#### multiscale modeling consortium meeting • march 6-7, 2019



## CFMS perspectives from cardiac growth and remodeling ELLEN KUHL

credible practice of modeling and simulation in healthcare Stanford University

# Credible Practice of Modeling & Simulation in Healthcare

Share 🚹 🚷 💟 Follow Project ~

- R1 define context clearly
- R2 use appropriate data
- R3 evaluate within context
- R4 list limitations explicitly
- R5 use version control
- R6 document adequately
- R7 disseminate broadly
- R8 get independent reviews
- **R9 test competing implementations**

use contrasting modeling and simulation execution strategies to check the conclusions of the different execution strategies against each other

• R10 - conform to standards

**Stanford University** 

TEN "SIMPLE" RULES?

About Downloads Documents Forums Wiki

Source Code News



"we implement our models into **different finite element platforms** and perform **independent simulations** to **compare individual implementations**. we test our algorithms using **simple model problems** and **benchmark our codes** against established model problems with known solutions to **identify discrepancies** and **estimate numerical error tolerances**."

## multiscale modeling of heart failure



U01-HL119578 • Guccione • Kassab • Kuhl

Stanford University

## multiscale modeling of heart failure

$$oldsymbol{F}^{\mathrm{g}}=artheta^{\parallel}_{\mathcal{N}}oldsymbol{n}\otimesoldsymbol{n}+artheta^{\perp}_{\mathcal{N}}[oldsymbol{I}-oldsymbol{n}\otimesoldsymbol{n}]$$

#### eccentric & concentric & growth



#### Stanford University



rule 9 • testing competing implementations • crowdsourcing for grades me337 mechanics of growth • 2007-2019 • ~30 students per year



## implementation #2 • feap / biventicular model

### systolic heart failure / eccentric growth $artheta^{||}$





goktepe, abilez, parker, kuhl [2010], goktepe, abilez, kuhl [2010]



## implementation #3 • abaqus/living heart model systolic heart failure / eccentric growth $\vartheta^{||}$



diastolic heart failure / concentric growth  $artheta^\perp$ 





# testing "competing" implementations

| 1.  | <b>Peirlinck M</b> , Sahli Costabal F, Sack KL, Choy JS, Karoo SS, Guccione JM, DeBeule M, Segers P, <b>Kuhl E</b> . Using machine learning to characterize heart failure across the second pubmitted . <b>ABAQUS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.  | <b>Vedula V</b> , Liu J, Tikenogullari O, <b>Kuhl E</b> , Marsd sics model of cardiac function. Me cardiac function. 2019; submitted; <b>SIMCARDIO</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.  | <b>Vastmans J, Kuhl E</b> , Famaey N. Testing construction of the state of t |
| 4.  | <b>Oomen PA</b> , Holland MA, Bouten CVC, <b>Kuhl E</b> , Loerakker S. Growth and remode postnatal human heart valve do: Sci Rep. 2018; 8:1235 <b>BAQUS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.  | Saez P, Kuhl E. Computa ing of acut myoca ial infarct n. Con formech Biomed Eng. 2016;19:1107-1115. ABAQUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.  | <b>Sack KL</b> , Baillargeon B, Acever G, Genet M, Rebero N, <b>Kuhl E</b> , L, Weiselth, GM, Burkhoff D, Franz T, Guccione JM. Partial LVAD restored in tricular control in spico. It J Art al Organs. 2016;39:421-43.0 <b>ABAQUS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.  | Armstrong MH, Buganza Tepole A, Kuhl BR, Vana eest JP. A finite element model for mixed porohyperelasticity with transport, swelling. PLoS ONE. 2016;11:e0152806. MATLAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.  | Genet M, Ramph MK, Lo LC, Choy S, Zhao GS, Kozerke S, Guccione JM, Kuhl E. Heter owth-<br>induced present of the second seco    |
| 9.  | Lee LC, Gene -Bolton G, Ordov - Bolton G, Ordov        |
| 10. | Rausch MK, Zour M, Genet M, Baillargeon M, he W, Kuhl E. A virtual sizing tool for mitrative annuloplasty. Int<br>J Num Meth Biomed Eng. 2017;33:e02788. ABAQUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11. | <b>Hurtado DE</b> , <b>Kuhl E</b> . Computational modelling of electrocardiograms: Repolarisation of ave polarity in the human heart. Comp Meth Biomech Biomed Eng. 2014;17:986-996. <b>FEAP</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12. | Klepach D, L Ratcliffe MB, Zohd Navia JA, Kassab GS, Kuhl E, Gue owth and remodeling of the left ven s Comm, 2 LS-DYNA®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13. | Schmid H, Pau A, Kuhl E, sistent formulation of the growth process at constitutive leve eth Biomech B Crig, 2012; 15:547-561. CMISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14. | <b>Tsamis A</b> , Cheng A Jen TC, Langer F, Miller DC, <b>Kuhl E</b> . Kinematics of cardiac growth - In vivo fiom of growth tensors and strains. J Mech Behavior Biomed Mat, 2012;8:165-177. <b>MATLAB</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# testing "competing" implementations

### THE LIVING HEART PROJECT

a translational research initiative to revolutionize cardiovascular science through realistic simulation

- first four-chamber simulator for human heart function
- launched in may 2014
- 378 project participants from 24 countries
- **163 licensed users** from research, industry, medicine
- 111 organizations in the living heart project
- research agreement with FDA until 2023

advance development of safe and effective cardiovascular products and treatments by uniting engineering, scientific, and biomedical experts to **deliver validated models** and translate simulation technology into improved patient care





2017 2018

2015

2016

## collaborative testing competing implementations



joint mission to translate simulation technology into improved patient care

# machine learning to characterize heart failure

#### bottom up: comparing predicted myocyte and cardiac geometries



multiscale modeling • hierarchical modeling • bayesian inference • gaussian process regression • uncertainty quantification

sahli costabal, choy, sack, guccione, kassab, kuhl [2019]

Stanford University



### can sarcomere numbers explain myocyte length?





## can myocyte lengthening explain cardiac dilation?



## machine learning to characterize heart failure

#### bottom up: comparing predicted cardiac geometries

sarcomere number

myocyte morphology cardiac growth model









echocardiography



### top down: comparing predicted myocyte morphologies

echocardiography cardiac growth model myocyte length histology sarcomere number ed 53% agreement simulation experiment 20um

#### multiscale modeling, hierarchical modeling, Bayesian inference, gaussian process regression, uncertainty quantification

sahli costabal, choy, sack, guccione, kassab, kuhl [2019] peirlinck, sahli costabal, sack, choy, sack, kassab, guccione, debeule, segers, kassab, kuhl [2019]



## can cardiac dilation explain myocyte lengthening?



| last disagreement is not always bad <b>CFMS</b>                                                                                                                                   |                                           |            |                        |                         |                        |                |                         |                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------|------------------------|-------------------------|------------------------|----------------|-------------------------|-------------------|--|--|
| gold standard: holzapfel-ogden model<br>$\psi = \frac{a}{2b} \exp(b[I_1^e - 3]) + \frac{a_f}{2b_f} [\exp(b_f [I_{4f}^e - 1]^2) - 1]$                                              |                                           |            |                        |                         |                        |                |                         |                   |  |  |
| $+ \frac{a_{\rm s}}{2b_{\rm s}} \left[ \exp(b_{\rm s}[I_{\rm 4s}^{\rm e}-1]^2) - 1] + \frac{a_{\rm fs}}{2b_{\rm fs}} \left[ \exp(b_{\rm fs}(I_{\rm 8fs}^{\rm e})^2) - 1] \right]$ |                                           |            |                        |                         |                        |                |                         |                   |  |  |
|                                                                                                                                                                                   | $\begin{vmatrix} a \\ [Pa] \end{vmatrix}$ | b<br>[-]   | $a_{ m f} \ [{ m Pa}]$ | $b_{\mathbf{f}}$<br>[-] | $a_{ m s} \ [{ m Pa}]$ | $b_{ m s}$ [-] | $a_{ m fs} \ [{ m Pa}]$ | $b_{ m fs} \ [-]$ |  |  |
| original                                                                                                                                                                          | 798.7                                     | 8.61       | 13886.7                | 15.87                   | 4661.0                 | 9.04           | 216.0                   | 9.47              |  |  |
| pig #1                                                                                                                                                                            | 69.6                                      | 4.34       | 229.6                  | 8.34                    | 31.8                   | 7.23           | 18.7                    | 1.78              |  |  |
| pig #2                                                                                                                                                                            | 89.5                                      | 5.17       | 295.0                  | 9.93                    | 40.9                   | 8.61           | 24.0                    | 2.11              |  |  |
| pig #3                                                                                                                                                                            | 74.9                                      | 4.34       | 247.1                  | 8.34                    | 34.3                   | 7.23           | 20.1                    | 1.78              |  |  |
| pig #4                                                                                                                                                                            | 62.9                                      | 4.32       | 207.4                  | 8.29                    | 28.8                   | 7.19           | 16.9                    | 1.77              |  |  |
| pig #5                                                                                                                                                                            | 101.1                                     | 5.80       | 333.4                  | 11.13                   | 46.3                   | 9.65           | 27.2                    | 2.37              |  |  |
| pig #6                                                                                                                                                                            | 83.2                                      | 4.40       | 274.5                  | 8.44                    | 38.1                   | 7.32           | 22.3                    | 1.80              |  |  |
| mean                                                                                                                                                                              | 80.2                                      | 4.73       | 264.5                  | 9.08                    | 36.7                   | 7.87           | 21.5                    | 1.94              |  |  |
| std                                                                                                                                                                               | $\pm 13.9$                                | $\pm 0.62$ | $\pm 46.0$             | $\pm 1.19$              | $\pm 6.4$              | $\pm 1.03$     | $\pm 3.8$               | $\pm 0.25$        |  |  |
| discrepancy                                                                                                                                                                       | 0.10                                      | 0.55       | 0.02                   | 0.57                    | 0.01                   | 0.87           | 0.10                    | 0.17              |  |  |

discrepancies of one-two orders of magnitude have initiated paradigm shift now it is generally accepted that ex vivo testing overestimates stiffnesses

holzapfel, ogden [2010], sahli costabal, choy, sack, guccione, kassab, kuhl [2019]

# credible enough?



perspectives from cardiac growth and remodeling



- testing "competing" implementations increases credibility.
- a true **metric for credibility** is how many people **use the model.**
- to establish **credibility**, we should **collaborate** and **not compete**.

#### FRANCISCO SAHLICOSTABAL • MATHIAS PEIRLINCK • KEVIN SACK • SUSY CHOY • JULIUS GUCCIONE • GHASSAN KASSAB • TOM BATTISTI • STEVE LEVINE