothesis testing cycle is an iterative procedure: design hypoth-
esis (and alternative hypotheses) → execute experiment → evaluate 
goodness of fit of model to data → either reject the hypothesis and 
restart, or, alternatively, → accept the model as the current working 
hypothesis and assess the parameters for the specific situation. The 
working model serves as the current belief until deeper thinking 
leads to an alternative hypothesis and one restarts the cycle. This 
philosophical and procedural point of view, more or less guaranteed 
to make efficient progress in the field, creates definable results step 
by step, and gives investigators a sense of satisfactory success.

As in physics, models are posed in order to gain deeper understand-
ing and to make predictions. The more realistic the model, the more 
accurate the prediction. Cause-and-effect models of biological sys-
tems are usually deterministic; they are fundamentally different 
from observationally-based probabilistic associations. The desire is 
to represent sequences of operations within a dynamic system lead-
ing to, and explaining, the observed data (Coatrieux & Bassingth-
waighte, 2006; Bassingthwaighte et al., 2006a). Standard statistical 
methods are not central to deciding whether or not to reject the 
hypothesis, but are indeed helpful in assessing goodness of fit, esti-
mating confidence ranges and co-variances among parameters, and 
in guiding the investigator in identifying errors or in finding ways 
to simplify the model.

Over the years we have developed sets of tools to serve these pro-
cesses. In this article we describe the features of a simulation analy-
sis system, JSim; it is the product of evolutionary improvements 
in the hypothesis testing cycle. The central goals are to facilitate 

attempts to fit models to data, and to support the efficient develop-
ment of computational models that describe and explain the behav-
ior of biological systems (Bassingthwaighte & Goresky, 1984; 
Bassingthwaighte et al., 2005; Beard et al., 2005).

Our perspective is embedded in JSim: it is an open-source simu-
lation analysis platform, freely downloadable, running on Linux, 
Macintosh, and Windows, providing tools for the steps in the mod-
eling analysis of data. There is a naturally occurring sequence of 
steps to take when one starts with an unanalyzed data set and has 
the goal of modeling the cause and effect relationships. We have 
found it useful to follow a simplified summary: The THIRTEEN 
STEPS:

The THIRTEEN STEPS in the modeling process
These are proposed as a guide. The ordering is not rigid, but it is 
wise to cover all of the steps in one’s mind when starting and again 
when finishing up a study. Using the steps in the order listed here 
almost always works well.

(1) When starting with existing experimental data, plot and display 
the data so that one can rapidly review and compare multiple data 
sets. This also prepares for comparing with later model results.

(2) Develop the model, the mathematical formulation of the hypoth-
esis. One may start with one or more existing models or modules 
of a similar nature (retrieved from a model repository or archival 
format) and modify it. Construct illustrations of model structure to 
aid the conceptual approach.

(3) Verify unitary balance in the model equations, an easy first 
check for model self-consistency.

(4) Select appropriate methods for solving model equations (e.g. 
differential equation solvers).

(5) Display model solutions graphically and in text listings. Inspect.

(6) Verify the mathematical accuracy of solutions. Check that results 
are not dependent on temporal or spatial step sizes, that mass or 
charge is appropriately conserved, and that limiting cases match 
analytical solutions.

(7) Explore model behavior over wide ranges of parameter values in 
state-space. (We think of “state space” as being the N-dimensional 
space enclosing the ranges of values of all of the parameters within 
which the model is correct numerically and sensible scientifically).

(8) Perform sensitivity analyses, examining the fractional change in 
model solutions with fractional change in each parameter.

(9) Adjust parameters to fit model solution to data, manually or 
using an optimizer. Start from different places in parameter space 
and vary the optimization method to test solution uniqueness.

(10) Assess goodness of model fit to data. Plot residual differences 
to expose systematic biases.

(11) Examine parameter correlations to identify highly correlated 
parameters and reduce the number of free parameters in optimiza-
tions. Reoptimize.
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(12) Evaluate parameter confidence ranges. The sensitivities at the 
“best fit”, expressed as the local curvature of the optimization cost 
function give a practical estimate. This can be refined using a Monte 
Carlo evaluation of parameter likelihoods as probability density 
functions.

(13) Preserve the source code, multiple data sets, multiple analyses 
and parameter sets, the settings (for initial and boundary conditions, 
parameter scans, displays, solver choices, optimizers, Monte Carlo, 
etc.), the graphs of results, the investigator’s notes and descriptions 
of procedures, plots, etc., all in a single, reproducible, exportable 
package. Share this package openly with collaborators, reviewers, 
and the public, a moral and perhaps ethical requirement when the 
support comes from public funds.

Interpretation of analyses
What one wants primarily from modeling analysis is insight into 
mechanisms. JSim is efficient for model development and testing. 
The fitting of experimental data by model solutions does not pro-
vide proof that the model is correct. It says merely that the model 
can serve as a descriptor under limited range of circumstances, 
namely those examined in the experimentation. Validity is never 
provable. Likewise, causation may be identified, but deeper levels 
may exist to be revealed later.

What does the model predict? Every model, with a little ingenuity, 
can be queried. What would be the responses to different inputs? 
How would the system respond if a component were missing or 
damaged? Predictions then form the basis for the design of the 
next experimental test. Correct predictions, failing to invalidate the 
model, do strengthen the confidence in the model but only to the 
degree commensurate with the comprehensiveness of the particular 
prediction.

Background
JSim is the latest in a series of modeling/data analysis programs 
dating back to SimCon (Knopp et al., 1970) (named for Simulation 
Control). SimCon provided a text and graphics interface to models 
written in Fortran. Between 1967 and 1993, the basic methods of 
data analysis (e.g. function generators, loops, sensitivity, optimiza-
tion) were developed and refined within the SimCon framework. 
In 1993, SimCon was replaced by XSim (King et al., 1995), which 
implemented the same functionality under X-Windows on several 
Unix-like operating systems (SunOS, IRIX, Linux, AIX). XSim 
also added custom graphic model interfaces, on-demand expres-
sion graphing, worlds-within-worlds graphics (Harris et al., 1994), 
remote (client-server) computation and limited multi-processing. 
JSim development efforts began in 1999 and augmented the func-
tionality developed in SimCon and XSim by adding simplified 
model specification (using the MML modeling language), facilities 
for data analysis and for distribution of results and of models (using 
project files), popular desktop and laptop support (Windows, Mac-
intosh & Linux) and fully integrated multiprocessing for shared 
memory systems (Raymond et al., 2003).

JSim overview
JSim is designed centrally for evaluating models against experi-
mental data, for describing biological systems, for designing experi-
ments, and for the teaching of integrative systems approaches to 

biological, chemical and physical systems. It is built around a “pro-
ject file” (.proj), that may hold many data sets, several different 
models and the results of multiple types of analyses testing models 
against the data and against each other. JSim’s handling of ODEs 
(ordinary differential equations) suits it for traditional compart-
mental modeling and SBML (Hucka et al., 2003), CellML (Cuellar 
et al., 2003), and pharmacokinetic (PK) models in general. Solving 
PDEs (partial differential equations) hugely expands the range of 
processes that can be modeled in physiology and clinical medicine 
(Goresky, 1963; Bassingthwaighte, 1974), biophysics, and PKPD 
modeling (Roberts & Rowland, 1986). JSim handles spatial diffu-
sion (Barta et al., 2000; Safford & Bassingthwaighte, 1977) and 
convection-diffusion problems. From soon after its release in 1999, 
JSim provided automated unit consistency checking in all equations 
and also automated unit conversion (such as minutes to seconds) in 
calculations (Chizeck et al., 2009). This pair of features automates 
the first stage of verification of the model’s mathematical imple-
mentation by making sure that every equation has unitary balance. 
Modeling taking account of the anatomical quantitative constraints 
is now recognized as critical and is facilitated by the automated unit 
checking (Vinnakota & Bassingthwaighte, 2004). The second phase 
of compilation parses the details of the equations and sequences 
them for efficient computation. For an example, a cardiovascular-
respiratory system model (Neal & Bassingthwaighte, 2007), ran 
under JSim exactly 300 times faster than a Matlab-Simulink version 
of the identical model (Howard Chizeck/Stephen Hawley: personal 
communication). In general, using Matlab without Simulink takes 
6 to 20 times as long as JSim solutions.

MML (Mathematical Modeling Language) is a declarative mod-
eling language developed for JSim and used for composing mod-
els. Its archival version is XMML, in the XML style of SBML 
and CellML. In MML, one writes mathematical equations directly 
into the code, and the MML compiler handles converting the set 
of equations into a sequence of computations. Since the equation 
representation is closely related to the conceptual formulation of 
the model, MML models are easily understood, and pieces of the 
model are readily interpretable as particular processes. The fact that 
one can write several models into a single MML program allows 
one to compare competing hypotheses (models). Having a stand-
ard layout for graphs and for ASCII text output of model solutions 
is convenient. For special purposes, as for a model to be used in 
clinical practice or teaching, an alternative graphical user interface 
specifically designed for the model can be readily substituted for 
the default layout.

Declarative languages such as MML describe the logic of a com-
puter program rather than the explicit flow of control. In traditional 
procedural languages such as C and Fortran the flow of control is 
explicit in the code. Declarative languages have advantages and dis-
advantages relative to procedural languages. They allow for clear 
exposition of the intentions of computation, since only the equa-
tions (without the numerical details) are specified. Because they 
generally represent a top-down view of the mathematics, they allow 
automated handling of computational complexities such as parallel 
processing without distracting the user with complex details. On the 
other hand, it is difficult for a procedural translation of declarative 
code, as going from MML to compute using Java, to be as general 
and efficient as optimized procedural code. Consequently MML is 
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designed to permit use of procedural code when circumstances 
demand it.

JSim problem domain
JSim is a general purpose simulation and data analysis software 
system. It handles a wide range of mathematical problems including 
algebraic equations, ordinary differential equations, and parabolic, 
hyperbolic and elliptic partial differential equations. It contains 
8 ODE and 3 PDE solvers implementing a variety of algorithms 
which allow the flexibility to strike a balance between accuracy and 
computational speed. It performs time series analyses including 
forward and backwards Fourier transforms. MML can handle mul-
ti-dimensional PDEs but the solvers currently implemented support 
only two dimensions (typically time and one spatial dimension). 
For two spatial dimensions the problem needs to be formulated 
into either ODE nodes or PDEs in one spatial dimension linked by 
ODEs in the other spatial dimension. JSim does not support com-
plex numbers or matrix notation and associated matrix operators; 
in JSim all matrices must be written explicitly as a set of equations.

JSim can be used in any discipline where mathematical equations 
are used for modeling and analyzing data. JSim was originally 
developed to model and analyze physiological phenomena and 
many of the built-in tools were developed to handle physiological 
problems. But all of the JSim tools can be applied to any other sci-
entific discipline. JSim excels at analyzing time course and spatial 
domain data in complex systems (Beard & Bassingthwaighte, 2000; 
Beard et al., 2005; Bassingthwaighte et al., 2006b; Suenson et al., 
1974; Safford & Bassingthwaighte, 1977). Examples include mod-
eling pharmacokinetic/dynamic (PK/PD), radiological (CT, PET, 
MRI) and multiple indicator dilution (MID) data.

JSim’s mathematical modeling language, MML
JSim uses the Mathematical Modeling Language (MML) to describe 
models. When JSim imports other model formats (e.g. SBML, 
CellML, Antimony (Smith et al., 2013)), it translates them to MML. 
MML is a concise, ASCII text language for defining parameters and 
variables and for writing the equations describing a model. MML is 
a declarative language (as opposed to procedural or imperative lan-
guages such as MATLAB, Java, Python, and FORTRAN), meaning 
that, in MML, equations represent mathematical equality, rather 
than providing a directive to calculate the left-hand side variable 
from the expression on the right. In MML, it makes no difference 
if terms in an equation appear on the left or right hand side. Such 
equations are a direct representation of the mathematical ideas in 
a model rather than a procedural formulation. This improves read-
ability and allows for more extensive consistency checks than pro-
cedural formulations. The MML compiler checks to ensure that 
all variables are completely, but not overly, specified – a check 
unavailable in procedural languages. The compiler sequences the 
calculations based on the dependencies of the variables to be com-
puted, thus eliminating order-of-operations errors that are possible 
in procedural languages. MML variables are (optionally) labeled 
with physical units, enabling the compiler to reject equations with 
unitary imbalances; this also allows the automated insertion of 
appropriate unit conversion factors when needed (Chizeck et al., 
2009) (e.g. mmHg to kPa). This relieves the modeler of the burden 
of adding unit conversion factors (another potential source of error) 
and aids readability, since equations need not be cluttered with 

conversion factors. MML’s design supports the model develop-
ment and unit balance aspects of modeling steps 2 and 3 above. An 
example of MML code is shown below as Box 1, which codes a 
“progress curve”, the concentration-time curves for hypoxanthine 
to xanthine to uric acid catalyzed by the enzyme xanthine oxidase 
through the two oxidation steps. MML code for partial differential 
equations is given in Box 2.

Numeric solvers
MML is designed without reference to the numerical algorithms 
that will be used for simulation. Rather, the user selects the numeri-
cal methods in the JSim run time user interface. At present JSim 
provides 8 algorithms for solving ODEs (Table 1) and 3 for PDEs 
(Table 2). Numerical methods for stochastic simulation are variants 
on the Gillespie algorithm (Gillespie, 1977). JSim’s solvers support 
modeling steps 4 to 6 above.

To solve differential equations one needs initial conditions, and 
JSim’s parser (precompiler) demands these, as in Box 1. Partial 
differential equations also require boundary conditions, as seen in 
the code for a two-region convection-diffusion-permeation-reaction 
model (Box 2).

Table 1. JSim ODE solvers.

Auto Starts with Dopri5, if Dopri5 fails, switches to Radau

Dopri5 Dormand-Prince explicit Runge-Kutta method of 
order 5(4) for non-stiff equations (Hairer et al., 1993)

Radau
Implicit Runge-Kutta method (Radau IIA) of 
variable order (switches automatically between 
orders 5, 9, and 13) (Hairer & Wanner, 1996)

KM Five stage, 4th order accurate Merson-modified 
Runge-Kutta method with adaptive steps (Merson, 1957)

Fehlberg
Fifth order accurate Runge-Kutta-Fehlberg Method 
with adaptive stepsize, also known as RK45 
(Fehlberg, 1969)

Euler Explicit forward Euler Method, first order accurate 
(Euler, 1768; LeVeque, 2007)

RK2 Two-stage explicit Runge-Kutta method, 2nd order 
accurate (LeVeque, 2007) 

RK4 Classical Runge-Kutta explicit 4th order four-stage 
method (LeVeque, 2007)

CVode CVODE, a publicly available stiff ODE solver 
(Cohen & Hindmarsh, 1995)

Table 2. JSim PDE solvers.

LSFEA

Lagrangian Sliding Fluid Element Algorithm 
(Bassingthwaighte, 1974; Bassingthwaighte 
et al., 1992; Poulain et al., 1997). The convecting 
step is solved separately from the other 
processes

MacCormack
2nd order accurate finite difference method 
for solving hyperbolic differential equations 
(MacCormack, 1969)

TOMS731
Finite element discretization akin to a nonlinear 
Galerkin method 2nd order accurate in space 
(Blom & Zegeling, 1994)
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Function generators
Many physiological systems or components (e.g. one for the uptake 
of a metabolite) can be considered as operators. The operator 
takes an input function (e.g. inflowing solute concentration) and 
produces an output function (e.g. outflowing solute and metabolite 
concentrations). Model behavior can be tested by using various 
input waveforms (e.g. as in Box 2 “extern real Cin(t)”) described by 
JSim “function generators”. These might be time series signals of 
diverse form (pulses, pulse combinations, sines, shaped sawtooth), 
probability density functions (Gaussian, exponential, Poisson, log-
normal, gamma variate, random walk, etc.), or come directly from 
experimental data. When there is no consumption and the system 
is linear (output area equals input) and stationary (response same 
at another time), then the output function is the convolution of the 
operator’s transfer function (the response to an infinitely short pulse 
input) with the input function. Users select input functions at run 
time for testing numerical algorithms for correctness (verification 
testing), for model exploration (behavioral analysis) or for analyz-
ing data as for steps 6 and 7 in our “13-Step” process.

Model behavioral analysis and visualization
We will use a simple convection-diffusion reaction model (Bassingth-
waighte, 1974; Bassingthwaighte & Goresky, 1984) to illustrate some 
facilities for visualizing model solutions and the effect of varying 

parameter values on them. The system is diagrammed in Figure 1 
and the code is provided in Box 2.

Box 1. Model code for a reaction sequence (Model #320 at www.physiome.org).

// Model Name: MM2irrev (From reference Bassingthwaighte & Chinn, 2013, data of 
Escribano (Escribano et al., 1988))

/* Brief Description: The “MM2irrev” program codes a sequential pair of irreversible 
Michaelis-Menten enzymatic reactions, Hx → Xa → Ua, wherein the one enzyme, xanthine 
oxidase, serves both steps. Hx and Xa compete for its active site. */

import nsrunit; unit conversion on;

math MM2irrev {

realDomain t sec; t.min=0; t.max=5000.0; t.delta=1.00; // t is independent variable

// PARAMETERS: (denoted param(t) if time-variable) (all changeable at run-time)

     real Vhmax = 1.84 uM/s;      // Vmax for enzymatic conversion of Hx -> Xa
     real Kmh = 3.67 uM;            // Km for assumed instant binding of Hx to enzyme
     real Vxmax = 1.96 uM/s;     // Vmax for Xa -> Ua
     real Kmx = 5.94 uM;            // Km for assumed instant binding of Xa to enzyme
     real Hzero = 46.3 uM, Xzero = 0 uM, Uzero = 0 uM; // initial conditions

// VARIABLES (specified as functions of time by (t) appended in defining the name)

     real H(t) uM;         // concentration of Hx (HypoXanthine)
     real X(t) uM;         // concentration of Xa (Xanthine)
     real U(t) uM;         // concentration of Ua (Uric acid)

// INITIAL CONDITIONS (t.min can differ from t = 0 sec.)

     when (t=t.min){ H= Hzero; X = Xzero; U = Uzero;}

// SYSTEM OF EQUATIONS (3 ODEs) (Derivative dH/dt written as H:t)

    H:t = - (Vhmax*H/Kmh) / (1 + H/Kmh + X/Kmx);                                   // Hx→Xa
    X:t = ((Vhmax*H/Kmh) - (Vxmax*X/Kmx)) / (1 + H/Kmh + X/Kmx);      // Xa→
    U:t = (Vxmax*X/Kmx) / (1 + H/Kmh + X/Kmx);                                     // →Ua

} // PROGRAM END

Figure 1. Capillary-tissue exchange unit. Fluid flows with velocity 
Fcap*L/Vcap along the capillary from the entrance at x = 0 to the exit 
at x = L, and exchanges across the capillary wall into a stagnant 
extravascular region with conductance PS, the permeability-surface 
area product. The input is a bolus of solute, Cin(t), entering the 
capillary with the flow, Fcap. Axial gradients along the capillary are 
diminished by diffusion, Dp and Disf. Tissue consumption occurs at 
rate Gisf*Cisf. This is a simplified version of models used for indicator 
dilution studies and PET clinical studies (Beard & Bassingthwaighte, 
2000; Bassingthwaighte et al., 1989; Bassingthwaighte et al., 1992; 
Bassingthwaighte et al., 2006b).
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Plot pages
JSim provides several mechanisms for visualization, providing insight 
about model dynamics. The most basic are plot pages, each of which 
may contain line, scatter, contour and colormap plots. One may plot 
experimental data and model solutions (from one or more models), 
scaled automatically or manually, linear or logarithmic, plotted as 
they are being computed or displayed or edited later. Multiple plot 
page configurations are stored in each project, enabling reproduc-
ible analysis (e.g. all the data and graphs for a particular journal 
article). JSim plot pages support modeling steps 1, 5, 6, 7, 8 and 
10 above (display of experimental data and model solutions, verify 
solution accuracy, explore model behavior, display of sensitivity 
curves and assessments of goodness of fit).

LOOPS: Iterating solutions to exhibit behavior
Model loops are a feature for behavioral analysis that plot data 
from a family of model runs using a user-chosen sequence of param-
eter values. For example, Figure 2, “looping over”, i.e. making a 
sequence of changes in a parameter value for the membrane perme-
ability in a tracer uptake model yields a family of plots showing 
how outflow tracer concentration curves would vary with varying 
permeability. The curves, of course, depend upon the settings for 
the other parameters of the model, so the looping sequence should 
be initiated under widely divergent conditions in order to under-
stand the “conditions” (the regions of state space) where the chosen 
parameter may have little influence or maximum influence. JSim’s 
loops facility support modeling steps 6 and 7 above (verify solution 

Box 2. Code for a 2-region Blood-Tissue Exchange Model.

/* MODEL NUMBER: 0190 at www.physiome.org (Bassingthwaighte, 1974)

   MODEL NAME: BTEX20simple

   SHORT DESCRIPTION: Simple Model of an axially distributed two-region

   capillary Blood-Tissue EXchange unit with consumption in interstitium, isf */

import nsrunit; unit conversion on; //brings in file of units and conversions, SI or CGS

math btex20simple {    // { program begins with a curly bracket

// INDEPENDENT VARIABLES: t is time domain, sec; x is spatial position along cap

realDomain t sec ; t.min = 0; t.max = 30; t.delta = 0.1;

realDomain x cm; real L= 0.1 cm, Ngrid = 31; x.min = 0; x.max = L; x.ct = Ngrid;

//  Parameters and Keys to Names: 

real Fcap   = 1 ml/(g*min),       // Capillary (cap) plasma flow

   Vcap   = 0.05 ml/g,               // Capillary Volume

   Visf  = 0.15 ml/g,                // Interstitial Fluid (isf) Volume

   PS   = 1 ml/(g*min),              // Permeability-surface area product: cap <--> isf

   Gisf  = 0 ml/(g*min),             // consumption rate in isf region (G for Gulosity)

   Dcap   = 1.0e-5 cm^2/sec,  // cap axial diffusion coefficient

   Disf   = 1.0e-6 cm^2/sec;     // isf axial diffusion coefficient

//  Inflow Concentration, Cin(t), created by a function generator at run time. 

extern real Cin(t) mM;

//  Concentration Variables: 

real Ccap(t,x) mM,      // capillary concentration at position x

     Cisf(t,x) mM,    // isf     concentration at position x

     Cout(t) mM;  // Outflow Concentration from capillary at x=L

//  Boundary Conditions: (Note total flux BC for inflowing region.)

when (x=x.min) { (-Fcap*L/Vcap)*(Ccap-Cin)+Dcap*Ccap:x = 0; Cisf:x = 0; }

when (x=x.max) { Ccap:x = 0; Cisf:x = 0; Cout = Ccap; } // reflecting boundary

//  Initial Conditions: 

when (t=t.min) { Ccap = 0; Cisf = 0; } // sets initial spatial concentrations to zero

//  Partial Differential Equations: Ccap:t is dCcap/dt in JSim’s MML (ODE or PDE)

   Ccap:t = -Fcap*L*Ccap:x/Vcap + Dcap*Ccap:x:x + PS*(Cisf - Ccap)/Vcap; // dCcap/dt

   Cisf:t = -Gisf*Cisf/Visf                 + Disf*Cisf:x:x       - PS*(Cisf - Ccap)/Visf;   // dCisf/dt

}      // program ends with a curly bracket
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accuracy, explore model state space). A convenient feature of the 
LOOPS function is that the user can stop the solution, automatically 
starting the next one, whenever desired, speeding up the review of 
solutions. This is especially important in large models with long 
computation times. “Inner” and “outer” loops provide two levels of 
nesting, when needed.

Nested plots
Nested plots (Figure 3) are JSim’s version of worlds-within-worlds 
graphics (Harris et al., 1994). Each nested plot is a 2-dimensional 
array of plots, each of which represents the form of a set of mod-
el solutions with a pair of distinct parameter value. Nested plots 
enable simultaneous visualization of the effect of up to six inde-
pendently varying parameters. JSim nested plots support modeling 
steps 6–8 above (verify accuracy, explore model state space, sensi-
tivity analysis).

Sensitivity analysis
By “sensitivity analysis” we mean the examination of the influ-
ences of individual parameters on the model responses under a wide 
variety of conditions. The sensitivity function, S(t) is the change 
in magnitude, dQ, of variable Q, to a small change in a parameter 
value, dP. It may be expressed in a normalized form, (dQ/Q)/(dP/P), 
or unnormalized form, dQ/dP. As an example consider the same 
model as was explored in Figure 3. Figure 4 shows the sensitivities 
of the outflow concentration of a solute to a change in interstitial 

Figure 2. Using LOOPS to explore parameter influences. [Model is 
in Figure 1, with the computer code in Box 2]. With the permeability 
surface area product (PS) = 0 (tallest solid curve) in the axially 
distributed capillary-tissue model in Figure 1, the outflow concentration-
time curve, Cout, represents the response function through the 
vascular space alone. The mean transit time for this curve is Vcap/Fcap. 
With finite permeability, PS, there is extraction of solute during 
transcapillary passage, shown by the successive diminutions of the 
heights of the initial peaks as PS increases. At low PSs the form of 
the outflow begins for a second or so as a reduced version of the 
curve with PS = 0. At low PSs the flux into the tissue is purely “barrier 
limited”, i.e. the permeation of the barrier has the dominant influence 
on the shape of the outflow curve. When PS is 4 or greater ml/
(g*min), the sixth curve, the initial peak is no longer discernable; at 
yet higher PSs a second peak arises, and at PSs above 128 ml/(g*min) 
increasing the PS further has no effect on the shape of the outflow 
curve and at high PSs the exchange flux is purely “flow-limited”, 
where changing the flow shifts Cout, but changing PS does not. When 
PS > 0, then the mean transit time for all the curves is (Vcap + Visf)/
Fcap. Thus there is a gradual shift from being purely barrier-limited, 
through a mixed barrier- and flow-limited regime to a purely flow-
limited regime at high PS where the shape of the curve is influenced 
only by changes in flow, but the mean transit time is unchanged over 
the whole range, PS > 0 to PS = 1024 ml/(g*min), being obedient to 
the laws of conservation of mass.
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Figure 3. Nested plots. Behavior of the two-region model when 
varying capillary permeability, PS, and tissue consumption, Gisf. 
Each panel is a contour plot: the abscissa is position x between 
the capillary entrance at x=0 to the exit at x=0.1 cm; the ordinate is 
time, t. At each time t a horizontal line from 0 to 20 is colored (using 
color profile “rainbow” in this case) in accord with the concentration 
(highest is blue, to which each contour plot is scaled, down to red 
for zero concentration) at each point in x. Convection moves the 
entering solute along the tube from left to right to larger x on this 
graph. With successive times the colored horizontal lines construct 
a shaped profile above the x-t plane; contour lines with units in mM 
are superimposed. The columns from left to right show contours 
with PS increasing by factors of 5 (see labels at top of column) 
from PS = 0.3 to 37.5 ml/(g*min). The rows go from consumption 
Gisf = 0.2 ml/(g*min) in the bottom row by factors of 5 to the top 
row with Gisf = 25 ml/(g*min); see labels on right ordinate. With low 
PS, leftmost column, as with the low PS outflow curves at Ccap(t, 
x=L) or Cout(t) of Figure 2, very little of the solute escapes into the 
tissue, so the injected bolus remains relatively compact even while 
undergoing some diffusional spread (Dcap = Disf = 10-4 cm2/sec), and 
the influence of the consumption is negligible since so little enters 
the ISF. With increasing PS more solute enters the ISF where it is 
consumed. With high PS and high Gisf, the right uppermost panel, 
the solute is all consumed before it can reach the capillary exit at the 
right edge of the panel. [This plot is set up under “Project”, “Add”, 
“New Nested Plot” using LOOPS, inner and outer, to set the values 
for the parameters, and on the NestedPlot, then clicking on “XY plot” 
to choose “contour”. Instructions are under Running JSim – Data 
Analysis – Nested plots: www/physiome.org/jsim/docs/User.html].
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fluid volume (V
isf

) or capillary wall conductance (PS) following an 
injection of that solute at the capillary entrance. The upper panel 
shows the outflow concentration without parameter perturbation. 
The middle panel plots the unnormalized sensitivity functions, and 
the bottom plot shows the normalized sensitivity functions (with the 
early part of the curves removed when C

out
 is negligible). Increas-

ing PS will lower the height of C
out

 for the first 10 seconds with the 
greatest reduction at the peak of C

out
 at ~8 seconds (due to greater 

flux of metabolite into the ISF); after 10 seconds, the height of C
out

 
will be increased (back flux of metabolite from ISF). Increasing V

isf
 

has the effect of lowering C
out

 for the first 24 seconds, then raising 
it after 24 seconds. JSim’s sensitivity analysis supports modeling 
step 7 above.

Optimization
Manual parameter adjustment to fit the model to experimental data 
is encouraged as a means of gaining insight into model behavior. 
Automated parameter optimization is usually much faster; eight 
methods are provided [See Table 3]; we recommend testing several 
in order to test speed and reliability with respect to the particular 
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Figure 4. Sensitivity analysis using the same model as in Box 2 and Figure 2 and Figure 3. Upper panel: Model solution for outflow from 
capillary. Parameters were as in Box 2, the default parameters. Middle panel: Sensitivity function, df/dp, the change in Cout with a 1% increase 
in the capillary wall conductance (PS), black curve or the interstitial volume (Visf). Lower panel: Normalized sensitivity function, (df/f)/(dp/p), 
the fractional change in Cout divided by the fractional change in each parameter, again for a 1% change in the parameter value.

Table 3. JSim’s optimizers.

Simplex A bounded, non-linear steepest-descent algorithm (Dantzig et al., 1955)

GGopt

Derivative-free non-linear optimizer. Uses adjustable mesh and linear least 
squares to find smoothed values of function, gradient and Hessian at center 
of mesh. Values drive a descent method that estimates optimal parameters, 
but is unbounded (Bassingthwaighte et al., 1988)

GridSearch
A bounded, parallel algorithm. Operates via progressively restricted search 
of parameter space on a regularly spaced grid of N points per dimension 
(Kolda et al., 2003)

NelderMead Unbounded, steepest descent similar to Simplex (Nelder & Mead, 1965)

NL2SOL An adaptive nonlinear least-squares algorithm (Dennis et al., 1981; Dennis & 
Schnabel, 1983) Unbounded

SENSOP
A weighted nonlinear least squares optimizer using a variant of the 
Levenberg-Marquardt method to calculate the direction and the length of the 
step change in the parameter vector (Chan et al., 1993) Bounded

SimAnneal
Simulated annealing for finding the global optimum of a function in a large 
multi-dimensional parameter search space which is first randomly sampled 
with step-size decreasing with time (Kirkpatrick et al., 1983)

Genetic

Genetic algorithms are a family of algorithms that generate a population of 
candidate solutions selecting the best solutions in each iteration to “mutate” 
and “cross over”, creating a new generation of solutions in an iterative 
process (Holland, 1992)
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types of data and model. Given that some parameters are known or 
highly constrained, one may obtain the best model fit to the data for 
a particular subset of model parameters, and one may also, for some 
but not all of the optimizers, constrain the range for each parameter 
value, applying scientific judgment. Optimization helps in finding 
systematic misfits to the data (and the possible rejection of the 
hypothesis), and in estimating parameter values.

The optimizer works to minimize an objective function, usually a 
weighted sum of squares of the differences between the model solu-
tion and the experimental data at each observation time or spatial 
position. This may require freeing up most parameters for optimi-
zation to make sure that an assumed constraint isn’t creating a 
biased solution. JSim provides a graph of residuals (the differences 
between model and data); sign tests and other statistical appraisals 
of the residuals as a function of time help to distinguish system-
atic from random deviations. JSim’s optimization facilities support 
modeling steps 9–12 above (fitting solutions, assessing goodness 
of fit, examining parameter correlations, evaluating confidence 
limits).

Parameter confidence ranges
Model fitting to the data is never unique but is guided by the weight-
ing of the observed data points and the noise in the data. Parameter 
estimates are not exact, but merely estimated, and even possibly 
biased by the user’s choice of the weights on individual data points. 
How to obtain a “best fit” of model function to data is always, in 
a sense, a personal choice. Guidelines include weighting inversely 
to the likely standard deviation of each data point, or unweighting 
outliers. Viewing the graph of residuals (the differences between 
data and model) is most helpful in identifying systematic misfits.

Ignoring how one got to the point of “best fit”, one desires an eval-
uation of the parameter values. If the optimized parameters do 
generate outputs that closely match the experimental data, the ques-
tion becomes what confidence can be placed on these estimates. 
One simple method is to optimize using several different numerical 
method, i.e. different optimization algorithms and different weight-
ing schemes, to see how much the “best fit” parameter estimates 
change. Other methods of estimating parameter confidence limits 
include using the Jacobian and using Monte Carlo methods.

Using the Jacobian: The Jacobian matrix is the matrix of the sen-
sitivity functions for all the parameters open to optimization, as 
calculated at the location of the minimized objective function, the 
“best fit”. This matrix, which JSim calculates after each optimiza-
tion provides the basis for determining correlations among param-
eters, and the confidence limits (standard deviations and expected 
ranges based on Gaussian assumptions). The calculation assumes 
symmetry and linearity, and so makes only local calculations, and 
gives no guarantee that the “best fit” is a global best fit. While get-
ting to the “best fit” point in parameter space is data-dependent, 
this confidence range estimation procedure is not at all, for it is 
estimated solely from the shapes of the local sensitivity functions. 
Thus it behooves one to get the differing estimates obtained from 
different optimizers, different numbers of parameters searched, and 
even to move the parameter “best fit” values a little away from the 
optimizer’s choice and recalculate the confidence ranges.

Using a Monte Carlo method: A more robust, but more demand-
ing, confidence limit calculation uses Monte Carlo methods. The 
procedure is to 1) Select a noise profile for each experimental data 
point, ideally based on what you believe the real noise is, e.g. 5% 
proportional Gaussian random noise. 2) Generate a perturbation for 
each experimental data point by drawing randomly from the selected 
noise profile. 3) “Run” Monte Carlo automatically re-optimizes the 
model against the new set of perturbed data points to obtain another 
estimate for each parameter, repeating steps 2 and 3 many times 
(e.g. set it to 1000). From these many results, one obtains a histo-
gram of estimates for each optimized parameter, and robust confi-
dence limits can be drawn directly from these histograms without 
assuming symmetry and linearity as in the Jacobian method. JSim 
also displays these results in the form of 2-parameter scatter plots 
to show covariance. Given that the model code has been verified 
for mathematical accuracy over the full range of parameter space 
used for the Monte Carlo evaluation, the result gives an informative 
measure of the degree of validity of the model. This is the first step 
of uncertainty quantification (Smith, 2014).

Network graphs
JSim’s model “browser” provides a visual representation of model 
variables as “nodes” and their dependencies or connectivity with 
each other as connecting lines or “edges”. See Figure 5. The graphs 
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Figure 5. Connectivity graph for a modified version of the model program in Box 1. For Hx→Xa→Ua, the oxidation of hypoxanthine to 
xanthine to uric acid, catalyzed by xanthine oxidase. The connectivity is shown for a dual solution version of the code for fitting two different 
sets of experimental data simultaneously with a common group of parameters so as to obtain a minimally biased set of parameter confidence 
ranges.
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can be selected to include model parameters, or selected classes of 
variables, e.g. pressures, strains, concentrations. This feature is based 
on work by Yngve (Yngve et al., 2007). JSim’s model browser 
supports modeling step 2 above (development of the model).

Implementation
JSim is implemented in the Java computer language (Gosling & 
McGilton, 1996). The major factors affecting this choice are Java’s 
platform independent GUI (allowing Windows, Macintosh and 
Linux versions to be developed in a single code base), object-oriented 
features and garbage collection (simplifying complex coding), 
advanced utilities (associative arrays, dynamic linking, remote pro-
cedure calls), strong type checking (allowing many common coding 
errors to be caught at compile time) and robust exception mecha-
nism (simplifying coding and enabling a virtually crash-proof 
GUI). Native code (C and Fortran) is used in certain restricted cir-
cumstances using the Java Native Interface (JNI) (Liang, 1999) to 
reduce computational overhead (transcendental functions, 2D array 
access) and the availability of legacy code libraries (ODE, PDE and 
optimization numerical methods).

The MML language is parsed using JLex scanner generator and 
the CUP parser generator (Appel, 1998). These tools, similar to 
the classic Unix lex and yacc (Aho & Sethi, 1988), were among 
the few parser generation tools available for Java when JSim was 
first developed. Using a formal parser generator allows MML to 
be concise, intuitive, consistent and extensible. MML’s declarative 
structure is an intuitive expression of a model’s underlying math-
ematics (simplifying the modeler’s learning) and allows the overall 
structure of the model to be examined for mathematical correctness 
(detecting overspecification or underspecification) in a way that is 
not possible with a procedural specification. Units and unit check-
ing (Chizeck et al., 2009) were added to MML soon after its initial 
design to further improve model conciseness and assure unit bal-
ance in the equations as a first step in verifying that the mathematics 
is rendered correctly by the numerics.

MML is compiled into Java model computational code for run-time 
execution. This results in faster model execution (in comparison to 
table-driven computations) and allows more flexible model com-
putational structure (multiple time sweeps, indexed loops). JSim 
models run asynchronously to the GUI in contrast to most simula-
tors which alternate computational and graphical update steps. This 
approach dramatically improves performance and user response, 
especially when remote computation is used. JSim’s remote com-
putation is implemented using Java Remote Method Invocation 
(RMI) (Harold, 1997), providing reliable access to networked 
computational servers. This approach also isolates the JNI methods 
(above) in the computational engine, allowing the JSim GUI to run 
as a pure Java browser applet. JSim multiprocessing is implemented 
using Java threads (Oaks & Wong, 2004) providing excellent per-
formance and seamless integration with the Java memory manage-
ment and exception mechanisms (providing application stability). 
MML code is stored as XMML for distribution, and has automated 
translators into XMML, SBML, CellML, and with limitations into 
Matlab (Smith et al., 2013).

Run-time performance
Run-time performance of JSim is dependent on numerous factors: 
model complexity, mathematical formulation, numeric methods 
used, use of parallel processing, and the fineness of time and spatial 
grids used. PDEs generally run faster than ODEs providing similar 
spatial resolution even though they include diffusion terms, but in 
general can be slower than ODEs representing simplified geom-
etries, and are slower using high resolution general purpose solvers 
like TOMS731. A direct solver-to-solver comparison on a prob-
lem which can be formulated as either an ODE or PDE model (a 
convection-diffusion model) is provided in Table 4.

The times reported in Table 4 are extraordinarily variable, and 
depend upon parameter values and on the values of the variables 
themselves, as the solvers can become highly efficient if a variable 
is not changing. Naturally, variables solved explicitly tend to run 
faster than those solved implicitly. But there are exceptions to this, 
for example solutions to PDEs for capillary-tissue exchange that 
require convolutions and double convolutions over Bessel functions 
take over a million times as long as the PDE solvers (Bassingth-
waighte et al., 1989). In general, linear systems of implicit equa-
tions run faster than non-linear systems. Runs requiring stiff ODE 
solvers (e.g. CVode, Radau) typically run slower than non-stiff 
solvers (e.g. Dopri5, RK4). Analyses involving JSim loops, sen-
sitivity analysis, optimization and Monte Carlo methods run faster 
when JSim multiprocessing is activated. Models requiring fine tem-
poral or spatial grids to capture relevant detail run slower than those 
for which coarse grids are sufficient.

Computation time equivalent to real time was shown on a laptop 
computer for a cardiorespiratory system model with about 120 vari-
ables (Neal & Bassingthwaighte, 2007). Models available at physi-
ome.org typically run somewhere between a fraction of a second 
to several minutes, depending upon these various complications. 
Some example model simulation execution times (“run times”) 
are compared to the real time duration of the events being mod-
eled (“model times”) in Table 5. All the runs below were single 

Table 4. JSim’s ODE & PDE Solvers.

Solver name Solver 
type

Mathematical 
formulation

Run time, sec 
(single simulation 
run, 120 sec of 
a convection-
diffusion model 
with Δt = 0.1)

LSFEA PDE PDE 285

TOMS731 PDE PDE 8155

Radau Stiff ODE ODE 430

CVode Stiff ODE ODE 281

Dopri5(RK5 
varystep) ODE ODE 48

RK Fehlberg 
(RKF45) ODE ODE 325

RK Merson ODE ODE 32
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model runs performed on a mid-range workstation (Dell Precision 
T3500 Xeon x86-64 2.5GHz). The Beeler-Reuter action potential 
model (#78 at physiome.org) has only 4 ionic currents and 28 time-
dependent variables; the (Winslow et al., 1999) model (#217) has 
126 time-dependent variables. Timing calculations are unreliable, 
dependent on the model, computational methods, and the values of 
the variables, and the timestep length. For the Winslow et al., 1999 
model, using a 1 microsec timestep took 96 seconds, only 100 times 
slower, not 1000 times, compared to that with Δt = 1 ms.

Code verification
We use a variety of strategies to verify the JSim code stack. Some 
calculations such as values for transcendental functions and alge-
braic expansion of symbolic derivatives have known closed form 
solutions that can be compared exactly. Our general policy is to 
write the code for analytical solutions into the JSim model to use 
the comparison to verify specifiable cases. In simple cases, e.g. res-
piratory mechanics models, exponential equations match numeri-
cal solutions for 7 decimal points. Some ODE and PDE models 
such as exponential washout have known closed form analytic solu-
tions which can be numerically compared to solutions generated by 
JSim’s numeric integrators. Even when a complete analytic solution 
is not available, certain statistics of the solution, such as mean tran-
sit time in blood-tissue flow models, can be calculated analytically 
and compared with the same statistic calculated from the model 
output.

Parameter changes to models causing output changes that don’t cor-
respond to expectation from induction, need to be evaluated quali-
tatively by the user. When modelers observe unexpected behavior, 
checking at deeper levels is required. While most such anomalies 
are due to user coding errors, over the 15 years of JSim’s exist-
ence, some subtle computation bugs in JSim have been diagnosed 
in this manner. JSim cannot be proven bug-free even though finding 
anomalies is now rare: queries regarding problems in computation 
are welcomed at staff@physiome.org.

JSim models are sometimes exported in SBML format and run in 
other SBML supporting simulators as a comparison check. Models 
are also sometimes entirely recoded in a different computational 

environment (Matlab is often used) as a comparison check. Model 
translations to other languages (e.g. SBML, CellML, Antimony) 
are verified via round-tripping (exporting to the target language and 
then reimporting).

Tests of JSim’s optimization and Monte Carlo functionality are 
based on convergence to solutions of known parameterization. The 
optimizers are all very different; we advocate that users try a vari-
ety of optimizers for any given problem. There is no magic in an 
optimizer; the key in fitting a model solution to data, when the data 
are reliable, is in designing a carefully weighted distance function 
to fit as many computed model variables to simultaneously obtained 
experimental data functions as possible.

Tests of JSim’s multi-processing are based on comparisons to 
single processor computations.

The JSim verification suite consists of over 1200 individual tests 
drawn from the above methodologies. The suite is expanded when 
new computational or translation facilities are added, or when a bug 
has been found and fixed. Most tests consist of comparing jsbatch 
output with user-verified reference data. The verification suite 
is run before every official JSim release to ensure consistency of 
operation.

Reproducibility
The all-too-frequent failures to reproduce published results are a 
critical problem in advancing the biological sciences. It is easy to 
understand that biological laboratory studies, with inherently great 
variability in materials and analysis procedures, should be less exact 
than those in the physical sciences, but it is not so forgivable that 
reproducing mathematical models of biological systems is a major 
problem. The two major repositories of published biological models, 
Biomodels (http://www.ebi.ac.uk/biomodels-main/) using SBML 
(www.sbml.org) and CellML (models.cellml.org), together have 
about 1000 curated models: there were errors in the publications 
requiring corrections in all but 5 of these, before the models could be 
demonstrated to run appropriately. These models all used algebraic, 
ODEs, or differential-algebraic equations and so must be regarded 
as relatively simple, computationally, compared to finite-element 
models or spatially dependent models. That only 0.5% of the not 
very complex models were reproducible is truly alarming, and dem-
onstrates the lack of dedication to making scientific advances useful 
to others. Some open access journals, such as F1000Research, are 
aiming to improve this sad state, by requiring open source code to 
be deposited, hopefully along with the data that provide tests of the 
model hypotheses. A Special Section in Science (Stone & Jasny, 
2013) is devoted to the issues of open access, addressing open 
access, peer review, the changing publishing scenario, and encour-
aging broader methods of communication.

Project files as vehicles for reproducible modeling and data 
analysis
JSim project files store a set of codes for models, illustrative fig-
ures or diagrams, parameter sets, multiple data sets, the settings 
for looping, sensitivities, behavioral analysis, and optimizations, 
plot page configurations, and for project notes. Many models in 

Table 5. Solution Times for Some Models.

Model Model 
time

Run 
time

Model time 
per. run time

Box1 (reaction sequence) 5000 sec 356 ms 14000x faster

Box2 (two-region blood-
tissue exchange PDE) 30 sec 547 ms 55x faster

Comp2 (two-region blood-
tissue exchange ODE) 30 sec 130 ms 230x faster

Beeler-Reuter (cardiac 
action potential; Δt = 0.1 ms) 600 ms 636 ms same

Beeler-Reuter (cardiac 
action potential; Δt = 0.01) 600 ms 3059 ms 5x slower

Winslow-Rice-Jafri (action 
potential; Δt = 1 ms) 1200 ms 983 ms 19% faster
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the Physiome Repository (most of which are JSim-based) have 
experimental data in the project files for validation testing. Project 
files support the reproduction of a set of simulations and analy-
ses for their sharing across JSim’s supported platforms (Windows, 
MacOS, Linux). Project files support the modeling steps 1 and 13 
above (from importation of data, to preservation and distribution 
of analyses). The MML, XMML and all the data and analyses are 
preserved in an ASCII format; thus the files tend to be small. The 
models described above take < 100 kB; large models with several 
hundred ODEs take up < 500 kB even with large time series of 
physiological data. These files are all human readable, and ready to 
run when opened in JSim. They contain everything used by the pro-
gram: the notes, the source code, and the control parameters for all 
the steps in the analysis. They are editable in any word processor, 
but one avoids doing that since it is easier to enter code and notes 
under JSim editor directly and not disturb the format in the XMML 
file that JSim reads.

There are many models on the Physiome Repository (www.physi-
ome.org) with multiple data sets, model fits to data, and optimiza-
tion results. Examples are that of Kuikka et al. on glucose uptake 
by myocardium (Kuikka et al., 1986, models 163 and 173), xan-
thine oxidase reactions (Bassingthwaighte & Chinn, 2013, model 
324), and lung endothelial serotonin uptake (Jardine & Bassingth-
waighte, 2013, model 198). All the JSim project files are stored in 
a Concurrent Versions System (CVS) archive so that the latest ver-
sions, as well as older versions, are always available. The models 
themselves are copyrighted but researchers are given the freedom to 
download, modify, and to construct new models from them so long 
as original authorship is acknowledged.

Modeling over the web
The approximately 400 JSim models archived at www.physiome.
org can be run over the web, with complete freedom to vary the 
parameters, modify the code, compile and run, reanalyze data that 
are there in the project file, view residuals, confidence ranges, use 
Monte Carlo to reveal parameter variances and correlations, etc. 
(Models based on MATLAB or FORTRAN, a small fraction of the 
repository, cannot be run over the web but can be downloaded).

Using archived models for analyzing one’s own data
All the archived models may be downloaded so that an experimen-
talist can import his own data into the project file and analyze it. 
The JSim Home Page is an operations manual for downloading, 
running models and analyzing data. For parameter evaluation the 
number of trial optimizations can be set to 1 (so there is no opti-
mization done) but the covariance matrix is calculated to provide 
estimates of confidence limits from the local linear combination of 
sensitivity functions. For greater generality one should set up the 
optimizer to evaluate the set of parameters desired, then run the 
Monte Carlo (tab at bottom) to repeat the optimization many times 
in the presence of added noise; this provides realistic probability 
density functions of parameter values.

Some alternative simulation platforms
A comprehensive feature-by-feature analysis of alternative simu-
lation platforms is beyond the scope of this paper. Listed below 
are brief descriptions of some simulation systems using procedural 

methods, as opposed to JSim’s declarative approach. All can be used 
to fit model solutions to data. None provide automatic unit balance 
checking of equations.

Virtual Cell (Loew & Schaff, 2001) is a computational environment 
designed for the construction and simulation of cellular-based mod-
els. Models can be created iteratively in the GUI, or via VCell’s 
custom mathematical language VCMDL which supports ODEs & 
PDEs. Both deterministic and stochastic simulations are supported. 
Model computations are performed via client accounts on VCell’s 
computational server farm. http://www.nrcam.uchc.edu/.

COPASI (Hoops et al., 2006) (for COmplex PAthway SImulator) is 
an integrated modeling and simulation environment aimed at meta-
bolic networks, cell-signaling pathways, regulatory networks, infec-
tious diseases and similar systems. Models are typically created 
via a table-driven GUI and results viewed via embedded graphs. 
COPASI supports SBML and currently runs on Linux, MacOS and 
Windows. http://www.copasi.org.

libRoadRunner (Sauro et al., 2013) is an high-performance simu-
lation library supporting most SBML models: ODEs and events 
are supported, but algebraic rules are not. libRoadRunner provides 
APIs for C, C++ and Python to control model simulations. http://
libroadrunner.org/.

Chaste (Mirams et al., 2013) is C++ library for computational phys-
iology and biology. Computational modules include mesh genera-
tion, linear algebra, ODEs, PDEs and continuum mechanics. I/O 
modules provide support for various file formats, including HDF5 
(Folk et al., 1999). Chaste is available for Windows, MacOS, Linux 
and Solaris. https://chaste.cs.ox.ac.uk/.

PCenv, COR, OpenCell and OpenCOR (CellML, 2014) are a related 
set of tools supporting CellML modeling. PCenv is an interactive 
modeling editing and simulation environment running on Windows. 
COR an alternative CellML modeling environment for Windows. 
OpenCell is a merger of PCenv and COR built upon the Mozilla 
platform, and running on Linux, Windows and MacOS. OpenCell 
development has been stopped in favor of its replacement Open-
COR. http://www.cellml.org/tools.

Continuity (Continuity, 2014) is problem-solving environment for 
multi-scale modeling in bioengineering and physiology - especially 
biomechanics, transport and electrophysiology. Finite element 
and PDEs are supported. The Continuity language integrates with 
Python (VanRossum & Drake, 2003) scripts to create multi-scale 
models. Continuity runs on Windows, MacOS, Linux and Linux 
clusters. http://cmrg.ucsd.edu/Continuity.

Summary
JSim is a tool for hypothesis exploration and for analyzing data. 
Many of the steps in data analysis are built into JSim. It’s declara-
tive modeling language, automatic unit balance checking, and built-
in tools for solving ODEs, PDEs, and implicit equations greatly 
facilitate generating mathematically and physiologically consist-
ent models. The built-in optimizers and associated statistical data 
reporting, along with behavior tools, such as parameter looping and 
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sensitivity analysis, allow one to verify and explore model behavior 
in the context of experimental data and simulated data from previ-
ous models. With the ability to save these model ‘explorations’ as 
parameter sets within the JSim project file anyone can easily create 
a modeling and data analysis package that is easy to reproduce and 
distribute to others.

As a research tool, JSim has been developed and refined to accel-
erate the processes of modeling and data analysis. Adherence to 
quality standards augments efficiency (Smith et al., 2007). The time 
savings don’t simply reduce the time necessary to get to a result, 
they also end up improving the quality of the science in two ways. 
First, when it only takes a few seconds to modify a model, re-run 
it, and view the results, researchers are more likely to explore many 
“what if” scenarios and develop a deeper understanding of model 
behavior, and in turn, a deeper understanding of the system being 
modeled. Second, researchers are more likely to do better verifica-
tion checks and higher-level analyses if they are easy to do. When a 
few mouse clicks are all it takes to change solvers, time step sizes, 
optimization parameters, or even perform a complex Monte Carlo 
analysis to assess parameter correlations and confidence intervals, 
researchers are more likely to actually do those critical numerical 
checks and to take the model analysis beyond simply reporting a 
single parameter value.

In addition to its use as a research tool, JSim is also very useful as 
a teaching tool. JSim has been used in classes for high school, under-
graduate, and graduate students, as well as many workshops for 
faculty members. The fact that JSim is open source, quick to down-
load and install, as well as executable over the web, means that it is 
easily available to students. The simplicity of JSim’s model speci-
fication language, where users can focus on writing and working 
with the mathematical equations themselves rather than controlling 
program flow, means that students with no programming experi-
ence can rapidly begin to understand, create, and modify JSim mod-
els. Furthermore, JSim’s interactive plotting interface and the easy 
access it provides to sophisticated analysis tools such as sensitivity 
and Monte Carlo analysis allow students to perform analyses which 
would ordinarily be too difficult and time consuming for them to 
do on their own.

Future developments
Modular modeling
JSim has provided support for modular modeling from its inception 
(Bassingthwaighte, 2000) using both mathematical and biological 
approaches, but now, with the developing recognition that models 
are more consistently understandable and more amenable to modu-
lar construction when they are annotated using identified ontology 
systems, libraries of modules present great opportunity for efficient 
construction of complex model systems. A module can be thought 
of as a self-contained model of an element of the larger system 
model and represents a specific physical, chemical or phenomeno-
logical process. A model might use multiple instances of the same 
module, for example, differently parameterized Michaelis-Menten 
type enzymatic reactions used for different reactants. One can build 
large models from a variety of modules representing physical or 

chemical processes such as the flux via a cell membrane transporter 
or ion channel or an enzymatic reaction, or a transcription regulatory 
pathway (Beard et al., 2005) incorporating knowledge of their con-
nectivities. Allowing the modeler to draw pre-existing modules 
from a repository or extract them from previously developed models 
and enables the modeler to create new models quickly for hypoth-
esis testing, a key to Physiome development (Bassingthwaighte et al., 
2009). Below are two approaches to implementing modular mod-
eling within JSim.

Modular Program Constructor (MPC): MPC focuses on using eas-
ily understood directives to extract generically coded JSim MML 
equations from files, changing the names of the generic variables to 
ontologically informative names and assembling the resulting code 
into new equations (Raymond & Bassingthwaighte, 2011). For 
example, MPC can take MML code representing a single tissue 
exchange region (26 lines), and generate a whole organ heterogene-
ous model for convection, diffusion, and reaction with 20 regions 
(1698 lines). See http://www.physiome.org/jsim/models/webmodel/
NSR/MPC/. MPC currently runs outside of JSim but is planned for 
incorporation into a future JSim release.

Modular construction with SemSim: Precise semantic identifica-
tion of variables and parameters is a prerequisite to merging of 
preconstructed submodels or modules into integrated systems or 
multiscale models. A future release of JSim will incorporate the 
tools for annotating models and their computational elements 
against biomedical ontologies and knowledge bases (Rubin et al., 
2006). These annotations will make it easier for users to search 
the Physiome Model repository and to identify the biological phe-
nomena modeled. Formatted according to the semantic simulation 
(SemSim) framework (Gennari et al., 2011), these annotations will 
also make it possible for tools to decompose and merge models 
in a more automated fashion, and allow the modeler to work at a 
biological, rather than computational level of abstraction (Beard 
et al., 2012). For example, selection of an ion pump, such as the 
NaKATPase, would bring up a set of modules from which the mod-
eler would choose the version suited to the particular context, and 
then the code for the integrated model would be automatically gen-
erated from the annotated modules in the library.

SED-ML support: SED-ML (Kohn & Le Novere, 2008) (for Simu-
lation Experiment Description) is an emerging standard to promote 
reproducibility by capturing all the details of an in silico experi-
ment. Major entities described in SED-ML are models, simulation 
setup (i.e. time and numeric solver parameters), tasks (a model run 
with specified a simulation setup), data generators (methods for 
combining model outputs from different tasks) and outputs (plots 
& tables). JSim projects support these entities, but not in a scripted 
form. To support SED-ML, we are currently developing a feature 
called Second Level Analysis (SLA) that will allow JSim users 
to script common JSim activities (e.g. model runs with different 
parameter sets, data combinatorics, plotting and export), in a way 
that maps to SED-ML. SED-ML files will be read into JSim as SLA 
scripts and run there. Conversely, JSim SLA scripts may be exported 
to SED-ML for use in other simulators that support SED-ML.
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Getting started with JSim
Information for download and installation, running JSim, and writ-
ing JSim MML models can be found at http://www.physiome.org/jsim/.

Data and software availability
Zenodo: JSim downloads and models Version 2, doi: http://dx.doi.
org/10.5281/zenodo.8652 (Butterworth et al., 2014)
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  27 May 2014Referee Report:
 doi:10.5256/f1000research.4229.r4743

This revision of the manuscript and the discussion provided in the responses to reviewers improves the
original manuscript. There are just a few very minor typographical errors that could be tidied up in any
future revision of the manuscript.

Section: "Run-time performance"
Second paragraph, "....on the value of the variable themselves," should be "...on the value of the
variableS themselves,"
 
Table 4 title, "JSim Optimizers" should probably be "JSim Solvers"

Section: "Some Alternative Simulation Platforms"
Section title should follow the same case as other sections (i.e., sentence case).
 
First paragraph, "..as opposed to JSim declarative approach." should be "..as opposed to JSim's
declarative approach."
 
First paragraph, missing final period at the end of the paragraph.

Section: "SED-ML Support"
Section title should also be sentence case.
 
"..[E]merging standard for to promote reproducibility.." - should probably delete the "for".

In the responses to the reviewers comments, there is a bit of confusion on the relationship between
FieldML and CellML. It is important, I think, to note that FieldML is completely independent of CellML and,
for example, will not be part of a CellML translator.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Referee Responses for Version 1

 David Nickerson

Page 17 of 25

F1000Research 2014, 2:288 Last updated: 31 JUL 2014

http://dx.doi.org/10.5256/f1000research.4229.r4743


F1000Research

 David Nickerson
Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand

Approved: 23 January 2014

  23 January 2014Referee Report:
 doi:10.5256/f1000research.3152.r2922

This manuscript provides an introduction to, and description of, the JSim modelling system. The authors
highlight the general purpose utility of this platform through the use of specific application examples, that
are easily understood and followed by the reader and potential JSim users. This manuscript provides all
appropriate links and examples that readers would require to get up and running with the JSim software.

This paper is well written, with just a few points that the authors may want to consider in future revisions of
the manuscript.

The authors touch briefly on reuse of existing models/projects and the use of a CVS repository to
archive the history of model development, as well as the discussion on modular modelling in the
future developments section. The basis for this modularity and reuse seems to result in the
development of a new, monolithic MML document for the assembled model. It might be useful to
see if there are features in either JSim or MML that allow dynamic links to the source modules to be
maintained allowing users to alternate sources or versions of the source modules (rather than the
cut-and-paste style described in the manuscript).
 
In addition to the versioning of the JSim input data (experimental data, MML, projects, etc.), it is
often the case that a specific piece of work requires some minimum version of the software itself. I
wonder if there is any link between project files and JSim releases? For example, are users
browsing the Physiome Repository able to determine if they need to update their version of JSim
prior to loading a project file (or if in fact the software handles this internally).
 
The manuscript would benefit from a more thorough comparison of JSim to alternative tools, or at
least some links to specific tools being contrasted in the article.
 
There is no description of how spatial geometries (finite element meshes or finite difference
grids) are defined in JSim. Are the evolving standards for such descriptions (e.g., FieldML or
SBML-spatial) being used or are there plans to use such? A comparison with approaches taken by
tools like the Virtual Cell or Chaste might be useful.
 
The authors make no reference to the adoption or interchange with the SED-ML standard. It would
be useful to discuss any plans in this regard. Similarly, the evolving COMBINE archive format has a
large overlap in aims with the JSim project file and the authors might want to comment on any
plans to make use of that archiving format or contributions in that direction.
 
In some parts of the manuscript (e.g., the caption for figure 3) the description of the
modelling/simulation example seems a bit excessive, and detracts from the primary focus of the
article.

Minor comments
Page 5, column 1, first paragraph: Antimony is mentioned as a model import source format, but
that format is not defined previously.
 

Page 10, column 1, third paragraph: "...using several different numerical method," missing 's' on
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Page 10, column 1, third paragraph: "...using several different numerical method," missing 's' on
method.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

1 Comment

Author Response

, University of Washington, Seattle, USAErik Butterworth
Posted: 17 Apr 2014

“The authors touch briefly on reuse of existing models/projects and the use of a CVS
repository to archive the history of model development, as well as the discussion on
modular modelling in the future developments section. The basis for this modularity and
reuse seems to result in the development of a new, monolithic MML document for the
assembled model. It might be useful to see if there are features in either JSim or MML that
allow dynamic links to the source modules to be maintained allowing users to alternate
sources or versions of the source modules (rather than the cut-and-paste style described in
the manuscript).”

We agree that JSim and MML modularity could be improved. We are currently in the design
stages of a more modular form of MML that moves away from the current monolithic
approach.  Design goals for the new MML include the following: the ability to draw upon and
reuse code modules stored either in a project file or in a permanent archived location
on-line; support for the recently developed SBML "Hierarchical Model Composition"
package; support for support for CellML v1.1 modular structuring; support for structured
multiple reuse on modules (e.g. support of multiple parallel pathways); support for run-time
switching of alternative modules; compatibility with existing MML models. However, we feel
this work is not yet far enough along for public presentation.
 
“ In addition to the versioning of the JSim input data (experimental data, MML, projects,
etc.), it is often the case that a specific piece of work requires some minimum version of the
software itself. I wonder if there is any link between project files and JSim releases? For
example, are users browsing the Physiome Repository able to determine if they need to
update their version of JSim prior to loading a project file (or if in fact the software handles
this internally).”

All NSR provided models are curated to work properly with the current version of JSim,
which is the version run in live Web applets. Users may also download JSim project for use
on their own workstation, which may have an older JSim version installed. The vast majority
of the time, JSim runs correctly on projects created by different JSim versions.  The only
difference will be that, when running an older JSim version, the latest features will not be
available.  There are three primary reasons why this is the case.  First, the basic functionality
of JSim and project file structure has been stable for many years.  Second, the XML

structure of project files allows old versions of JSim to ignore features in newer project files. 
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structure of project files allows old versions of JSim to ignore features in newer project files. 
Third, a version number tag in each project file allows newer versions of JSim to migrate old
projects to the new format.

 Occasionally, an NSR modeler discovers a JSim bug that must be fixed for proper
operation.  Release of that model will be delayed until a new version of JSim is released.  In
that case, our best practices recommendation is to note the minimum JSim version required
to run the model on the relevant web page.  For published papers, where it is important to
reproduce figures "warts and all", it is recommended that the papers list the version of JSim
used to produce the results.

 Based on your comment, we discussed the possibility of making the JSim project version
for each model more visible on our site.  The consensus was that, given the generally high
level of compatibility, this information would be mostly misleading to users by assigning an
undeserved level of attention to the version number.
 
“The manuscript would benefit from a more thorough comparison of JSim to alternative
tools, or at least some links to specific tools being contrasted in the article.”

We've added a new section "Some Alternative Simulation Platforms" (page 18) that briefly
discusses some alternative simulation platforms to JSim.  Given the large number of
available products (over 250 SBML-based products alone) the list is not exhaustive. 
Platforms mentioned are Virtual Cell, COPASI, roadRunner, Chaste, PCenv, COR,
OpenCell, OpenCOR and Continuity.  Given limited space, the descriptions of these
programs are not complete nor is there a feature-to-feature comparison with JSim.  Such a
comparison, evaluating available mathematical methods, features, portability, usability,
performance and scientific reproducibility would be a good idea for a follow-on paper to
this one.
 
“There is no description of how spatial geometries (finite element meshes or finite difference
grids) are defined in JSim. Are the evolving standards for such descriptions (e.g., FieldML or
SBML-spatial) being used or are there plans to use such? A comparison with approaches
taken by tools like the Virtual Cell or Chaste might be useful.”

In MML, at present, spatial grids are defined in regular N-space.  The 2D and 3D geometries
used in finite element methods and higher dimensional PDEs are often specified using
much more complex data structures.  We forsee adding support for 2D and 3D PDEs on
regularly spaced grids to JSim at some point in the not-too-distant future (JSim's MML
compiler already supports parsing 2D and 3D PDEs; what is currently missing is appropriate
numeric libraries).  However, support for irregular high-dimension grids would require major
changes to JSim and is not envisioned in the near future.  We have monitored the
standardization efforts of the SBML spatial extension and FieldML.  At the point when any
serious body of models exists for either of these formats, we will consider adding support for
them to JSim's existing SBML and CellML translators.  The utility of this effort will depend
upon how many models in that body are runnable given JSim's limitation to regularly spaced
grids.
 
“The authors make no reference to the adoption or interchange with the SED-ML standard.
It would be useful to discuss any plans in this regard. Similarly, the evolving COMBINE

archive format has a large overlap in aims with the JSim project file and the authors might
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archive format has a large overlap in aims with the JSim project file and the authors might
want to comment on any plans to make use of that archiving format or contributions in that
direction.”

SED-ML support within JSim is currently under development.  It is described in a section
entitled "SED-ML Support" to the "Future Developments" section (page 20) of the paper to
describe our plans there.

COMBINE looks like an interesting project, albeit one in the preliminary stages.  But why
would it be advantageous to migrate away from JSim project files?  Should COMBINE
become widely adopted, we will certainly consider supporting COMBINE import and export
options within JSim.  I think COMBINE is too preliminary for mention in the paper, however.
 
“In some parts of the manuscript (e.g., the caption for figure 3) the description of the
modelling/simulation example seems a bit excessive, and detracts from the primary focus of
the article.”

Figure 3 is problem, we agree. But it takes quite a description to convey understudying of
what can be rapidly learned from such multidimensional plots. Complex, but easy to
produce and rapid to interpret after learning how. We think the legend is needed so that a
reader can determine how valuable the feature might be, even though it takes space.

Minor comments:
“Page 5, column 1, first paragraph: Antimony is mentioned as a model import source format,
but that format is not defined previously.”
“ Page 10, column 1, third paragraph: "...using several different numerical method," missing
's' on method.”

Thank you. Text now corrected.

 None.Competing Interests:

 Steven Niederer
Biomedical Engineering Department, King's College London, London, UK

Approved: 10 January 2014

  10 January 2014Referee Report:
 doi:10.5256/f1000research.3152.r2924

The paper “JSim, an open-source modelling system for data analysis” provides a succinct update on the
functionality and utility of the modelling platform JSim. The paper provides a concise description and link
between the JSim community modelling philosophy and how this is facilitated by the JSim software
platform. The complete description of the JSim environment will be of interest to the modelling community
and this manuscript highlights much of the functionality that they require.  

This publication could be improved by addressing:
As described in the article, the platform JSim has been developed over a period of over 40 years.
Previous articles on JSim have been published and this article would be strengthened by
highlighting the new features / functionality added to the platform since the previous JSim article.
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highlighting the new features / functionality added to the platform since the previous JSim article.
 
The article, as exemplified in the abstract, focuses on the technical functionality of JSim. If JSim
can be readily set up or used by people who wish to analyse their experimental data with models,
for example experimental researchers, as opposed to developing new models, then it would be
worth highlighting this in the abstract and text.
 
The article does not discuss or review alternate simulation platforms (for example COR, OpenCell,
Continuity, CHASTE, SBML simulation environments). For new users wishing to make an informed
decision it would be useful to highlight the differences between JSim and alternate platforms.

Minor comments
In the introduction, the statement that mathematical models provide clear and precise hypothesis
that are susceptible to contradiction and that failure to fit leads to rejection needs to be more
nuanced, particularly in the case of biology where comparisons are often made between
deterministic models and variable experimental results.
 
It is not clear in the loop section if JSim supports nested loops, this could be clarified.
 
It would be of interest to provide some indicative performance measures. For example if simulating
a cardiac action potential will JSim solve faster or slower than real time on a conventional desktop.
 
The authors could comment on the utility or potential for adoption of new mark-up languages for
spatial problems (FieldML) or problem definition formats (SED-ML).
 
It would be interesting for the authors to comment on how or if they have verified the JSim code
stack.  

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

1 Comment

Author Response

, University of Washington, Seattle, USAErik Butterworth
Posted: 17 Apr 2014

“As described in the article, the platform JSim has been developed over a period of over 40
years. Previous articles on JSim have been published and this article would be
strengthened by highlighting the new features/functionality added to the platform since the
previous JSim article.”

This is the first "complete" of description of JSim to be published. Previous papers have
made use of JSim as a tool,  but did not describe the software or the systematic approach to

it.  A comparison of JSim functionality to its predecessors, SimCon and XSim, is in the
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it.  A comparison of JSim functionality to its predecessors, SimCon and XSim, is in the
section labeled "Background" in the paper's introduction.
 
“The article, as exemplified in the abstract, focuses on the technical functionality of JSim. If
JSim can be readily set up or used by people who wish to analyse their experimental data
with models, for example experimental researchers, as opposed to developing new models,
then it would be worth highlighting this in the abstract and text.”

Good suggestion. One sentence is added to the abstract, and four sentences added on
page 16 in a new section just before the Summary entitled "Using archived models for
analyzing one’s own data"
 
“The article does not discuss or review alternate simulation platforms (for example COR,
OpenCell, Continuity, CHASTE, SBML simulation environments). For new users wishing to
make an informed decision it would be useful to highlight the differences between JSim and
alternative platforms.”

Although this paper's main focus is a fairly detailed description of JSim, we've added a new
section "Some Alternative Simulation Platforms" (page 18) that discusses alternative
simulation platforms to JSim.  Given the large number of available products (over 250
SBML-based products alone) the list is not exhaustive.  Platforms discussed are Virtual Cell,
COPASI, roadRunner, Chaste, PCenv, COR, OpenCell, OpenCOR and Continuity.  The
descriptions of these programs are not complete and there are no feature-to-feature
comparison between them and JSim.  Detailed comparison, evaluating available
mathematical methods, features, portability, usability, performance, and scientific
reproducibility would be a good idea for a follow-on paper.

Minor Comments:
“In the introduction, the statement that mathematical models provide clear and precise
hypothesis that are susceptible to contradiction and that failure to fit leads to rejection needs
to be more nuanced, particularly in the case of biology where comparisons are often made
between deterministic models and variable experimental results.”

The second paragraph of the Introduction has been revised accordingly.
 
“It is not clear in the loop section if JSim supports nested loops, this could be clarified.”

JSim currently supports 2 loop nesting levels (inner loops and outer loops).  This has been
clarified in the section "Loops: Iterating solutions to exhibit behaviour" (page 11).
 
“It would be of interest to provide some indicative performance measures. For example if
simulating a cardiac action potential will JSim solve faster or slower than real time on a
conventional desktop.”

Since JSim is a general purpose modeling engine, it can't be said that there is a particular
"standard" model upon which to base comparisons. JSim users typically write models that
run somewhere between a small fraction of a second to several minutes depending upon
the complexity and numeric methods required. In particular, spatial models using PDEs
compute much slower than compartmental models using ODEs.  Most pharmacokinetic and
whole body circulatory models run faster than real time,  but there are exceptions, e.g.

models with multistage receptors, transporters and complicated  reaction networks. Under
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models with multistage receptors, transporters and complicated  reaction networks. Under
Run Time Performance on p 15, we've added a description of ODE and PDE assessment of
model solution times in millisecond solution times per second of model time, comparing
solvers and ODEs versus PDEs. This new section gives an overview of the various factors
affecting run-time performance, and gives some run times for a selected set of models
(including a BR cardiac action potential model). These run times vary from about 13,966
times faster than real time to about 5 times slower.

We have a paper in preparation that discusses comparative performance in more detail, and
will contrast JSim performance with several other computational engines for SBML and
Matlab models.
 
“ The authors could comment on the utility or potential for adoption of new mark-up
languages for spatial problems (FieldML) or problem definition formats (SED-ML).”

SED-ML support within JSim is currently under development. We have added a section
entitled "SED-ML Support" to the fact "Future Plans" (page 20) section of the paper to
describe our plans there.

Support for FieldML is a more problematic. FieldML provides a mathematical framework for
calculating a CellML point models over space, defined in terms of a real topological
manifold.  In the field of 2D and 3D computation, such manifold representations are often
complex, irregular spatial grids.  At present, JSim represents N-dimensional space as a
cross product of regularly spaced grids.  Support for generalized manifolds would be a
major change in functionality requiring significant time and resources.  While such a change
might be contemplated some point in future, it is not within our immediate plans.  JSim could
support a limited version of FieldML, supporting the subset of real manifolds that are regular
grids in N-space, but it is unclear what would be gained from a user's point of view.  The
primary advantage of standard ML support is the ability to access existing archives and
exchange models between modeling systems.  Unlike CellML and SBML, there is no
evidence of large archives of FieldML models that can be run on a variety of platforms; our
understanding is that FieldML-defined model can be run only in CMiss at this point.  It can
be considered bothersome to have separate archival forms for PDEs and ODEs. What one
wants for ease of reproducibility is one self-consistent system, preferably all in one file. JSim
does this for a limited repertoire of ODEs, 1- and 2-D PDEs, and DAEs.
 
“It would be interesting for the authors to comment on how or if they have verified the JSim
code stack.”

Thanks for this suggestion. We've added a new section "Code Verification" (page 16) to
address this topic.  In brief, we use a combination of various strategies including
comparison with analytic solutions, test statistics, comparison with other computational
environments and round-tripping.  Bug reports from modelers who find computations that
violate physical intuition play a major role. An automated verification suite of anointed
regression tests ensures continued compliance over subsequent releases.

 None.Competing Interests:
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