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Objective: Identify perspectives, challenges, and opportunities of integrating machine 
learning with multiscale modeling (ML-MSM) in biomedical, biological, and behavioral 
systems

• Methods guided by fundamental principles of mathematics and physics

• Four approaches: ODEs, PDEs, theory-driven, data-driven

• Context: Digital Twins, Human Safety

Outline of NIH Pre-Meeting Webinar



• Delivering world leading computational and networking 
capabilities to extend the frontiers of science and technology

Advanced Scientific 
Computing Research

• Understanding, predicting, and ultimately controlling matter 
and energy flow at the electronic, atomic, and molecular levelsBasic Energy Sciences

• Understanding complex biological, climatic, and environmental 
systems

Biological and 
Environmental Research

• Building the scientific foundations for a fusion energy source Fusion Energy Sciences

• Understanding how the universe works at its most fundamental 
levelHigh Energy Physics

• Discovering, exploring, and understanding all forms of nuclear 
matterNuclear Physics

DOE Office of Science Programs
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Applied Math program develops the mathematical & scientific computing foundations to 
accelerate the pace of scientific discoveries

Portfolio in FY19: $30M/year for ~50 projects at Labs, universities, non-profits

Scientific enabling technologies are being built on ASCR developments in:

DOE Applied Mathematics program
Office of Advanced Scientific Computing Research (ASCR)

Core Applied Math Optimization, Linear algebra, Uncertainty Quantification (UQ), Differential equations, 
Machine Learning (ML), Meshes, Multigrid, Reduced order models

Scientific Software/
Libraries

High performance software codes (PETSc, Trilinos, SUNDIALS), Automatic 
differentiation, Parallel-in-time integrators, Meshes, Tensors, & more

Math Centers Science at user facilities, Power Grid, Additive Manufacturing, Materials Design

Workshops Multiscale Math, Petascale Data, UQ, Extreme Heterogeneity, Scientific ML



Preparing for Scientific Machine Learning and AI: 

Pre-Workshop Report (January 2018)
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Executive Summary 

1. Introduction

1. Scope

2. Definitions

2. Motivation and impact

1. Use cases and examples

2. Need for robust scientific machine learning

3. Need for interpretable scientific machine learning

3. Scientific computing and machine learning

1. Supervised machine learning methods

2. Unsupervised machine learning methods

3. Reinforcement machine learning methods

4. Other machine learning methods

4. Computational foundations for scientific machine learning

1. Rigorous analysis

2. Model reduction and multi-fidelity modeling

3. Computational complexity

4. Optimization

5. Statistics and uncertainty quantification
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PRD1: Domain-Aware Scientific Machine Learning

Leveraging Scientific Domain Knowledge

Key Points: How can domain 

knowledge be effectively incorporated 

into Scientific ML methods?
● Established domain models based on 

physical mechanism & scientific 

knowledge

● Scientific ML offers significant 

opportunity to complement traditional 

domain models

● Domain knowledge: physical 

principles, symmetries, constraints, 

computational predictions, 

uncertainties, etc

● Potential to improve accuracy, 

interpretability, & defensibility while 

reducing data requirements & 

accelerating training process

This example illustrates the capabilities obtained by 

incorporating domain knowledge into a deep neural network. 

Given scattered and noisy data components of an 

incompressible fluid flow in the wake of a cylinder, we can 

employ a physics-informed neural network that is constrained 

by the Navier-Stokes equation in order to identify unknown 

parameters, reconstruct a velocity field that is guaranteed to be 

incompressible and satisfy any boundary conditions, as well as 

recover the entire pressure field. Figure from: Raissi et al.
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PRD2: Interpretable Scientific Machine Learning

Explainable and Understandable Results

Key Points: How to balance the use of 

increasingly complex ML models with 

the need for users to understand 

conclusions & derive insights?

● Physical understanding has been 

the bedrock of modeling

● User confidence linked to the 

conviction that model accounts for 

domain knowledge (variables, 

parameters, physical laws, etc.)

● Need exploration & visualization 

approaches for “debugging” 

complex machine learning models

● Need metrics to quantify model 

differences

High-level data pipeline overview for dimensionality reduction of 

3D protein structures (A) and interpretation of saliency maps from 

trained CNN model (B). Saliency maps generated from CNN 

models can then be clustered to identify areas along the 3D 

structure that are regions that highly influence the output of the 

CNN model. From these salient regions, specific residues can be 

identified that fall in close proximity to the salient regions. 

Image credit: Rafael Zamora-Resendiz and Silvia Crivelli, LBNL.
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PRD3: Robust Scientific Machine Learning

Stable, Well-Posed, and Efficient Formulations

Key Points: How can 

computationally efficient Scientific 

ML methods be developed and 

implemented to ensure outcomes are 

not unduly sensitive to perturbations 

in training data and model selection?
● Scientific ML methods need to 

establish the properties of 

robustness & reliability

● Integration of protocols for 

verification & validation are in their 

infancy

● Progress will require research 

proving that developed methods and 

implementations are stable and well-

posed

In the context of Reynolds averaged incompressible 

turbulence modeling, a neural network has been used in 

an eddy viscosity turbulence closure model. From 

physical arguments, the model needs to satisfy 

rotational invariance, ensuring that the physics of the 

flow is independent of the orientation of the coordinate 

frame of the observer. A special network architecture, a 

tensor basis neural network (TBNN), embeds rotational 

invariance by construction. Without this guarantee, the 

NN model evaluated on identical flows with the axes 

defined in different directions could yield different 

predictions. 

Image credit: SNL.
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PRD4: Data-Intensive Scientific Machine Learning

Automated Scientific Inference and Data Analysis

Key Points: What novel approaches 

can be developed for reliably finding 

signals, patterns or structure within 

high-dimensional, noisy, uncertain 

input data?
● Scientific ML methods require the 

development of improved methods for 

statistical learning in high-dimensional 

Scientific ML systems with noisy and 

complex data

● Need approaches required to identify 

structure in complex high-dimensional 

data

● Scientific ML requires efficient 

sampling in high-dimensional 

parametric and model spaces

ML techniques reveal Fs-peptide folding events from long 

time-scale molecular dynamics simulations. A low 

dimensional embedding of the simulation events reveal 

transitions from fully unfolded states (blue) to fully folded 

states (red). A two dimensional embedding using t-test 

stochastic neighborhood embedding shows the presence of 

near native states (labeled state 1) versus partially unfolded 

(2-7) and fully unfolded states (8-9) in the picture. 

Image Credit: Arvind Ramanathan, ORNL.
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PRD5: Machine Learning-Enhanced Models and Simulations

Predictive Scientific Computing

Key Points: What is the role and 

potential advantages of ML-

embedded approaches in 

computational model and algorithm 

development?
● Combination of scientific computing 

with learned adaptivity for more 

efficient simulations

● ML for in-situ parameter tuning

● ML for sub-grid physics models

● Progress will require the development 

of new methods to quantify tradeoffs 

and optimally manage the interplay 

between traditional and ML models 

and implementations

The arbitrary Lagrangian-Eulerian (ALE) method is used in a 

variety of engineering and scientific applications for enabling 

multi-physics simulations. Unfortunately, the ALE method

can suffer from simulation failures, such as mesh tangling, that 

require users to adjust parameters throughout a simulation just 

to reach completion. A supervised ML framework for predicting 

conditions leading to ALE simulation failures was developed 

and integrated into a production ALE code for modeling high 

energy density physics. 

Image credit: M. Jiang, LLNL.
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PRD6: Intelligent Automation and Decision Support

Management and Control of Complex Processes and Systems

Key Points: What are the 

challenges in managing the 

interplay between automation & 

human decision-making?
● Outer-Loop applications include 

optimization, uncertainty 

quantification, inverse 

problems, data assimilation, & 

control.

● New mathematically & 

scientifically justified methods 

to guide data acquisition and 

ensure data quality and 

adequacy.

● Scientific ML methods for 

improving system resilience or 

responsiveness.

Exascale applications are exponentially raising demands from 

underlying DOE networks such as traffic management, operation scale 

and reliability constraints. Networks are the backbone to complex 

science workflows ensuring data is delivered securely and on-time for 

important compute to happen. In order to intelligently manage multiple 

network paths, various tasks such as pre-computation and prediction 

are needed to be done in near-real-time. ML provides a collection of 

algorithms that can add autonomy and assist in decision making to 

support key facility goals, without increased device costs and 

inefficiency. In particular, ML can be used to predict potential anomalies 

in current traffic patterns and raise alerts before network faults develop. 

Image credit: Prabhat, LBNL.
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Scientific AI/Machine Learning: Priority Research Needs 

Scientific 
Machine Learning:

Foundations

Domain-Aware: Leverages & respects scientific 

domain knowledge. Physics principles, symmetries, 

constraints, uncertainties & structure-exploiting 

models

Interpretable: Explainable and understandable 

results. Model selection, exploiting structure in high-

dimensional data, use of uncertainty quantification 

with machine learning

Robust: Stable, well-posed & reliable formulations.   

Probabilistic modeling in ML, quantifying well-

posedness, reliable hyperparameter estimation

Scientific 
Machine Learning:

Capabilities

Data-Intensive Scientific ML: Scientific inference & 

data analysis. ML methods for multimodal data, in 

situ data analysis & optimally guide data acquisition

Machine Learning-Enhanced Simulations: ML 

hybrid algorithms & models for predictive scientific 

computing. ML-enabled adaptive algorithms, 

parameter tuning & multiscale surrogate models

Intelligent Automation and Decision Support:

Adaptivity, automation, resilience, control. Exploration 

of decision space with ML, ML-based resource 

management, optimal decisions for complex systems   

Advances in 6 Priority Research Directions (PRDs) are needed to develop the next 

generation of machine learning methods and artificial intelligence capabilities.

January 2019

https://www.osti.gov/biblio/1478744

https://www.osti.gov/biblio/1478744
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National Artificial Intelligence 
Research and Development  Strategic Plan
AI R&D Strategies

1. Make Long-Term Investments in 

Research

2. Develop Effective Methods for 

Human-AI Collaboration

3. Understand and Address the Ethical, 

Legal, and Societal Implications of AI

4. Ensure the Safety and Security of AI 

Systems

5. Develop Shared Public Datasets and 

Environments for AI Training and 

Testing

6. Measure and Evaluate AI 

Technologies through Standards and 

Benchmarks

7. Better Understand the National 

R&D Workforce Needs

8. Expand Public-Private Partnerships 

to Accelerate Advances in AI
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AI for Science Townhalls

• Four “Townhalls” aimed at getting input from the DOE 
community on opportunities and requirements for the next 
5-10 years in computing with a focus on convergence 
between HPC, data and AI

• July (Argonne), August (Oak Ridge), September (Berkeley), 
October 22-23 (Washington DC)

• Modeled after the 2007 Townhalls that launched the 
Exascale Computing Initiative

• Each meeting covers roughly the same ground, 
geographically distributed to enable local participation

• Applications in science, energy and technology
• Software, math and methods, hardware, data 

management, computing facilities, infrastructure, 
integration with experimental facilities, etc.

• Expect 200-300 people per meeting
• Output will be a report to guide strategic planning at Labs 

and DOE

Organized by Argonne, Oak Ridge and Berkeley 
with participation from all the DOE laboratories... 
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DOE Scientific Machine Learning and AI
Lens of Applied Mathematics & Scientific Computing

Capability Themes Relevant Funding Announcements since 2005

Data-Intensive

Scientific Machine 

Learning

2009 – 2012: Mathematics for Analysis of Petascale Data

2009 – 2012: Joint Mathematics Computer Science Institute

2012 – 2015: Resilient Extreme-Scale Solvers

2013 – 2016: DOE Data-Centric Science at Scale

Machine Learning-

Enhanced Scientific 

Simulations

2005 – 2008: Multiscale Mathematics Research and Education

2008 – 2011: Multiscale Mathematics for Complex Systems

2013 – 2016: Uncertainty Quantification (UQ) for Extreme-Scale 

Science

2019 – 2021: UQ for Scientific Machine Learning & Artificial 

Intelligence

Intelligent Automation and 

Decision Support for 

Complex Systems

2009 – 2012: Mathematics for Complex, Interconnected Systems

2010 – 2013: Uncertainty Quantification (UQ) for Complex Systems

2012 – 2017: Mathematical Multifaceted Integrated Capability 

Centers I

2017 – 2022: Mathematical Multifaceted Integrated Capability 

Centers II
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Scientific progress will be driven by
• Massive Data: sensors, simulations, networks
• Predictive Models & Adaptive Algorithms
• Heterogeneous High-Performance Computing
➢ Scientific Machine Learning & AI

Trend: Human-AI 
collaborations will 
transform the way 
science is done.

Exemplars of Scientific Achievement

Special Relativity

DOE Applied Math program has laid the groundwork to harness 
Machine Learning and Artificial Intelligence for scientific purposes

➢ Scientific Machine Learning Workshop (January 2018)
Scientific ML Workshop Report: https://www.osti.gov/biblio/1478744

Human-AI insights enabled 
via scientific method, 
experimentation, & 
AI reinforcement learning.

Cosmic Microwave Background

Periodic Table of the Elements

DNA Structure

https://www.osti.gov/biblio/1478744

