

Dr.S Drug recommendation system (for cell lines)

David Craft, Ph.D. Massachusetts General Hospital

Oct 25, 2019 ML-MSM NIH, Bethesda MD

Vision:

A patient walks into the clinic...

... a treatment is prescribed

Dataset : CCLE	Mome About Data Contact Search Genes/Cell Lines Search Logout: dcraft Image: Contact Contact Contact Cell Line Image: Contact Cell Line Image
~500 cell lines	Statistics Papers How to Use Terms of Access Contact Us Statistics Cell Lines: 1457
radiation	© Open Genes: 84,434 Unique Data Sets: 136,488 Mutation Entries: 1,159,663 Distribution Scores: 118,661,636 Methylation Scores: 411,948,577

Number of samples, number of features

What does the GDSC dataset look like?

p=number of features

n=number of cell lines Feature data

Feature selection in this situation

p=number of features

n=number of Feature data

Some demonstrations of the value of prior knowledge:

The "Radiation" Gene List

Question: if cancer cells are irradiated, what genes/proteins are most important for dictating the fate of the cells?

Approach: Two scientists, independent brainstorming + an automated pubmed search:

X	•)		
		Γ	
	/		

Pubmed	
search	┝

Radiation gene lists: 263 genes

MESH terms used in pubMed search for radiation gene list Radiation Tolerance Radiation, Ionizing

Radiation-Protective Agents

Cell Death/radiation effects

Apoptosis/radiation effects

dna damage/radiation effects

Cellular Senescence/radiation effects

Chromosome Aberrations/radiation effects

Bystander Effect/radiation effects

Autophagy/radiation effects

Cell Cycle/radiation effects

Reactive Oxygen Species/radiation effects

Oxidative Stress/radiation effects

Metabolism/radiation effects

Transcription, Genetic/radiation effects

Stem Cells/radiation effects

Telomere/radiation effects

Chromatin/radiation effects

The "Radiation" Gene List –

ABL1	AKT1	ALK	APAF1	APC	AR
ATM	ATP13A1	ATP13A2	ATP2C1	ATP2C2	ATR
AURKA	AURKB	AURKC	BAD	BAP1	BAX
BBC3	BCL2	BCL2L1	BCL2L11	BECN1	BID
BIRC2	BIRC3	BIRC5	BLM	BMI1	BMPR1A
BMPR1B	BMPR2	BRAF	BRCA1	BRCA2	BRIP1
BUB1	CAT	CCNB1	CCND1	CCND3	CDC25C
CDH1	CDK1	CDK2	CDK4	CDK6	CDKN1A
CDKN1B	CDKN2A	CDKN2A-DT	CDKN2B	CHEK1	CHEK2
CNNM1	CREB1	CTNNB1	DCLRE1C	DDB2	DKC1
DLX2	DNM1	DRAM1	E2F1	EGFR	EP300
EPAS1	ERBB2	ERCC5	ERCC6	ESR1	EXO1
FADD	FANCD2	FAS	FGFR1	FGFR2	FGFR3
FN1	FZD1	G6PD	GABPA	GABPB1	GABPB2
GADD45A	GJA1	GJB1	GJB2	GLI1	GLS
GLUD1	GOT1	GRB2	GSX1	GSX2	H2AFX
HDAC1	HIF1A	HIPK2	HIST1H2BC	HRAS	HSP90AA1
IDH1	IDH2	IGFBP3	IL6	IL6R	IL6ST
INSR	IRF1	JAK1	JAK2	JUN	KLF4
KMT2C	KRAS	LEF1	LIG4	LSP1	MAP1LC3A
MAP2K7	MAPK1	MAPK14	MAPK3	MAPK8	MAX
MDC1	MDM2	MGMT	MLH1	MRE11	MSH2
MSH3	MSH6	MTOR	MYC	MYCN	NBN
NCOA4	NEDD4L	NFKB1	NFKB2	NHEJ1	NOS1
NOS2	NOS3	NOTCH1	NOTCH2	NOTCH3	NOTCH4
NRAS	P2RX4	PALB2	PARP1	PARP2	PGAP3
PGR	PIK3CA	PIK3CB	PLK1	PLK2	PLK3
PMAIP1	PPM1D	PRDX1	PRDX2	PRDX4	PRDX6
PRKCA	PRKCB	PRKCD	PRKDC	PSENEN	PTCH1
PTEN	PTGS2	RAD18	RAD50	RAD51	RARA
RB1	RBBP8	RECQL4	RELA	RIF1	RIPK1
RNF168	RPRM	RTEL1	SDHA	SDHB	SERPINE1
SFN	SHH	SIAH1	SIAH2	SLC11A1	SLC11A2
SLC25A39	SLC30A10	SLC31A1	SLC34A2	SLC34A3	SLC36A1
SLC39A14	SLC39A8	SLC6A3	SMAD2	SMAD3	SMAD4
SMO	SNAI1	SNRPF	SOD1	SOD2	SOD3
SOX2	SPARC	STAT1	STAT3	SUMO1	TCF7
TERC	TERT	TET1	TGFB1	TGFBR1	TGFBR2
THBS1	TLR9	TNF	TNFAIP3	TNFRSF10B	TNFRSF13F
TNFRSF1A	TNFRSF1B	TOPBP1	TOX3	TP53	TP53BP1
TSC1	TSC2	TXNIP	UIMC1	VDR	VIM
WEE1	WNT3A	WNT5A	WNT7A	WRN	WT1
XIAP	XPC	XRCC4	XRCC5	XRCC6	XYLT2
YWHAQ	YWHAZ	ZEB1	ZHX2	MRE11A	

All gene lists we use:

The Cosmic (Catalog of Somatic Mutations in Cancer) gene list contains curated genes from the Sanger initiative Number of genes 222	Gene list general is manually curated from two text books identifying genes generally important for cancer Number of genes 98
Gene list Rhodes contains genes upregulated in cancer cells Number of genes 65	Gene list MAPK contains genes in that pathway from biocarta Number of genes 87
Gene list sigcancer is a list of genes useful for identifying tumor tissue origin Number of genes 155	Gene list Radiation Number of genes 263

All gene lists we use:

The Cosmic (Catalog of Somatic Mutations in Cancer) gene list contains curated genes from the Sanger initiative Number of genes 222	Gene list general is manually curated from two text books identifying genes generally important for cancer Number of genes 98
Gene list Rhodes contains genes upregulated in cancer cells Number of genes 65	Gene list MAPK contains genes in that pathway from biocarta Number of genes 87
Gene list sigcancer is a list of genes useful for identifying tumor tissue origin Number of genes 155	Gene list Radiation Number of genes 263

Discussion topic: is there additional usable knowledge in pathways, etc?

Data handling & data splitting

Cell Line Analyzer (CLA)

Model Analysis and Selection (MAS) Results

$$R^{2} = 1 - \frac{\sum_{i}(y_{i} - \hat{y}_{i})^{2}}{\sum_{i}(y_{i} - \bar{y})^{2}}$$
 y_{i} = true drug AUC, y_{i} = model predicted response, \bar{y} = mean of the true responses in the holdout data

Model Analysis and Selection (MAS) Results

Overall gene list usage in top combos

Single drug all combos example result

Gene expression is most important genomic type

Sample feature importances results

Cell Line Analyzer (CLA)

Dr.S results

1.0

Dr.S results: single drug recommendation

Contributions / best practice recommendations:

- Repeated hold out "triple split"
- Single drug (rather than "matrix completion"/multitask) modeling
- Incorporation of prior knowledge

Next steps:

- Pathway modeling / neural networks / similarity kernels
- Other -omics data / other gene sets
- Learn entire dose response curve
- Clinical patient data / learn drug efficacy and toxicities dose response curves
- Pan cancer vs tissue type specific learning?

The team

Marleen Balvert - CWI, The Netherlands

Georgios Patoulidis - Master's student Heidelberg University

Andrew Patti - Software developer, Engage

Timo Deist - post-doc CWI

Christine Eyler - MD, PH.D MGH

Thank you! Questions/comments?

Additional slides

How complicated is biology? Rube Goldberg...

A cartoon example: knowledge helps

Last row gives response to a "drug"

SVM with an RBF kernel, Average AUC (over 5 drugs)= 0.89

System expert knowledge

Custom similarity measure >> **kernelized learning**

Again, prior knowledge helps

Results (baseline 180 node networks)

Dynamical Boolean networks demo

features

n

P = number of

Dr.S results

Comparison of drug recommendations made with Dr.S. (blue), recommendations based on the average viability of other cell lines of the same tissue type from the training data (red) and random drug selection (gray). (a) The (cumulative) distribution of the true rank of the single prescribed drug. (b) The fraction of cell lines for which the single true best drug is among the

N true recommended drugs. (c) The difference in viability between the top N prescribed and the top N true best drugs. (d) The distribution of the difference in viability between the single prescribed and single best drug.

Dr.S results

Results obtained with Dr.S and tissue type based prescription where all drugs with a predicted viability within of the best predicted viability are in the prescription. In Figures (a)-(c) each row corresponds to a cell line, and the dots indicate the normalized viability of the recommended drugs where a normalized viability of 0 (1) corresponds to the viability of the best (worst) drug. Figures (d)-(f) show the (cumulative) distribution of epsilon* over the cell lines, averaged over the set of recommended drug for that cell line. Figures (g)-(i) show the (cumulative) distribution over the cell lines of the maximum epsilon* over the recommended drug for that cell line

