Multi-scale modeling of influenza vaccination for optimal T cell immunity

Problems with the current influenza vaccine:

• low and variable vaccine efficacy • requires frequent reformulation • does not protect against pandemic strains

Background and Approach: Most current *universal* influenza vaccine research targets conserved antibody epitopes. However, T cells epitopes are also conserved and are potential targets for vaccination. The effectiveness of T cell-based vaccine is complicated by two main factors. First, pre-existing immunity preventing the attenuated vaccine virus from replicating and inducing an immune response. Second, T cell immunity prevents pathology (and to a lesser extent infection), so vaccine effectiveness needs to take into account boosting of immunity by

asymptomatic infection with the circulating virus.

What is new inside?

- (i) **Development** and **empirical validation** of a quantitative framework to determine how CD8 T cell immunity affects dynamics of infection and transmission.
- (ii) Multi-scale model that incorporates reciprocal feedback between immunity at the individual level and boosting at the epidemiological level.

End Users: The *multi-scale models* will guide the development of new T cell-based vaccine and strategies for its implementation.

Pls: Jacob Kohlmeier & Veronika Zarnitsyna (Emory University)
Grant support: NIH/NHLBI U01 HL139483-01A1