Is the Mechanism of APAP Toxicity In Vivo & In Vitro Really the Same?
A Model Mechanism Based Explanation of the In Vitro—in Vivo Disconnect
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PROBLEM

There is often an in vitro—to—in vivo (IVIV) disconnect. Knowledge-based translation is often problematic.
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APPROACH

Current approaches use correlation and extrapolation. Herein we offer an alternative approach.

+ Pharmacological and Toxicological Phenomena =>
acetaminophen (APAP) pharmacology/toxicology:
In Vivo = Mice; In Vitro = Hepatocyte 2D Cultures. occur.

 ltis infeasible to study an actual biological system to

CONTEXT
It is well understood that IVIV disconnect causes * By better understanding the contributions of those two
include: 1) loss of 3D contextual features, and 2) sources, we can close this IVIV disconnect.

learn where, how, and why in vivo—-to—in vitro changes

hepatocytes often behave differently in vitro.

SPECULATION

Speculation: We can use M&S methods (e.g. Virtual Experiments) to pursue plausible mechanism-
based models of explanation for specific IVIV disconnect phenomena. By insisting that methods
are generalizable, we will be on a path to close IVIV disconnects.

DEFINITION

Mechanism - We adopt this definition of mechanism [1]: a mechanism involves entities and activities organized in such a
way that they are responsible for the phenomenon to be explained. In addition to a phenomenon, an explanatory
mechanism exhibits four essential features [2]: 1) Components (e.g., entities and activities, modules); 2) Spatial
arrangement of components; 3) Temporal aspects of components; and 4) Contextual locations (e.g., location within a
hierarchy).
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Necrosis Trigger Events / 100 HPCs

OBJECTIVE

Demonstrate feasibility of using virtual experiment methods to explain quantitatively contributions to the IVIV
disconnect caused by loss of 3D hepatic contextual features

METHODS

« Start with an established [3] multi-attribute, multiscale model that

adequately explains multiple features of APAP hepatotoxicity in mice.

* Mimic the wet-lab procedure: isolate, and deconstruct the liver,

isolate and culture hepatocytes.

+ Verify that all analog hepatocytes (aHPCs) internal mechanisms are
the same in both simulated culture and liver contexts.

+ Configure all aHPCs into a Culture Analog that mimics commonly

used 2D culture systems.

* Enable parallel virtual experiments in which APAP doses and number
of exposed aHPCs are the same for Mouse and Culture contexts.

+ Each aHPC “remembers” its location within the Liver Lobule. In that
way we were able to compare how the same aHPC behaved during
exposure to APAP in Mouse and Culture contexts.

* Response is occurrence of Necrosis Trigger Events.
* Record time-course measurements of other key aHPCs events.

* Conduct Dose-Response (D-R) experiments

Dose-Response Curves
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HYPOTHESIS

Test this hypothesis: temporal values necrosis trigger events (toxicity) will be essentially the
same because analog hepatocytes (aHPCs) function the same in both Mouse and Culture Analogs,

identical APAP exposures.

RESULTS + EXPLANATIONS

* Theis falsified because the Mouse & Culture Analog
Dose-Response curves are different. Thus, the virtual
causal mechanisms within each system are different.

» Cell level spatial and temporal mechanisms shared by
both Analogs behave the same.

* So, why are the mechanisms different? Hepatocytes in
Mouse & Culture Analogs are heterogeneous, because
parameterizations within Mouse Analogs are location
dependent. Although the aHPCs are the same, exposure
to APAP is different.

* In the Culture Analog, all aHPCs are exposed essentially

simultaneously to the level of APAP in media adjacent to

the Cells. However,

exposed to APAP sequentially. Upstream aHPCs “see”
greater amounts than do downstream aHPCs.

* In the Liver Analog,

that are most sensitive to APAP (those close to the
central vein) have much higher intracellular levels of
unbound APAP than do aHPCs further upstream.

* In the Culture Analog, during a given time interval, all
aHPCs have essentially the same intracellular levels of

unbound APAP.

within the Liver Analog, aHPCs are

within the same time interval, aHPCs
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)

have real in vivo and in vitro counterparts.

Mouse to Culture); therefore, identifiable structural

hepatotoxicity.

* There is a loss of spatial organization of aHPCs (from

differences help explain the IVIV disconnect in APAP

CONCLUSIONS

* We hypothesize that the different virtual mechanisms

« Avirtual Culture-to-Mouse translation can be used as
a credible (knowledge & mechanism-based) method to
begin closing the the IVIV disconnect.
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