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1. Motivation: source of data in mechanical science and engineering
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Multimodal data generation and collection
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Data generation and collection in composite systems
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Data exist in multiple length scales for composite materials system

e B Single lap bolt joint * The following sample cases are based
on Unidirectional (UD) composite microstructure
| L * Local and average response of UD composite's

Representative Volume Element (RVE) are of interest

. N Woven
' composite

- ™
7’ UD \\

e s composite  \
monitoring for \
84 um
structural 1
performance I MoS, reinforced
Heterogeneous, non- \
stationary microstructure
o i Fiber diameter:
Codrtesy of AFRL 7 um
llllllll Experimental
characterization
Anomaly detection for fiber orientation Courtesy of AFRL and imaging >

Courtesy of AFRL

» Microstructure, material properties, structural performance.

» Information from four different scales are integrated to predict properties at part scale.
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Approach: experiments and modeling motivated by data
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Porosity structure
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via machine learning Image-based fatigue predictions
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properties modeling

Fatigue life

1e9 g

Te7 I.f__E

fe}

—7eb5 @

Cellular automaton (CA) modeling S

o —7e3°

Mushy zone a ¥ a I—7o i

at melt pool
boundary : N
(Cannot be observed by in-situ experiments) Grain-scale thermal- ;
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Data generation and collection in Adolescent Idiopathic Scoliosis (AlS)
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Spine images
= CT MR

#,.  Moterialze
‘;" MImeCs

All curvature types proposed
by Scoliosis Research Society

Age: t; months ¢, months t3 months

Image segmentation
(Assigning landmarks)

Spinal
fusion

‘."'.- | |
14 Double thoracolumbar

*XR: Xray ** CT: Computerized Tomography, ***MR: Magnetic Resonance, courtesy: Lurie Children’s Hospital of Chicago
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2. Mechanistic Machine Learning (MML) for mechanical science and
engineering
— Interpretation of the data

© Northwestern Univ. 2019, 7



Interpretation of data in mechanical science and engineering
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Data analysis
using Machine
Learning

Means
Feature Engineering

Extction of firdimension and fiber
distribution from UD cross section

____ Dimension Reduction

600 x 600
voxels

Interégfioa tenslnr
Regression

© 1000
= ./\leural Network

5 500 ° generated material
laws

1500

ol
0 0.01 0.02 0.03
€

Classifiction

St 0 o (RS B
% 9 N

Debonding  No debonding

Goals
To extract

meaningful data

To reduce degrees
of freedom

To speed up the
computation

To discover hidden
relationships

To categorize data =
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2. Mechanistic Machine Learning (MML) for mechanical science and
engineering

— Relevant concepts in data science
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Three types of machine learning in mechanical science and engineering
NORTHWESTERN

UNIVERSITY
Unidirectional composite
Strain contour

Dimension e.g., Principal Component
Clustering: reduction: Analysis (PCA)
grouping reduc?? thte number

objects of features

Unsupervised Predicts microstructure averaged

Learning: self- stress given external loading
organized data 1500
pattern

.- @ 1000
recognition i

S 500 ~

: 0+
Regression:
Hidden

. relationship
M aCh I_ne between variables
Learning

Supervised
: Learning:
Reinforcement mapping an
Learning Input to an .
Classification:
|dentifying Damage
objects based X
Data from: Li, H., Kafka, O. L., Gao, J., Yu, C., Nie, Y., Zhang, L., Tajdari, M., Tang, S., Guo, X., Li, G., Tang, S., 2L thelr CIaSS

Cheng, G., & Liu, W. K. (2019). Clustering discretization methods for generation of material performance databases in
machine learning and design optimization. Computational Mechanics, 1-25.
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Data-Science: Transduction
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Data-science is the “fourth paradigm” of science
(empirical, theoretical, computational, data-driven) 27!

Conventional methods
Induction: specific observations to general theory (bottom-up)
Deduction: general theory to testable observations (top-down)

[ Theory ]

Induction Deduction

[Training data ] > [ Test data ]
Transduction

| \ »

Machine/Deep learning:

Transduction: learn from given data to apply to new data 22

© Northwestern Univ. 2019, 11



Relevant concepts in data science
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. . )
Machine Learning
d A program or system that builds (trains) a predictive model from input dataJ
fDimensionality A
J Feature dimensionality: The number of features for each data point
L  Input dimensionality: The total number of data points y
o . )
Fidelity
. O Quality of faithfulness of data )

f High accuracy

x Limited availability

—

-

Fidelity

High Low

L{ Multi-fidelity]J

==

gu—

l Relatively inexpensive

x Low accuracy

© Northwestern Univ. 2019, 12



Relevant concepts in data science (cont)
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r A
Database
A collection of rows or dataset with one or more features.
§ y,
4 )
Features
O Individual independent variables defining characteristics of a data set.
_ Informative and non-redundant data. y
. . N
Feature engineering
 Process of determining which features might be useful and converting
L raw data into said features. )
4 . . . )
Dimension reduction
 Process of decreasing the number of dimensions representing a feature.)
r . : \
Objective function
1 The mathematical formula or metric that a model aims to optimize.
- J

Courtesy: Google developers https://developers.google.com/machine-learning/glossary/#m

© Northwestern Univ. 2019, 13



lllustration of relevant concepts for AIS
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Data gathered using 2D XR
images

Source

Database
Generation

#-Iandmarks

# vertebras

D|men5|onallty of data( Ns): 17x2x6

Inclination
Angle (a3) Inclination
Angle(a,)

Spinal Angles

Co-ordinate BMD**

e Co
oAg

oSp

*Adolescent Idiopathic Scoliosis

e Stress

A
| |
[%p]
o | Features Data points
Features 3
3] 1(2(3]. . Ns
L
G
Age o X
Co-ordinates 4? p
Spinal Angle “©
Stress CC)- a
BMD ‘» t
3 At
g BMD
D S

-ordinates from x-ray
e, test frequency

inal angles

X = Vector of input coordinates of a landmark [X; X, X3 ]
o = Stress vector [0, Oy, 033 015 O3 O34]

a = Global angel (Spinal Angles) vector [a; a, as a, as |

t = Age of the patient

At = age variance between target age and current age (month)

**Bone Mineral Density

© Northwestern Univ. 2019, 14



Basic concepts of artificial neural network (ANN)

NORTHWESTERN
UNIVERSITY

Obijective: To learn hidden relationship between input and output

Sample input data
& o (MPa)
3 o) Data point 1 0.1 20
Data point 2 0.2 38.6
Layer[ =1 Layer [ = 2 Layer [ = 3
. Assume g* = 20
Input layer Hidden layer Output layer
: [1] .
al@: value of each neuron Gradient descent' : l =1
1=3_ 1=2 —
Wilj: weights connecting neurons AWi°= ada;=; AW = adWiT? aizy
b!: bias on each neuron AWLT3= adalz3 AWS?= asWi53 alZ]
it . =2 _ P
Optimization problem: AW31 = ada;Z3 AWll?jzz a6W11§3 af;}
minimize Error: E = —(a —alz3)?

o*:target value a:learning rate

1= 3
[1] Boyd, S., & Vandenberghe, L. (2004). Convex optimization. 0= (O- ai=
Cambridge university press. © Northwestern Univ. 2019, 15



Example of training Neural Network (NN): learning back-propagation

NORTHWESTERI\.
UNIVERSITY

Neural network:

E (s)
2 — 2
E a%;% O'
Start training

from data point 1

Layer [ =1 Layer [ = 2 Layer [ = 3
Input layer Hidden layer Output layer

f(Z ‘af™ + bi=%)

f (X): activation function,
e.g. ReLU function, f(X) = max(0, X)

© Northwestern Univ. 2019, 16



Check error, and iterate for convergence
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c=0.1 0.1&12‘ . =20
20.12 \‘/ :

J

I

Error:E =3 (o*—ai>)?
E =45 - 0.5202

The error will reduce by iteration, finally Repeat for all data points

until error is minimized

E < E*, convergence

© Northwestern Univ. 2019, 21



Neural Network as interpolation functionl']
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We often use a linear interpolation function " (x) to approximate any continuous
function f(x).

€ Goal function f(x):

| ) N e.g. f(x) = exp(—(x — 0.5)%/16) (blue line)
J

= Approximate

¢ Approximate function: Ny Nodes

N¢=5
e.g. Z f f(x])N(x Xr),
{x1, X5, ...,x5} = {-10, =5, 0, 4, 10}
(Orange line)

\1) € Assume linear shape function

0.5

X1 X X . .
ReLU: Rectified linear unit, usually
N =5 =5 in form: max(0, X)
Z f(x])N(x x]) = z T] x; ReLU, x;, x5, Xp41] f(X))
J
h f i !
Shape function — GN (x; {w}], {b},)

approximated by NN(2 3]

[1] Zhang, L., Yang, Y., Li H., Gao J., Reno D., Tang S., Liu W.K. Neural network finite element method, in preparation

[2] Approximation by superpositions of a sigmoidal function, by George Cybenko (1989).
[3] Multilayer feedforward networks are universal approximators, by Kurt Hornik, Maxwell Stinchcombe, and Halbert White (1989).

Unpublished results © Northwestern Univ. 2019, 22



Proof: NN for 1D shape function approximation
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Lemma 1 The continuous piece-wise linear function

0 T < a
B(r;a,b)={ r—aa<x<bh,
b—a x>0b 0

can be represented by neural network as

—ReLU(—RelU(x—a)+b—a)+b—a
e.g. a=-1, b=0
2 - - - 2
1 T 11
= - A
-2 : : . -2 . . !
2 1 0 1 2 2 -1 0 1 2
X X
Stepl: —ReLU(x +1) +1 Step 2: —ReLU(—ReLU(x+1)+1)+1

Zhang, L., Yang, Y., Li H., Gao J., Reno D., Tang S., Liu W.K. Neural network finite element method, in preparation

Unpublished results © Northwestern Univ. 2019, 23



Proof: NN for 1D shape function approximation
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For 1D linear basis function, take the reflection to construct the right part and

then combine these two parts.
2 : : :

N DN

2

-1

-1 -1 0 1 2

2 4 o 1 2 2
Step 3: ReLU(—ReLU(x) + 1) Step 4:—ReLU(—ReLU(x+1)+ 1) +1
+ReLU(—ReLU(x) + 1)
Reflection: right part Combination: basis function

Input Layer Layer 2 Layer 3 Output Layer
(Layer 1) (Layer 4)

Unpublished results © Northwestern Univ. 2019, 24



f Effect of weights and biases on the output
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bj=}
X T
Wil:=12,j:1=‘
Data point 1 1
Data point 2 0.5 0.3

Input Layer | ayer 2 Layer 3 Output Layer
(Layer 1) (Layer 4)

X-Gh

25

05p

. ) b N " / - i
4 3 2 A 0 1 2 3 4 a = 2 B ;' ! = >
X

Change in bias b}z_:z) changes the location = Change in weights szij, changes the slope

Zhang, L., Yang, Y., Li H., Gao J., Reno D., Tang S., Liu W.K. Neural network finite element method , in preparation
UnpU blished results © Northwestern Univ. 2019, 25
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2. Mechanistic Machine Learning (MML) for mechanical science and
engineering

— Introduction to different Machine Learning (ML) methods
a. Unsupervised learning

b. Supervised learning

© Northwestern Univ. 2019, 26



A simple illustration on unsupervised learning for clustering
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Objective: Group 4 data points (each having five features) into 2
clusters

Four individual data points Two clusters
A Cluster 1 Cluster 2

! ! ) ]
Clustering
(e.g., K-means
clustering)

=

Five Features
|

Averaged two columns

Clustering: Reduces the data dimensionality

© Northwestern Univ. 2019, 27



Concept of K-means Clustering
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How does K-means clustering work ? .;.
N dimensional ®
Raw data A™ = [AT AT . AT :*.
—> @ — ¢
—p @
Data point A™ S
oe®
0* °
M data points A™ ..
k: index of clusters ..* ®
m.: index of data points
.*.
» Cluster: @9
» Points with most similar values |
» Has one average point: mean average of nearby data Kclusters
points * kv
» Obijective:

Minimize total distance between each average point and
the data points within its cluster.

K
Mathematically: minimize:z z ||A””—Wk||2

k=1 Am ¢ sk
Watt, J., Borhani, R., & Katsaggelos, A. K. (2016).Machine learning refined:
foundations, algorithms, and applications. Cambridge University Press.

S, k=1
§%, k=2
$3, k=3
S$*, k=4
$°, k=5

S6 k=6

4 4 Average points W¥

A™: Data point in cluster S*

W¥. Average point in cluster S¥

||: Euclidean distance

© Northwestern Univ. 2019, 28



K-means clustering for Unidirectional (UD) composite
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Grouping local material points in the microstructure based on strain
responses (or other quantities, such as effective plastic strain)

Strain distribution Cluster distribution based on strain intensity

- \ - . %

2D microstructure with 2D microstructure with 32
600 by 600 voxels clusters

* The strain field, originally represented by 360,000 voxels, is now represented
by 32 clusters
¢ The strain patterns are adequately captured by the clusters

© Northwestern Univ. 2019, 29



Self-Organizing Map (SOM) - Concept

NORTHWESTERN
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How does Self-Organizing Map work? [12,13] N dimensional xe
®.0 K; X K, clusters
Raw data AT = AT, A7 Ay ] ot
Data point A ° ‘Q
3 x 2 ® o
®
M data points A™ 0*‘.
xxor Average points W¥ °
[
» Cluster: Kok ..*‘

» Points with most similar values

» Has one average point: weighted average of nearby data points
» Objective:
Distribute all data points into a map of K; X K, clusters so that the dissimilarity within a
cluster is minimized, and the dissimilarity between clusters with nearby indexes is minimized

[Kl,Kz] [Kl;KZ] 2
minimize: » ') (llk = K|]) [|a™ - w|
k=[1:1] Am E‘Sk kr=[1‘,1]

||k — k'||: Euclidean distance between
clusters’ indexes
h(||k — k'||): Gaussian kernel function

© Northwestern Univ. 2019, 30
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Unidirectional UD fiber composite (plane strain condition)

K = 8 clusters (matrix)

M M b e K N
{ \.'.PV " b

k=1
K-means
(Matrix phase) . k=2
200
k=3
Od 100 200 300 400 500 600
600 =
500 [ g N
Self- R
organizing o0 [
ma p 200 ﬁ ¢
(Matrix phase)

. 0 n ._ b S
0 100 200 300 400 500 600 0 100 200 300 400 500 600

SOM provides orderly ranking of clusters, feature indicators, and
physical insights, e.g. strain distribution, damage
© Northwestern Univ. 2019, 31
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¢ Supervised learning establishes the hidden relationship between the input
and output data.

Supervised learning

20 Gradlent Search - Polintsl anld Lilne i
lff'_"’%‘?o: 0 1401 o — 0.00x + 0.00
L3F b=0.00 1 2 o
< 100 | o
3 10t 1 sl
Training Prediction E| | eof 'S .
E . 40+ .‘o"
0.0} ° 41 20t *
Quick overview of Supervised Learning 05 . { PErr—————
210 —05 00 05 10 15 -20 0 20 40 60 80 100120

line y-intercept (B)
Courtesy: http://aiobserve.com/Al/ML/31.html

** Can predict the material law from input and output strain-stress data.

: o (wpa o JOININC
- "l/ ‘\w '%‘t *,‘\\v K
Data point 1 0.1 20 . ﬁ"A 4:,:-; “ S 4‘:‘._. o
\ 20\ h& —
), \, @R -
Data point 2 0.2 38.6 - ..rq XY o = NN (8)

AH/\W

: Tra/n/ng Prediction
Sample [1] ueXp eriment u u

% Used for — Regression and Classification

[1] Tang, S., Zhang, G., Yang, H., Guo, X,, Li, Y., & Liu, W. K. (2019). MAP123: A Data-driven Approach to Use 1D Data for 3D
Nonlinear Elastic Materials Modeling, CMAME (Submitted) © Northwestern Univ. 2019, 32



=’ Regression
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“* Regression: prediction of response to an input based on a priori
knowledge of the relationship between input and output data.

Input Data’-2

£ d Find a relationship

between stress and strain
ego=2xc+1

1. Gather data from experiment
or high-fidelity microstructure
numerical simulation

2. Assume plain strain. £ and o . N hesi Hypothesis: linear or
each contain three components o = f (&) (hypothesis) nonlinear relationship

Li, H, Kafka, OL, Gao, J, Yu, C, Nie, Y, Zhang, L, Tajdari, M, Tang, S, Guo, X, Li, G, Tang, S, Cheng, G & Liu, WK 2019, Clustering
discretization methods for generation of material performance databases in machine learning and design

optimization, Computational Mechanics. https://doi.org/10.1007/s00466-019-01716-0
© Northwestern Univ. 2019, 33



Regression using Feed Forward Neural Network (FFNN)
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¢ The relationship between input and output can be explored using
FFNN (an ANN with multiple hidden layers)

Hidden layers

bf:z b{:J,,..,NL = bf:NL— 1
Input layer ; wE J we Output layer
w' J . =N,

Input Data’-2 i z.§ W™

=1
eV . 1 oM
g G XX F XX
Yy yy
iy M
T N.,,g;n Ty
Layer /=1 Layer /=N,

Layer/=2 cee Layer/=N -1

FFNN training: solving the following optimization problem
find :Wi72, b2, W2, b

L
Ny Ny(l1=3)

] / 1 [=3,s wl=3.5\2
min loss function -MSE = 3. wI=3,
ft NT X NN(I = 3) ; ; (O-k Oy )

Ny(=2) Ny(=1)
e = | 35 oot

J=1

i=1

Li, H, Kafka, OL, Gao, J, Yu, C, Nie, Y, Zhang, L, Tajdari, M, Tang, S, Guo, X, Li, G, Tang, S, Cheng, G & Liu, WK 2019, Clustering
discretization methods for generation of material performance databases in machine learning and design optimization,
Computational Mechanics. https://doi.org/10.1007/s00466-019-01716-0

© Northwestern Univ. 2019, 34



Regression using Convolutional Neural Network (CNN) for inverse modeling
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For a microstructure with given micro-stress distribution, can CNN
predict the macro-strain?

Micro-stress xx distribution

Inverse modeling

What is the macro-
strain £ ?

Unidirectional
microstructure

© Northwestern Univ. 2019, 35
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Regression using CNN for inverse modeling

Inverse modeling approach to obtain macroscopic strain from microscopic stress
distribution using regression through CNN

Convolution
layers for
feature
extraction

CNN training: solving the following optimization problem
find :

Feed Forward Neural Network

Padding

Stress
distribution

Kernels

\ : / Convolution

/&
c:

f Repeat if necessary I . .
M. microscopic

Pooling for regression

—

Y

A J

Fully connected Output

N

fl

Flattened

min loss function :

where :

M: macroscopic

w! bl (1=2,3..Ny)., in FENN

mn*

WES D (k= 1, 2. Ngermer)s 1 = 1,2...Neony), in Convolution layers

Ealr ?

Nt

MSE = — Z Caa s*M-S)z

Nt

s=1

" = Frenn (ﬁf{anen (3?;} (---ﬁﬁw (5‘}:0;, (o’ (ﬂ’,ﬁ))) )))

© Northwestern Univ. 2019, 36



Classification of damage
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+» Classification is a process of predicting the known class of given data
points.

E.g., classify the state of the microstructure as “no damage” or “damage” based
on local stress distribution

» Microscale material point damage is defined as: for any material point in the
microscale domain, if the micro-stress exceeds certain threshold, the
micro material point is damaged

« Macroscale material point damage is defined as:

1) Pp > Pyp, damage in the microstructure

2) P, < Pyp, no damage in the microstructure *P is probability

Macroscale Microscale

/]

Li, H, Kafka, OL, Gao, J, Yu, C, Nie, Y, Zhang, L, Tajdari, M, Tang, S, Guo, X, Li, G, Tang, S, Cheng, G & Liu, WK 2019, Clustering discretization methods for
generation of material performance databases in machine learning and design optimization, Computational Mechanics. https://doi.org/10.1007/s00466-019-

01716-0 .
© Northwestern Univ. 2019, 37



Application of CNN for damage classification
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Convolution layers for
feature extraction Feedforward Neural Network with
Kernels Pooling Softmax layer
BB
m Put o ding \ / Convolution 1
: =1
z C:z > \
=3

2
= —m
e it i, ol 4
'I- ':an,-.t'::'.: ;7"-.';;:""‘" \\
DY Z .
. -
Xy ‘oo‘.. C=3

fracs

e g,
R

Softmax

N

fl

Flattened Fully connected

Stress
distribution | I Po: probability of damage

Repeat if necessary Pnpo: probability of no damage

Macroscale material point damage is defined:
1) Pp > Pyp, damage in the microstructure
2) Pp < Pyp, N0 damage in the microstructure

Li, H, Kafka, OL, Gao, J, Yu, C, Nie, Y, Zhang, L, Tajdari, M, Tang, S, Guo, X, Li, G, Tang, S, Cheng, G & Liu, WK 2019, Clustering discretization

methods for generation of material performance databases in machine learning and design optimization, Computational .
Mechanics. https://doi.org/10.1007/s00466-019-01716-0 © Northwestern Univ. 2019, 38
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3. Applications of ML methods
1. Topology optimization
1.  Feed Forward Neural Network (FFNN)
2.  FFNN+ Convolutional Neural Network (CNN)

© Northwestern Univ. 2019, 39
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: Multiple length scales composite systems design & Optimization
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30cm
\ i;:) I:<10.2 mm
Cort 1 Woven UD Nanoscale
ar frame[1] Part[2] composite fiber composite reinforced

polymer matrix

TopQIogy

T Woven thickness: higyer  Fiber radius: ryper MoS, volume fraction:
. Q le: ' ) VMos2
| Layer angle: @j4yer  Fiber volume fraction: Vriver

Density ditribution: p(x)

Multiscale Design:

Woven ubD MoS2

Name Part . . Total
composite composite polymer
Length scale cm mm Mm Mm -
Number of elements 10,000 40,000 360.000 90,000 1.296x10%°

Approximate

optimization 200 200 200 100 -

iterations
Total calculation ] ] ] ) A tremendous
cost number

[1]https://www.cgtrader.com/3d-models/vehicle/part/car-frame-03
[2]https://www.comsol.com/blogs/performing-topology-optimization-with-the-density-method/ © Northwestern Univ. 2019, 40




Topology optimization (TopOpt)
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Single-scale topology optimization

60 cm
_ : ]
5 . .
o Design region Applied
o™
_/ external
lloading

Minimizing system
‘ compliance

[1]

NONONON N N

« Homogenous material assumed
* No microstructure
* Only elastic responses considered

[1] Sigmund, O. (2001). A 99 line topology optimization code written in
Matlab. Structural and multidisciplinary optimization, 21(2), 120-127.

Microstructure-based topology
optimization is a two-scale problem

60 cm
\

\

= °| Design region Applied

. external
Eyy l loading
£ _I_’ o

Vay >4 |
Two-scale TopOpt:

* Microstructures in all material points
» Design of microstructures and structure
topology

- Evaluation of microstructure is time consuming
during design iterations

- Can FFNN and CNN approximate
microstructure responses efficiently and

30 cm

accurately? © Northwestern Univ. 2019, 41



Topology optimization with FFNN
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F
M
£ o
v
Hidden layers
Input layer b * =3 b:':%wm W b, Output layer
W, : W
i b;=1
Training (@ \.§ oM
e _ 7 o
EM : ; .< oM
™ 52
Layer/ =1 Layer /=N,
. Layer /=2 oee Layer/=N, -1
Representative Volume L
Element(RVE) Feedforward Neural Network

FFNN approximates microstructure responses almost instantaneously ]

To be presented by Hengyang Li, 7/29/2019, 4:50-5:10pm, Room 202

Li, H, Kafka, OL, Gao, J, Yu, C, Nie, Y, Zhang, L, Tajdari, M, Tang, S, Guo, X, Li, G, Tang, S, Cheng, G & Liu, WK 2019, Clustering discretization
methods for generation of material performance databases in machine learning and design optimization, Computational .
Mechanics. https://doi.org/10.1007/s00466-019-01716-0 © Northwestern Univ. 2019, 42



: TopOpt with FFNN for nonlinear elastic materials

NORTHWESTERN

I .

- Optimization
I

. I
i

I

- Optimization

; >

UNIVERSITY
Sy
. g—» I M C.: M
Design Zone LE——1 0jj = Cijkip
(I
| |
A\ . . .
_ Linear elastic response
g
E 1
Design Zone [ ——" ﬂ‘l :
o
LM M
v V 0;; = Frrnn(Ekl)

1 Nonlinear RVE response .

: predicted by FFNN

Fv

Linear material

Nonlinear FEM-FEM two scale (

onlinear FEM-FFNN two

N

scale
Initial compliance N - cm 295.0 - 375.0
Optimized compliance N - cm 28.0 - 38.0
Optimization calculation time s 338 220 x 10° 472
Factor of speed-up over FE-FE - - 280,255

Li, H, Kafka, OL, Gao, J, Yu, C, Nie, Y, Zhang, L, Tajdari, M, Tang, S, Guo, X, Li, G, Tang, S, Cheng, G & Liu, WK 2019, Clustering

discretization methods for generation of material performance databases in machine learning and design optimization, Computational

Mechanics. https://doi.org/10.1007/s00466-019-01716-0

FEM: finite element method
© Northwestern Univ. 2019, 43



TopOpt with FFNN+CNN for nonlinear elastic materials with damage constraints

NORTHWESTERNI Compute with FFNN
VXM EMOXM) | 1
eM(XM) >: 0O :
| 1
| 1
| 1
| 1
| 1
| 1
| 1
60 cm ' :
1 i — : :
7 1 ]
yM ! = :'*mic‘f‘n\ 1 . . . . . . .
el T : y v o) = Fpr(ENXN) Optimization with linear elastic material
29 | Design Zone t]—i‘ ] miein: B
2] 7 : = % 0"00 = 4 [0(0d0
7 X Classify with CNN
§ v
oM F ! I
1 |
1 |
1 |
1 I
1 |
1 Microscale stress distrjbut]on 1
Microstructure : T RE squon :
damage? ! d(xv) = .;f/,“cfu-swfﬁ'(o(x)) | Optlmlzatlon with FFNN+CNN
dX™)=0or1 .«_—___ T TeA

< Linear material > Nonlinear FEM-FEM two scale @r FEM-(FFNN+CNN
two scale

Initial compliance N - cm
Optimized compliance N - cm
Optimization calculation time s

Factor of speed-up over FE-FE

295.0
30

12.6

660 x 10°

295
31

14.5
45 x 10°

Li, H, Kafka, OL, Gao, J, Yu, C, Nie, Y, Zhang, L, Tajdari, M, Tang, S, Guo, X, Li, G, Tang, S, Cheng, G & Liu, WK 2019, Clustering
discretization methods for generation of material performance databases in machine learning and design optimization, Computational

Mechanics. https://doi.org/10.1007/s00466-019-01716-0

FEM: finite element method
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3. Applications of ML methods

2. Adolescent Idiopathic Scoliosis
1.  FFNN
2.  Physics Guided Neural Network (PGNN)

© Northwestern Univ. 2019, 45



.~ ) Data-driven approach in predicting Adolescent Idiopathic Scoliosis (AlS)
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8 X 1 l tm 1,k
Qo b
6 Landmarks g \
= X,
- A
(©
b D
# vertebras »d
C &
‘a
ﬁ 1
[T]
=
©
© s
0
9
U Layer n
) L Layer 2 cee Layer n-1 Output layer
£
— = At Hidden layers
k.::::sllfslz)
+5+ 3
Layer 1
Input layer
Data points (| Input Output
Features 112 3p ) N P P
S X = Vector of input coordinates of a landmark [X; X, X3 ] Using all features to
X o = Global angle vector [, a, a3 a4 as ] ” —
a t = Age of the patient. train the Neural
At = age variance between target age and current age (month). _
t X"=Vector of output co-ordinates of a landmark [X] X5 X;]. Network for all I_ll"'NS
At Ns = Total number of landmarks = 2x6x17 = 204

_ To be presented by Mahsa Tajdari, 7/31/2019, 2:40-3:00pm, Room 208
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_— Physics Guided Neural Network (PGNN) to predict patient specific constants
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Assume linear relationship between effective stress and growth rate (X,,,,,) between
time mAt and nAt

At : unit of time (month) J;’ff . effective stress at time nAt

A (month™Y)and B(MPa™1) are patient specific constants that are calibrated inside the NN

CaIcuIatlng Hyper Parameters in NN

‘ o
Landmark % I 11

X-ray 2D ifr"iages

Generate patient specific model

Mean Square Error (MSE) L . .
corresponding Frxy — MSEy-1 = MSE; + MSE, + MSE3

MSE] = MSEX*T — X*1)
. 1
MSE} = MSE(Xn — ((m = m)[A7r (1 + Bry X 2% )] ) Frenn '

MSE} = MSE(X,,,, — ((m —n)[A (14 By xal ))
i [ ( eff(LU))] # Hyper parameters (Ary, Bry, Avy, Bry ) will

Ary (month=1) and By (MPa~1) patient specific constants for Thoracic vertebrae  0€ calculate inside NN
A,y (month™1) and By (MPa™1) patient specific constants for Lumbar vertebrae

033

Spine FE Model

© W.K. Liu Group, Northwestern University 47
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Composite NN using Multi-fidelity data

UNIVER Skt - 350
Physical data based FFNN Data based Raw Data £
< FFNN 200 m ¢ | eFFNN
'8 o1 | x;? -+-Raw Data
S J - = PGNN
12 X;,Z -

Ll
L : > X2
Q a3 Frenn 3 200

X £
o
% -T:Pl'FNN [X, a,t, At] 150

Xeray images

Physical Equation

Global angles

Time

((m —n)[Ary (1 + Bry ¥ Oorf (TH))D — Xmn =0
((m — n) [ALU (1 + BLU X O-;lff(LU))]) — an =0

PGNN

a = Global angle vector [a; a; as @y as]  x™: position of data point in m* month

t = Age of the patient. X" : position of data point in nt* month

At = age variance between target age and
current age (month).

. T X2+ X X2+ (T — X1)?
Xonn =

X*=Vector of output co-ordinates of a (\/(Xf)z +(X3)2 + (X?)
landmark [X] X, X3]

100

50

125 145 165 185 205 225 245

Relative Error
Data based FFNN: 18.5%
PGNN: 4.63%

© Northwestern Univ. 2019, 48



Outline

NORTHWESTERN
UNIVERSITY

4. Why we need reduced order models/methods (ROM)

© Northwestern Univ. 2019, 49



Rich database of mechanical response information are
NORTHWESTERN

wmsm necessary for training various Neural Networks

» Multiscale design and optimization is not feasible with direct microstructure
responses calculation with Finite Element Method (FEM)

» Well-trained NNs accelerates microstructure and structure design
process, e.g. Topology Optimization

» Material microstructure responses database is required for the training
process.

» The database includes:
» Macro-strain and macro-stress pairs
» Micro-stress distribution and macro-strain pairs
» Other microstructure quantities of interest

The gap:

 Microstructure response simulation can be expensive
using FEM

 Rich database requires a lot of runs of microstructure
simulation

© Northwestern Univ. 2019, 50



& Cost of microstructure responses database generation
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1,000 load cases for training a 2D hyper elastic problem:

External loading states Microscopic stress  Averaged stress

< ® Loadingsiop 1 i
ot lee, 2 e D
®  Loading step 4 - o f o Lomsog
0.04 H) h" D?'.W_qt ® Loading step 5 2z —'-‘-:» ;-}"‘g - aing
w008~ cer -i\“’ [ "--‘.0'1- -:!‘.""‘-"‘
2 ) el
'Y - i .,
00248 L%y o > = *-;é. :!-'“‘
N M= - e Y
0.0 - W‘. | Txy - -‘:i '.‘-
® e ° " " 0os a1 LY o, - e 3 % ‘;
L el " 2 Tow b ~ “'% Serela
b T — * _om b= i
f o 3 e ; ; : )
0.04 ] 2 a &
M
Oxx

o" = [O-a?xf ajrzlyf Tgcly]
n=12..,1000

e" =[xy 837}31» ya?y]
n=12..,1000

600 x 600 x 3 x 1000
Running 1,000 microstructure simulation is expensive:

Microstructure
simulation method

FFT 3.01 x 10°
FEM 2.04 x 107

Li, H, Kafka, OL, Gao, J, Yu, C, Nie, Y, Zhang, L, Tajdari, M, Tang, S, Guo, X, Li, G, Tang, S, Cheng, G & Liu, WK 2019, 'Clustering discretization methods
for generation of material performance databases in machine learning and design optimization', Computational Mechanics. https://doi.org/10.1007/s00466-

019-01716-0 © Northwestern Univ. 2019, 51

Total simulation time (s)

HPC is needed




Approximate material responses using FFNN

NORTHWESTERN

External loading states Averaged stress
ot pint | Feature— Ot g |_Feaure
1 gl 1 o'
2 g2 2 o’
FFENN with well-
n el trained parameters n o"

Hidden layers
n n n n =3, N2
8 _ [gxx, (.c:yy, )/xy ] Input |ayEI'W{:2 i ';:3 bf ijidu,: bf
n=12..,1000 '

:

Layer /=1 Layer/=N,

Output layer O-n — [O-_)?x; O-_’)?}yl T;cly ]
o n=12..,1000

Layer/=2 eoe Layer/=N, -1

How to generate microstructure responses efficiently?

Li, H, Kafka, OL, Gao, J, Yu, C, Nie, Y, Zhang, L, Tajdari, M, Tang, S, Guo, X, Li, G, Tang, S, Cheng, G & Liu, WK 2019, 'Clustering
discretization methods for generation of material performance databases in machine learning and design optimization', Computational
Mechanics. https://doi.org/10.1007/s00466-019-01716-0 © Northwestern Univ. 2019, 52



Curse of dimensionality in complex material systems
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Material Scale: Single lap bolt joint Woven composite UD composite MoS, reinforced polymer

%J‘m

Fiber diameter: 7 uym

Typical number of

| { 1x106 2x106 36x106 64x103
elements:
$ $ $ $
FEM
KOO KO - KO@][{sd}D {l‘}(l) (MDD {M}(l)(Z) {M}(l)(4) (5} (r}®
ST {K}(.Z)(l) {K}(.Z)(Z) - {K}(Z)(“') {5d}(2)‘ I{r}@‘ {M}SZ)G) {M}(z)(z) {M}(Z)(4) {65.}(2) _ {r}(z)
KOO KO {K}(‘”(“') sa}® ] [{r}® 639420 Llm@o ppoo {M}(4)(4) ©e®] |m®
|
25
\/ 138410 639420
Strong interaction between scales
DoFs using FEM: DoFs using MCA:
€)) ORI (D) p7 () 7\ (3) 7 (4) 1) (1) 71 (2) A7 (3) As (4)
3(NSV + NONP 4.4 NUNPNE N (( )

(n Lol Lol ) 6(Ne™ 4o+ Ne "N NI N: number of clusters
Number of elements using FEM: Number of clusters using MCA:
1x106%2.6x10°%36x10°+64x107=6x1025elements 10*96 * 10 *10 = 9.6x10%clusters ¢ << [Vn ateach scale

N;: number of integration points
N,: number of nodes Extremely large Solvable on small
Superscripts indicate scale level problem HPC/singIe PC

© Northwestern Univ. 2019, 53



Two-scale theory: Self-consistent Clustering Analysis (SCA) overview
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* Objective: Efficient and accurate homogenization of nonlinear
history dependent heterogeneous materials with complex microstructure.

(Data-driven order reductioh f M

Group points in the MVE that are

mechanically similar ) . 1.0
) * Lippmann-Schwinger

integral equation

\ Numerical verification
echanistic prediction > 3-Dimension

o
®

e
'S

Stress magnitude (MPa)
o
D

o
o

* Micromechanics mean-
0 L L 1 L
0.00 0.01 0.02 0.03 0.04 0.05
Strain magnitude

field theory
FEM Model Reduced Order Model (ROM)

- ®
)
1. Liu, Z., Bessa, M. A., & Liu, W. K. (2016). Computer Methods in Applied Mechanics and S
Engineering W ,' . "

2. Liu, Z., Fleming, M., & Liu, W. K. (2018). Computer Methods in Applied Mechanics and
Engineering
3. Bessa, M. A, Bostanabad, R., Liu, Z., Hu, A., Apley, D. W., Brinson, C

. , MLA,, , R, Liu, Z., Hu, A, ,D.W., ,C., & Liu, W. K.
(2017). Computer Methods in Applied Mechanics and Engineering -
4. Liu, Z.,Kafka, O. L., Yu, C., & Liu, W. K. (2018). In Advances in Computational

Plasticity _ _ _ 80x80x80 25.7 hr (24 cores) 1

5. Tang, S., Zhang, L., & Liu, W. K. (2018). Computational Mechanics

6. Kafka, O. L., Yu, C., Shakoor, M., Liu, Z., Wagner, G. J., & Liu, W. K. (2018). JOM ROM 16 2 s 1x106
7. Shakoor, M., Kafka, O. L., Yu, C., & Liu, W. K. (2018). Computational Mechanics 4
8. Li, H., Kafka, O. L., Gao, J., Yu, C., Nie, Y., Zhang, L., ... & Tang, S. (SCA) 256 30's 5x10

(2019). Computational Mechanics
9. Zhang, L., Tang, S., Yu, C., Zhu, X,, & Liu, W. K. (2019). Computational Mechanics

10. Gao, J., Shakoor, M., Jinnai, H., Kadowaki, H. Seta, E., Liu. W. K. An Inverse Modeling T b d I L 2
Approach for Predicting Filled Rubber Performance. (2019) Computer Methods in Applied O e Cove re I n eCtu re

Mechanics and Engineering
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Why use reduced order modeling for data generation?
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Fiber phase (2 clusters)
IQ‘DEHDD 100 i
80 |
2 60}
lDDe+DD g
_ ‘ o 407 ® ROM, 8 clusters
Matrix phase (8 clusters) > - ROM, 16 clusters
y — g 20t — DNS (5 % error bar)
-“ :5 . . 0 7 K . ;
~ o Applyloading in - 90000001 0015 0.02
> y direction RVE Strain
Lo DNS: ~200 hr using 80 cpus

ROM: 2 susing1 cpu

» Material design requires a large database of microstructure response
information
» Reduced order modeling (ROM) allows fast data generation for:
» Different heterogeneous microstructures
» Different material constituents

The microstructure database generation
can now be done on single PC

© Northwestern Univ. 2019, 55



Conclusions
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U Rich datasets provide us an opportunity to integrate mechanical and
data sciences for rapid prediction, design, and optimization.

O Data science enables solution of large-scale problems, otherwise not
tractable using current methodologies.

O Reduce Order Models (ROM) such as Principal Component Analysis
(PCA), Self-consistent Clustering Analysis (SCA), Multiresolution
Clustering Analysis (MCA), help us rapidly generate key datasets.

O Machine learning techniques such as neural networks (FFNN, CNN,
PGNN, etc.) can augment ROMs for extremely fast computations.

0 Combining ROMs with machine learning techniques has the potential
to discover, design, and optimize novel complex material systems.

0 Mathematical theories for biological systems are in their infancy;
discovery of hypotheses in biological system might be achieved by
considering physics, e.g. via a physic guided neural network

© Northwestern Univ. 2019, 56
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