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Mapping: Model reduction

• Nonspatial: 
–Graph-Constrained Correlation Dynamics
–warmup case for …

• Spatial generalization:
–Dynamic Boltzmann distributions
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Ψℛ ≃ ℛΨ

[Johnson, Bartol, Sejnowski, and Mjolsness.  
Physical Biology 12:4, July 2015]
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… Higher-order calculus!
Slide: Oliver Ernst, Salk O. Ernst, T. Bartol, T. Sejnowksi, and E. Mjolsness , J of Chem Phys 149, 034107, July 2018. Also arXiv 1803.01063

·νk(x) = Fk[{νk}K
k=1]
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Adjoint method BMLA-like
learning algorithm

�6[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]



Interpolation of F on LHS
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Benefit of Hidden Units
Network: fratricide + lattice diffusion

ℛ

[Ernst, Bartol, Sejnowski, Mjolsness, arXiv:1808.08630 v2 April 2019]



Benefit of Hidden Units
Network: fratricide + lattice diffusion

MSE of 4th order stats

ℛ

• Learned DBD ODE RHS, without and with hidden units

[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]



Rössler Oscillator in 3D
• Learned DBD ODE RHS:• Function:

[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]



Rössler Oscillator in 3D
• Learned Configuration• Learned correlations:

[Ernst, Bartol, Sejnowski, Mjolsness, Phys Rev E 99 063315, 2019]



Fields to Structures

• Fields: PDE differential operator dynamics in W


• Software dichotomy: particle vs. PDE solvers

• Usual integration: operator splitting. Deeper unification?


• Regardless, a third category is necessary: dynamic structures.


• Dynamical Graph Grammars (DGGs): 

• operator addition of reactions, GGs, ODEs; 


• but what about PDEs?


• Approximately eliminate fields by: 

• Cell complexes in PDE (adaptive) meshing / FEMs, FVMs

Ψ, ℐ



MT fiber 
Stochastic Parametrized Graph Grammar

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]



[Chakrabortty et al.
Current Biology 
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[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]

MT fiber 
Stochastic Parametrized Graph Grammar



Eric Medwedeff, UCI;  Bob Bird, LANL

Cajete MT: First Light



Cajete MT: First Light

Eric Medwedeff, UCI;  Bob Bird, LANL



• Baker Campbell Hausdorff theorem 
• => operator splitting algorithms e.g. Trotter Product Formula …

• Time-ordered product expansions => 
Stochastic Simulation Algorithm (SSA)
– [EMj, Phys Bio 2013]

– weighted SSA (wSSA) possible too

Why operator algebra 
yields algorithms

ℐ



Algebra of Labelled-Graph 
Rewrite Rules

[ EM, http://arxiv.org/abs/1909.04118]
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E.g.:

http://arxiv.org/abs/1909.04118
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“Tchicoma” Architecture
for Mathematical Modeling

• Language meta-hierarchy: (a DAG with edge labels in a tree)

• Mappings therein:

Features: 
Enables problem-solving 

via chaining, theorem-proving 
Foments abstraction  

via commutation 
Decoupled, yet can be efficient

respecting compositional structure

𝒳,

[EM, Bull. Math Biol. 81:8 Aug 2019

+arXiv:1804.11044]



Conclusions
• Model reduction can be achieved by machine learning, in spatial 

stochastic models. 
• Coarse scale: Discretized PDEs for multi-particle Boltzmann potential energies. 
• Fine scale: Stochastic reaction/diffusion examples.

• Morpho-dynamic spatial structures can be modeled by dynamical graph 
grammars with operator algebra semantics. 
• Bio-universal (includes particles and *DEs).
• Scalability is in progress.
• MT examples.

• Model stacks are the key data structure for understanding complex bio 
systems. 
• They require model reduction and bio-universal modeling languages (perhaps as above). 
• They can intersect productively, and could be curated in a proposed conceptual 

architecture “Tchicoma”.

• In these ways, both symbolic and numeric AI can (and should!) be 
brought to bear on understanding complex biological systems.




