Combining wet lab and computational simulations to predict optimal antibiotic drug regimens for *Mycobacterium tuberculosis*

Denise Kirschner and Jennifer Linderman

University of Michigan Medical School

JoAnne Flynn

University of Pittsburgh School of Medicine

Veronique Dartois

Rutgers University

Systems biology mechanisms funding this work from NIH/NHLBI: MSM : 1U01HL131072

Tuberculosis (TB): Infectious disease caused by *Mycobacterium tuberculosis* (Mtb). One-third of the world's population is infected with Mtb, and new infections occur at a rate of one per second. 3 people die every minute, i.e. 2 million deaths/year.

Granulomas are a result of multi-scale dynamics in both space & time

GranSim (2D/3D)

Cellular/tissue scale Model--

A stochastic **model** that captures discrete cellular dynamics via a set of well-described interactions between immune cells and Mtb leading to tissue scale outcomes

****Leads to "emergent behavior"**

*Segovia-Juarez et al J. Theor Biol. 2004 * Ray *et al,* J. Immunol. 2009

Experimental & computer generated granuloma

Granuloma formation

*Calibrated to NHP data *Simulation begins with a single infected macrophage with one intracellular bacteria

*Video simulates 200 days of infection

*2mmx2mm lung tissue

Visualizing simulated molecule chemical gradients at day 50 postinfection for one simulation (using DataTank).

-0.9

0.8

-0.7

-0.6

0.5

0.4

-0.3

0.2

-0.1

Viewing chemical gradients in 3D space 50 days post infection

BLACK:a 2D, yz-slice at x=50,

GREEN: we use 3D level sets to depict the 3D spatial distributions of two biologically-relevant TNF concentrations for macrophage recruitment.

*TNF concentration is 0.05 or greater (i.e. level set = 0.05);
this is the minimum concentration that macrophages can sense,
a concentration below this value is not detectable by macrophages.

PURPLE:

TNF concentration is 50 or greater (i.e. level set = 50); this is the maximum concentration that macrophages can sense

Why is TB so hard to treat?

1.Mycobacterium

- Slow growing bacterium
- Acquires antibiotic resistance

2. Granulomas

 Granulomas present physiological barrier to antibiotic diffusion

3. Patient-unfriendly treatment

- Long -9 months
- multiple drugs given
- many side-effects
- 4-drug standard regimen: INH, RIF, PZA, EMB

Prideaux et al. Nat. Med. (2015)

Pharmacokinetics/Pharmacodynamics Modeling (PK/PD)

Elsje Pienaar et al. A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment J. Theo. Biol, 2015

2. Predicting granuloma antibiotic exposure

Orange trace – INH concentration over time Purple trace – Total bacteria over time

Concentration oscillates between above and below effective concentrations

Antibiotic exposure inside granuloma much lower than outside

Pienaar et al. BMC Sys. Bio. (2015)

Antibiotic spatial dynamics during daily dosing

Can we predict what can improve drugs? i.e. which PK and PD properties are good targets for modification?

Use sensitivity and uncertainty analysis to determine this

3. What's the best antibiotic regimen?

- Current regimen is 4 drugs 6-9 months
- Too many options to test
 - Clinically or computationally
- Optimization problem

Regimen design space (RDS)

Treatment segments (M)	2
Number of drugs (c)	10
Drugs per segment (n)	4
Dose (D, mg/kg)	5
Frequency (F, week ⁻¹)	7

Number of possible regimens: $RDS = \left(\binom{c}{n} (D \times F)^n \right)^M = 9.9 \times 10^{16}$

Cicchese et al. CMBE (2017)

Defining the optimization problem

Cicchese et al. CMBE (2017)

Optimization algorithm options

Genetic Algorithm

- 1. Initialize population
- 2. Population evolution
 - i. Evaluation fitness
 - ii. Select parents
 - iii. Generate new population
- iv. Check stopping criteria

3. Solution found

Man *et al. IEEE Trans.* (1996) Jin and Branke, *IEEE Trans.* (2005)

Surrogate-Assisted Optimization

Test problems for comparing algorithms

- Single-antibiotic test problems, optimize dose and frequency
- Based on published simulations (Pienaar *et al. BMC Syst. Biol.* (2015))
- Generate objective function surface based on simulation output
- Use to test performance of optimization algorithms
 - Accuracy: distance from the known solution
 - Efficiency: how much of the design space sampled

Cicchese et al. Cellular and Molecular Bioengineering (2017)

Objective function

f = (time to clear) + (dose)(freq.)

GA most accurate in predicting solutions

- Each algorithm solved the test problem with 30 independent optimizations
- Each "x" corresponds to the estimated optimal solution

Cicchese et al. CMBE (2017)

Surrogate-assisted optimization requires fewer function evaluations

Optimization method	Average number of function evaluations			
Surrogate-assisted optimization	21			
Default genetic algorithm	3,855			
Relaxed genetic algorithm	347			

With modifications, surrogate assisted models can efficiently predict optima with sufficient accuracy

Cicchese et al. CMBE (2017)

Predicted optimal regimens for 2 drugs

Dose-weight Parameter (ω)	INH Dose (mg/kg)	INH Dose Freq. (week ⁻¹)	RIF Dose (mg/kg)	RIF Dose Freq. (week ⁻¹)	Weekly INH Dose (mg/kg)	Weekly RIF Dose (mg/kg)	Total Weekly Dose (mg/kg)	Predicted Time to Sterilize (days)	Simulated Time to Sterilize (days)
0.75 1	28.9 22.5	7.3 1.1	8.6 25.7	1.9 4.9	210.7 25.9	16.1 125.8	226.8 151.8	10.2 17.3	16.3 21.9
2	25.7 22.5	7.3 1.1 7.2	8.6 17.1	1.9 3.7	<u>187.4</u> 24.1	<u>16.1</u> 63.3	203.4 87.4	11.8 25.9	16.8 31.0 21.0
3	19.3 19.3	7.3 1.1 4.9	4.3 12.9 4.3	1.9 3.7 1.9	20.7 94.5	47.8 8.0	68.4 102.5	30.2 29.9	42.4 31.4

*Note: Doses for non-human primate that yield similar exposure levels in humans

Identifies two major regions:

- 20-25 mg/kg INH daily, low dose RIF twice a week
- 2. 20-25 mg/kg INH weekly, ~15 mg/kg RIF daily

*Major regions similar to human equivalent doses for CDC regimens

Surrogate model predictions are fast, accurate and relevant Cicchese *et al.* CMBE (2017)

Capturing Multiple granulomas-

Granuloma Source Bacterium ID 1 -2 -3 -4 -5

Martin CJ, Cadena AM, <u>Digitally Barcoding *Mycobacterium tuberculosis* Reveals *In Vivo* Infection Dynamics in the <u>Macaque Model of Tuberculosis</u>Leung VW, Lin PL, Maiello P, Hicks N, Chase MR, Flynn JL, Fortune SM. MBio. 2017 May 9;8(3). pii: e00312-17. doi: 10.1128/mBio.00312-17.</u>

Acknowledgments

Amazing group at UM

Fantastic Collaborators:

- •Simeone Marino, (U of M)
- •Elsje Pienaar, (Purdue)
- •Veronique Dartois (Rutgers)
- Mark Miller (Washington University)
- •JoAnne Flynn, Ling Lin, Josh Matilla,
- •Hannah Gideon (Univ of Pitt)

•LAB MEMBERS:

- Joseph Cicchese
- •Louis Joslyn
- Paul Wolberg
- •Tim Wessler
- •Cailtin Hult
- •Stephanie Evans
- Marissa Renardy
- •Joe Waliga

*Generous funding from the NIH

U01 (NHLBI)

Publish your QSP in JTB and BMB!

Bulletin of Mathematical Biology

A Journal Devoted to Research at the Junction of Computational, Theoretical, and Experimental Biology

Society for Mathematical Biology

