

Research to Support Multiscale Modeling of Biomedical Systems

Michele J. Grimm, PhD
Program Director
EMBS and DARE Programs

National Science Foundation

COMMON MYTH

 "NSF does not support research related to human health"

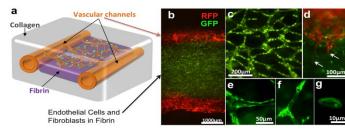
This is FALSE!

- The Engineering Directorate has 12 programs that specifically support research related to improving human health and medicine
 - Many will support modeling-based proposals
- The Biological Sciences Directorate does avoid biology related to human medicine

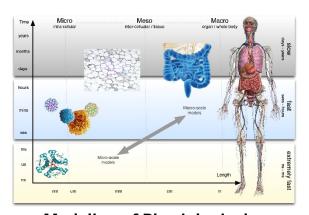
FUNDING MECHANISMS

- Proposals are submitted to a specific program or solicitation
- "Unsolicited" Proposals
 - Standard funding mechanism for all levels of investigators
 - One or two submission windows each year
 - General funding levels of \$100k/year for 3 years (including ICR)
- CAREER Awards
 - Funding mechanism for junior faculty (untenured but in tenure track)
 - Due each year in July
 - General funding level of \$100k/year for 5 years (including ICR)
 - Must include an <u>INTEGRATED</u> Educational component
- Special Solicitations
 - Often multi-disciplinary or cutting edge
 - Specified submission deadlines and budget guidelines
 - Released electronically at least 90 days before deadlines

ENGINEERING OF BIOMEDICAL SYSTEMS



Program Objectives:


- Develop novel ideas into transformative solutions for biomedical problems
- Advance engineering and biomedical sciences, integrating the two disciplines

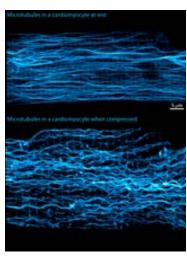
Key Components Related to MSM:

- Development of validated models of normal and pathological tissues and organ systems
 - In vitro or in silico
 - For understanding basic principals
 - To investigate diagnostic or treatment interventions

In vitro vascularization

Modeling of Physiological Processes from Molecule to Organism researchprotocols.org

BIOMECHANICS & MECHANOBIOLOGY


CMMI
Dec 30 – Jan 13
September 1 - 15

Program Objectives:

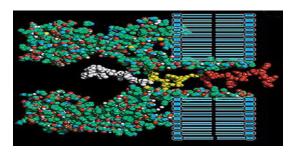
- Fundamental research
- Theoretical, computational, and experimental approaches supported

Key Components Related to MSM:

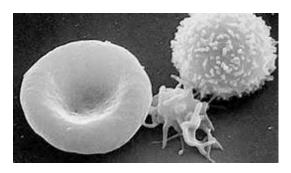
- Multiscale mechanics approaches integration across molecular, cell, tissue and organ domains
- Fundamental study of cellular biomechanics important for building 3D organs

Microtubules in a cardiomyocyte at rest (top) and when compressed.

CELLULAR & BIOCHEMICAL ENGINEERING


CBET October 1 – 20

Program Objectives:


- Fundamental engineering research that advances understanding of cellular and biomolecular processes in engineering biology
- Eventually leads to development of enabling technology for advanced manufacturing of the therapeutic cells, biochemical, biopharmaceutical, and biotechnology industries

Key Components Related to MSM

- Quantitative systems biotechnology
- Single cell dynamics and modeling in the context of biomanufacturing

Modeling of Molecular Systems

Scaled up Advanced Biomanufacturing of Therapeutic Cells

NSF REVIEW CRITERIA

Intellectual Merit:

- Does the proposed work advance and contribute knowledge in its own field or across different disciplines?
- Does the proposal involve creative and original concepts?
- Is the proposal well-conceived and organized?
- Is the PI (or team) qualified to conduct the proposed work?
- Does the team have sufficient access to resources to conduct the work?

Broader Impact

- Does the research and related activities contribute to the achievement of societally relevant outcomes?
- May include activities that:
 - Broaden participation in STEM
 - Improve STEM education
 - Increase public scientific literacy

KEYS TO SUCCESS

- Identify the right Program and tailor your project to that Program
- Contact the Program Director you hope to submit to in order to discuss your ideas and confirm the fit of the project with the program
 - Start with an email (include your project objectives) and follow up with phone call or visit for more extensive discussion

DO NOT WAIT UNTIL THE LAST MINUTE!

- Know the difference between an NSF and an NIH project
- Spend time on the Broader Impacts don't rely on the future benefit to human health
- Include enough preliminary data to prove that the work is doable
- Tell a good story explaining why your work is important, innovative, and (if successful) transformative
- Volunteer to serve as a panelist to better understand process and review