

ACCELERATED COMPUTING WITH NVIDIA GPUS

Jesse Tetreault, Solutions Architect

October 2019

ACCELERATED COMPUTING

NVIDIA "THE AI COMPUTING COMPANY"

GPU Computing

Computer Graphics

Artificial Intelligence

Add GPUs: Accelerate Science Applications

HOW GPU ACCELERATION WORKS

HOW TO START WITH GPUS

1 Applications					
2 Libraries	3 Compiler Directives	4 Programming Languages			
Easy to use	Easy to Start	Most Performance			
Most Performance	Portable Code	Most Flexibility			
	OpenACC	CUDA			

- 1. Review available GPUaccelerated applications
- 2. Check for GPU-Accelerated applications and libraries
- 3. Add OpenACC Directives for quick acceleration results and portability
- 4. Dive into CUDA for highest performance and flexibility

NVIDIA CUDA-X LIBRARIES

Software To Deliver Acceleration For HPC & AI Apps; 500+ New Updates

NVIDIA DEEP LEARNING SOFTWARE STACK

developer.nvidia.com/deep-learning-software

NGC: GPU-OPTIMIZED SOFTWARE HUB

Ready-to-run GPU Optimized Software, Anywhere

GPU-ACCELERATED DATA SCIENCE PLATFORMS

Unparalleled Performance and Productivity

	ML in the Cloud All the top CSPs	ML Enthusiast High-end PCs		Enterprise Desktop Individual Workstations	Enterprise Data Center Shared Infrastructure for Data Science Teams			
				Max Flexibility	Max Performance			
	NVIDIA GPUs in the Cloud	GeForce	TITAN RTX	NVIDIA-Powered Data Science Workstations	T4 Enterprise Servers	DGX Station, DGX-1 / HGX-1	DGX-2 / HGX-2	
nefit	Ease of getting started, low/no barrier to entry, elasticity of resources	Enthusiast PC solution, easy to acquire, low cost, great performance	The ultimate PC GPU for data scientists. Easy to acquire, deploy and get started experimenting.	Enterprise workstation for experienced data scientists	Standard GPU- accelerated data center infrastructures with the world's leading servers	Enterprise server, proven 4 or 8-way configuration, modular approach for scale-up, fastest multi-GPU & multi- node training	Largest compute and memory capacity in a single node, fastest training solution	
pical GPU Memory stem dependent)	varies depending on offering	22GB	48GB	96GB	64 GB (4 x 16 GB)	128GB-256GB	512GB	
U Fabric	varies depending on offering	2-way NVLink	2-way NVLink	2-way NVLink	PCle 3.0	4- and 8-way NVLink	16-way NVSwitch	

IDIA.

Be

Ty (sy

GP

ACCELERATING DATA SCIENCE IN HEALTHCARE

DAY IN THE LIFE OF A DATA SCIENTIST

CHALLENGES IN DATA SCIENCE

RAPIDS IN DATA SCIENCE

cuML Algorithms

cuML	Single-GPU	Multi-GPU	Multi-Node-Multi-GPU
Gradient Boosted Decision Trees (GBDT)			
GLM			
Logistic Regression			
Random Forest			
K-Means			
K-NN			
DBSCAN			
UMAP			
Holt-Winters			
Kalman Filter			
t-SNE			
Principal Components			
Singular Value Decomposition			

15 📀 nvidia.

Data Processing Evolution

Faster data access, less data movement

Hadoop Processing, Reading from disk

HDFS Read	Query	HDFS Write	HDFS Read	ETL	HDFS Write	HDFS Read	ML Train		
Spark In-Memory Processing							25-100x Improvement		
HDFS Read	Query	ETL		ML Train	←		Less code Language flexible Primarily In-Memory		
RAPIC Arrow Read	DS uery ETL ML Train				50-100x Impr Same co Language fl Primarily o	ovement de exible n GPU			

$\mathsf{Disk} \to \mathsf{Memory} \to \mathsf{GPUs}$

Scalable, but slow due to repeated reads & writes to disk Faster, by keeping data always in host memory instead of on disk Keeps data in GPU memory instead of CPU memory

Performance limited by CPUs

Computations are GPU accelerated

Real Outcomes using Accelerated Machine Learning

cuPy Acceleration

TRANSFORM GENETICS WITH RAPIDS

Personalize Immunotherapy for Cancer Patients

"We see close to 20x speedup using XGBoost on DGX-1. This helps us significantly improve our personalized immunotherapy and expand our analysis to millions of peptide candidates."

Yong Hou, Duty Director of BGI Research

Faster Speeds, Real-World Benefits

