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Tuberculosis (TB):

Infectious disease caused by Mycobacterium tuberculosis (Mtb).

One-third of the world’s population is infected with Mtb, and granulomas
new infections occur at a rate of one per second.

3 people die every minute, i.e. 2 million deaths/year.
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Granulomas are a result of multi-scale dynamics in both space & time

Organ scale

Tissue scale

Cellular scale

Molecular scale
(cytokines, drugs)

2% Dendritic cell (DC) Y TNF receptor (transmembrane)
& Macrophage (m¢) v TNF receptor (soluble)
e Tcell { TNF (transmembrane)

e M. tuberculosis bacillus + TNF (soluble)




GranSim (2D/3D)

Cellular/tissue scale Model--

A stochastic model that captures
discrete cellular dynamics via a set of
well-described interactions between
immune cells and Mtb leading to tissue
scale outcomes

Tissue scale

TNF, .
Cellular scale ¢

**Leads to “emergent behavior”

*Segovia-Juarez et al J. Theor Biol. 2004
* Ray et al, J. Immunol. 2009
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Experimental & computer generated
granuloma
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Granuloma

formation
Macrophages Extrac. Mtb
Resting b Caseated
M Active T cells
Infected Regulatory
M Chronically Gamma
Infected B Cytotoxic

*Calibrated to NHP data
*Simulation begins with
a single infected
macrophage with one
intracellular bacteria

*Video simulates 200
days of infection

*2mmx2mm lung tissue



Visualizing simulated molecule chemical gradients at day 50 post-
infection for one simulation (using DataTank).

Viewing chemical gradients in 3D space 50 days post infection

BLACK:a 2D, yz-slice at x=50,

GREEN: we use 3D level sets to depict the 3D spatial distributions
of two biologically-relevant TNF concentrations for macrophage
recruitment.

*TNF concentration is 0.05 or greater (i.e. level set = 0.05);
this is the minimum concentration that macrophages can sense,
a concentration below this value is not detectable by macrophages.

PURPLE:
TNF concentration is 50 or greater (i.e. level set = 50); this is the
maximum concentration that macrophages can sense



Why is TB so hard to treat?

1.Mycobacterium 2. Granulomas 3. Patient-unfriendly
« Slow growing « Granulomas treatment
bacterium present * Long -9 months
« Acquires antibiotic physiological barrier « multiple drugs
resistance to antibiotic given
diffusion * many side-effects

* 4-drug standard
regimen: INH, RIF,
PZA, EMB

Prideaux et al. Nat. Med. (2015)



Pharmacokinetics/Pharmacodynamics Modeling
(PK/PD)

Antibiotic tissue concentration
Antibiotic plasma concentration in granuloma simulaiton
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2. Predicting granuloma antibiotic exposure

INH 7 doses per week

0.1

0.01

INH concentration in
granuloma (mg/L)
ewojnueab jad 49

Days post treatment start
Orange trace — INH concentration over time  Antibiotic exposure inside granuloma
Purple trace — Total bacteria over time much lower than outside

Concentration oscillates between above
and below effective concentrations

Pienaar et al. BMC Sys. Bio. (2015)



Antibiotic spatial dynamics during daily dosing

RIF INH

Color scale: 0 — 10 mg/L Color scale: (0 - 0.5 mg/L)




Can we predict what can improve drugs?

i.e. which PK and PD properties are good targets for modification?

OUTCOMES

Total
CFU after
treatment

Time to
sterilization
(days)

Treatment
failure
rate

Use sensitivity and uncertainty analysis to determine this
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3. What’s the best antibiotic regimen?

* Currentregimenis4
drugs 6-9 months

* Too many options to
test

— Clinically or
computationally

* Optimization
problem

Cicchese et al. CMBE (2017)

Regimen design space (RDS)

N

Treatment segments (M)
Number of drugs (c) 1
Drugs per segment (n)
Dose (D, mg/kq)
Frequency (F, week™)

-

N b

Number of possible regimens:

RDS = ((£)@xP7) = 9.0x10



Defining the optimization problem

Regimen of n antibiotics (2n-dimensional)

/ Antibiotic 1 Dose

x=1{D,.F.D,F,..D F}

Antibiotic 1 Dose Frequency

INH and RIF regimen (4-dimensional)

X = {10 mg/kg, 7 wk’, 15 mg/kg, 2 wk' }

NSNS

INH RIF
10 mg/kg given 15 mg/kg given
7 times per week 2 times per week

Input
(Antibiotic Regimen)

Cicchese et al. CMBE (2017)

Granuloma

Model

Objective function is a function of
model outputs

* Time to sterilize granuloma of
bacteria

* Antibiotic dose

 Measures of resistance

* Potentially more

Model

Outputs Objective Regimen

Function (f) Efficacy




Optimization algorithm options

Surrogate-Assisted Optimization

Genetic Algorithm
1. Initialize population |
2. Population evolution
— |I. Evaluation fithess
ii. Select parents
lii. Generate new
population
— jv. Check stopping X’
criteria
® Sample Points
3. Solution found —— Unknown Function
----- Prediction (from sample points)
Man et al. IEEE Trans. (1996) Forrester et al. (2008)

Jin and Branke, IEEE Trans. (2005) Akhtar et al. J Global Opt (2016)



Test problems for comparing algorithms

Objective function

* Single-antibiotic test problems, t (x) D(x)
optimize dose and frequency f(x)=-< +

* Based on published simulations ¢,max Dmax
gioelnSa)?r et al. BMC Syst. Biol f = (time to clear) + (dose)(freq.)

INH test problem surface
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output
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 Use to test performance of
optimization algorithms

— Accuracy: distance from the known
solution
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— Efficiency: how much of the design
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GA most accurate in predicting solutions

a. INH RBF Network b. INH Default GA c. INH Relaxed GA
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Optimization

« Each algorithm solved the test problem with 30 independent optimizations

« Each “x” corresponds to the estimated optimal solution

Cicchese et al. CMBE (2017)
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Surrogate-assisted optimization
requires fewer function evaluations

Average number of

Optimization method function evaluations

Surrogate-assisted optimization 21
Default genetic algorithm 3,855
Relaxed genetic algorithm 347

With modifications, surrogate assisted models can
efficiently predict optima with sufficient accuracy

Cicchese et al. CMBE (2017)



Predicted optimal regimens for 2 drugs

Weekly Predicted Simulated
Dose-weight INH Dose INH Dose RIF Dose RIF Dose INH Dose Weekly RIF Total Weekly Time to Time to
Parameter (o) (mg/kg) Freq. (week ') (mg/kg) Freq. (week ') (mg/kg) Dose (mg/kg) Dose (mg/kg) Sterilize (days) Sterilize (days)
0.75 28.9 7.3 8.6 1.9 210.7 16.1 226.8 10.2 16.3
1 22.5 1.1 257 49 259 125.8 151.8 17.3 21.9
25.7 7.3 8.6 1.9 187.4 16.1 203.4 11.8 16.8
2 22.5 1.1 17.1 3.7 24 1 63.3 87.4 25.9 31.0
22.5 7.3 4.3 1.9 171.2 8.0 179.2 15.5 21.9
3 19.3 1.1 12.9 3.7 20.7 47.8 68.4 30.2 42.4
19.3 4.9 4.3 1.9 94.5 8.0 102.5 29.9 31.4

*Note: Doses for non-human primate that yield similar exposure levels in humans

|dentifies two major regions:

1. 20-25 mg/kg INH daily, low dose RIF
twice a week

2. 20-25 mg/kg INH weekly, ~15 mg/kg
RIF daily

*Major regions similar to human
equivalent doses for CDC regimens

Surrogate model predictions are fast, accurate and
relevant Cicchese et al. CMBE (2017)



1. GrnSim OPTIMIZATION PIPELINE

3. Surrogate-assisted
optimization

entration (ng/mL)

Test different

regimens
L Resample
Toecireregimen
space

Build surrogate
model

g
(®)]
E
S
D
2. /PD of 5
Antibiotics e
Uncert/ . o e
| 7 Sensitivity Multi-scale antibiotic
Ea T and granuloma model
[T
4. Predicted
optimal regimen(s)
5. Test in
virtual goe -—
treatment L o6 o
trial go4 B
Eo.z 07E

o

04 06
Normalized RIF Dose

6. Animal model testing




Capturing Multiple granulomas-

Granuloma Source Bacterium ID\

—_— —2 3 =——4 5|

Martin CJ, Cadena AM, Digitally Barcoding Mycobacterium tuberculosis Reveals In Vivo Infection Dynamics in the
Macaque Model of TuberculosisLeung VW, Lin PL, Maiello P, Hicks N, Chase MR, Flynn JL, Fortune SM.
MBio. 2017 May 9;8(3). pii: €00312-17. doi: 10.1128/mBi0.00312-17.
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Modeling granuloma formation and PK/PD

A multi-scale systems pharmacology approach to tuberculosis therapy

Joseph M. Cicchese', Véronique Dartois?, JoAnne L. Flynn®, Denise E. Kirschner?, Jennifer J. Linderman'
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Predicting in vivo antibiotic distributions

Tuberculosis (TB) is a bacterial infection, primarily
affecting lung tissue, that is considered one of the
world’s deadliest infections. Caused by infection
with the [ i
(Mtb), standard treatment of TB often requires six
months or longer of multiple antibiotics. Length of
treatment and the emergence of drug-resistant TB
indicate a need for better antibiotic regimens.

Granuloma formation in lung tissue during infection
- lesion that forms due to immune response
- hallmark of TB, location of Mtb
- physiological barrier to antibiotic diffusion

Design of better regimens requires modeling at mul-
tiple scales:

1. scale - pf d (PK) and
pharmacodynamic (PD) models to predict antibiotic
distribution in granulomas, secretion and diffusion of
cytokines (TNF, IL10, etc.)

2. Cellular and tissue scale - agent-based models
to simulate cellular interactions and rules, with
emergent granuloma formation representing tissue-
level structure

3. Whole body - combination of granuloma simula-
tions through linked antibiotic plasma PK to simulate
treatment of infected host

Using computational modeling and surrogate-
assisted optimization algorithms, we can screen the
regimen design space for optimal therapies and
test efficacy in a virtual clinical trial

Plasma PK compartmental model

Absorption rate constant,

ke k
-{ Transit 2

Intercompartmental

Transit 1 Plasma Vol. of

Peripheral
Tissue Vol. of

Oral Dose Distibution, Vs,

Tissue PK Model

Antibiotic Pharmacodynamics

rate constant

Drug concentration

PK/PD model components [2]

Plasma PK - ODE'’s to model plasma
concentration

Tissue PK - PDE’s to model antibiotic
diffusion, binding and degradation

PD model - killing rate constant based
on Hill curve

Optimizing antibiotic regimens
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Parameters of PK models are fit to
capture the range of antibiotic con-
centrations observed in vivo.

(A-D) Black dots represent experi-
mentally measured antibiotic concen-
trations in granulomas after oral
dosing in human lesions (INH, RIF

5 8 30o%

PZA Lesion Concentration (mg/L)

and PZA) or rabbits (EMB) [3,4]. Blue
shaded region is range of simulation,
with the solid blue line representing
the simulation’s median concentration
based on varying plasma PK param-
eters.

15
Time (hrs)

(E-H) Spatial distribution of the antibi-
otics in the agent-based simulation
around the time of peak average
concentration (2 to 4

Tcell

) Mycobacterium
tuberculosis

[Macrophages Il Extrac. Mtb,

HCaseated
cels

M Regulatory

M Gamma

B Cytotoxic
Granuloma model [1] - agent-based
model to capture immune cell interaction
and responses, bacterial growth and
states, and structural environment for anti-
biotic diffusion

INH Concentration (ma/L)

EMB Concentration (mg/L)

Predicting regimen efficacy and virtual clinical trials

hours depending on the antibiotic).
Lighter shades indicate higher con-
centrations. Many antibiotics have
lower concentrations in granulomas,
or fail to diffuse completely into the
granuloma.

RIF Concentration (mg/L)

First-line TB Antibiotics:
INH = isoniazid

RIF = rifampin

EMB = ethambutol
PZA = pyrazinamide

PZA Concentration (mg/L)

Conclusions

Surrogate-assisted optimization of antibiotic regimens [5]

Optimization algorithm predicts
better treatments to simulate

Granuloma and
antibiotic
treatment

Antibiotic Treatment Vector

x:fD,F

Build
kriging-based
surrogate

Determine
optimal treatments

Defines dose and dosing N
frequency of antibiotics AN
in regimen ~——

Simulating antibiotic therapies gives sterilization dynamics

100

1403 |

CFU/Granuloma
% Granulomas Sterilized

75
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- Multi-scale modeling of granuloma formation and antibiotic
treatment combines agent-based models of cellular interac-
tions, pharmacokinetic models involving ODE’s and PDE'’s,
and optimization algorithms to search for better regimens.

- The model quantitatively captures range of antibiotic concen-
tration experimentally observed, as well as qualitative spatial
distributions.

- Surrogate-assisted optimization provides an efficient way to
search for optimal antibiotic regimens.

Decrease in number of bacteria for different
optimization objective and efficacy granulomas (gray lines) during treatment rar
- e e . . L . with daily doses of INH. Colored lines are ent antibiotics over duration of treat-
Single-objective optimization Multi-objective optimization selected simulations to aid in visualization.  ment gives clinically relevant antibiotic
efficacy ranking.
P

Combining granulomas into hosts for virtual clinical trials

Comparison of percentage of simu-
lated granulomas sterilized with differ-

- Treatment simulations can be used to compare antibiotics in
sterilizing granulomas. Grouping granulomas together into
hosts provides a computational framework to compare regi-
mens through virtual clinical trials

Treatment simulation determines
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Normalized RIF Frequency
- R
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Normalized RIF Dose
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_ 1), DO
1

c.max max.

A single-objective function that simultaneously
attempts to minimize sterilization time and
weekly antibiotic dose shows how changing
dose size and dosing frequency affects regimen

f = (time to clear) + (dose)(freq.)

Fx)

°

100 150
Time to sterilization (days)

Multi-objective optimization provides the
trade-off between two opposing objectives
(such as antibiotic dose and sterilization
time). Red points represent regimens that

optimality. Black dots represent used
to build surrogate, the green circle is the surro-
gate predicted optimum compared to the true
global optimum (red circle)

are pareto-optimal, and black dots are
non-optimal simulated regimens that were
sampled.

insilico
granuloma
bio-repository

Control

Random
sampling
| Granuloma1 ~_~ 1 Host 1

J Granuloma 2
|

|_Granuloman |

Treatment A  TreatmentB  Treatment C
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