Proposed Checklists for use as one develops the model and the data analysis

These are the in-house checklists used for the UW Model Repository at www.physiome.org The pages are: 1.Summary 2.Project file, 3. CODE, 4.Verif, 5. Valid, 6. Uncertainty, 7. Publication The check list is to be used by the author and two reviewers, before approval for website.

The che	ck list is to be used by the author and two reviewers, before approva	ai for w	ebsite.	
	STANDARDS.1.SUMMARY: Summary of Expectations	Auth	Check 1	Ch 2
Group 1:	Identification and Description	х		
	L. Model Name and No: short and long descriptions complete		ху	
	2. Code completed, checked .mod file, Model runs correctly		,	xyz
	3. Diagrams correct			
	1. Reference to Publication describing the model			
	5. Context and Purpose of model defined			
	Project File: Basic Content: FIGURES and NOTES			
· .	I. The chosen model solutions tell some story			
	2. The story is around data, figures and parameter sets (All matched)			
	3. The figures and their titles fit story			
	1. Every figure has axes labeled with symbol, name and units			
	5. Figures use Very short tab labels fitting the topic.			
	5. Graphs use same colors and line types for same variable in every figure.			
	7. Sensitivity functions. How to plot. Why useful. Notes. Use same colors.			
	3. Ontology consistent in notation of .mod, Figures and Notes and Par sets			
	9. Notation consistent with diagrams in .mod text and on the Website			
	LO. Parameters sets: Description and rationale for each explained in Notes			
	11. Loops: Purposes and settings; parameter set, plus explanation in Notes			
	12. Optimization re data or other model: description, par set, Notes			
	Verification methods: See STANDARDS-VERIF for detail			
1	1. Under Notes: Check off list for the model file verification (X re 10in Gp 3)			
-	2. List variables computed in the MML code that are serving as checks			
3	3. Commentary on checks or missing checks			
-	1. Numerical Methods chosen and why. In notes.			
5	5. Solution times chosen; delta t chosen; comments			
Group 4.	Validation methods: See STANDARDS-VALID for detail			
1	1. Justify initial and boundary conditions in accord with physiology			
2	2. List Data provided and fitted by model, and sources.			
3	3. Show fits of data in Figures, and optimization results			
	1. Notes defining contents of each situation, figure or par set			
5	5. Parameters estimated and evaluated against literature or other			
Group 5.	Uncertainty Quantification: See STANDARDS-UQ for detail			
1	L. Parameters and Variables chosen			
2	2. Define Measures of uncertainty			
	3. Plots or contour maps of projected results			
	Scientific Publication: See STANDARDS-PUB for detail			
	1. Summary of the science			
	2. References to subsequent publications or alternative models			
	3. Website for public dissemination, commentary and responses			

Updated: 8mar2018

STANDARDS 2: The PROJECT FILE: code, data, etc.	Auth	2nd	Note
Group 1: Identification and Description	Х		
1. Model Name and No: short and long descriptions complete		ху	
2. Code completed, checked .mod file, Model runs correctly			xyz
3. Diagrams correct			
4. Reference to Publication describing the model			
5. Context and Purpose of model defined			
6. Provenance: Refs to prior works			
Group 2.Project File: Basic Content FIGURES and NOTES			
1. The chosen model solutions tell some story			
2. The story is around data, figures and parameter sets (All matched)			
3. The figures and their titles fit story			
4. Every figure has axes labeled with symbol, name and units			
5. Figures use Very short tab labels fitting the topic.			
6. Graphs use same colors and line types for same variable in every figure.			
7. Sensitivity functions. How to plot. Why useful. Notes. Use same colors.			
8. Ontology consistent in notation of .mod, Figures and Notes and Par sets			
9. Notation consistent with diagrams in .mod text and on the Website			
10.Parameters sets: Description and rationale for each			
11. Loops: purposes and settings; par set			
12. Optimization re data or other model: descrip, par set, Notes			
Group 3. Verification methods: See STANDARDS-VERIF for detail			
1. Under Notes: Check off list for the model file verification (X re 10in Gp 3)			
2. List variables computed in the MML code that are serving as checks			
3. Commentary on checks or missing checks			
4. Numerical Methods chosen and why. In notes.			
5. Solution times chosen; delta t chosen; comments			
Group 4. Validation methods: See STANDARDS-VALID for detail			
1. Justify initial and boundary conditions in accord with physiology			
2 .List Data provided and fitted by model, and sources.			
3. Show fits of data in Figures, and optimization results			
4. Notes defining contents of each situation, figure or par set			
5. Parameters estimated and evaluated against literature or other			
Group 5. Uncertainty Quantification: See STANDARDS-UQ for detail			
1. Parameters and Variables chosen			
2. Define Measures of uncertainty	1	1	
3. Plots or contour maps of projected results			
Group 6: Scientific Publication: See STANDARDS-PUB for detail			
1. Summary of the science			
2. References to subsequent publications or alternative models			
3. Website for public dissemination, commentary and responses			
Revised15.07.28 by JBB			

These tables are the in-house checklists used for the ow Model Repository a	it vv vv vv.	physio	ine.org
STANDARDS 3: The CODE: formatting, annotating	Auth	2nd	Note
Group 1. Basic requirements	+		
Code clearly written	1		
ALL terms expressed using standard nomenclature	1		
Ontology used, and if so consistent?	1		
Sections demarcated (Parameters, variables, Cs, BCs, Equations	+		
Modular arrangements of code	+		
Comments on every line?	1		
Comments on every line?	1		
Algorithms explained and referenced if needed	1		
Short and long descriptions precise and concise	1		
References listed	+		
Authors, revisors, date and sign contributions	+		
References for all parameter values	1		
Descriptions and references for subsidiary models	+		
Models and graphs all run	+		
Group 2. Conservation, Balances, that are appropriate to the model	+		
Unitary Balance: (units on all variables and parameters)	1		
Mass balance: (list constituents whose conservation is checked)			
Charge balance: (ion currents, membrane potential)	-		
Osmotic balance: (volume, total activities, fluxes)			
Thermodynamic Balance (Haldane constraints on reactions, etc)			
Group 3. Verification: math of model and solution methods are sound			
Verification checklist complete?			
Limitation spelled out? Solvers OK?			
Range of Independence of step size in space or time			
Group 4: Summary of Validation: model is physiologically realistic			
Data provided, and fitted by model			
Initial and boundary conditions in accord with physiology			
Parameters justified (sources provided) and evaluated			
Model is predictive, shown to fit other data not used as basis			
Group 5: Provision of Source Code and Forum for critiques			
Website source from which to download model code and data			
Website or email to accept queries			
Website for public commentary and responses	1		
References to subsequent publications or alternative models			
Group 6. Provenance: Antecedents, derivations and dependencies			
Peer-reviewed publication (pdf copy)			
Lineage of the model (list of antecedent models)			
List higher level models using of which this is a component			
Shortcomings			
Future Needs			
Rev by JBB 15.07.28			

These tables are the in-house checklists used for the UW Model Reposit	lory at www.	pnys10	ine.org
STANDARDS.4. VERIFICATION:	Auth	2nd	Note
Group 1: Conservation, Balances	х		
Unitary Balance: (units on all variables and parameters		xy	
Mass balance: (list constituents whose conservation is checked)			xyz
Other balances: Charge, Osmotic , Thermodynamics.			
Group 2. Verification Steps. Checking Math and Numerics of Model			
All terms defined			
Numerical Solutions check analytic. Why Methods chosen. In notes.			
Analytic solutions built into code?			
Equation formats in similar styles, aligned for easy checking			
Dependence on time step defined for particular parameter values			
Dependence on space step defined for particular parameter values			
Optimizer and loop parameters provided			
Different solvers gives same results for ODEs			
Different solvers gives same results for PDEs			
Implicit eqns solved by iteration? Calculation done how?			
Commentary on checks or missing checks			
Solution times chosen; delta t chosen; comments			
List variables computed in the MML code that are serving as checks			
Group 3: Verification in Data analysis			
Data available, described and adequate as test			
Data units matched by model			
Multiple data sets available			
Behavioral analysis: Can cover a wide range of situations?			
Sensitivity analysis defined for conditions that fit data			
Group 4. Validation methods: See STANDARDS-VALID for detail			
1. Justify initial and boundary conditions in accord with physiology			
2. List Data provided and fitted by model, and sources.			
3. Show fits of data in Figures, and optimization results			
4. Notes defining contents of each situation, figure or par set			
5. Parameters estimated and evaluated against literature or other			
Group 5. Uncertainty Quantification: See STANDARDS-UQ for detail			
1. Parameters and Variables chosen			
2. Define Measures of uncertainty			
3. Plots or contour maps of projected results			
4. Methods verified for full range of Monte Carlo ranges used			
Group 6: Scientific Publication: See STANDARDS-PUB for detail			
1. Summary of verification tests in publication?			
2. Any failures in verification			
3. Website for public dissemination of verification methods or tests			

STANDARDS.5: VALIDATION TESTING:	Auth	2nd	Note
Group 1: Identification and Description			
Model Name and No: short and long descriptions complete			
Code verified and runs correctly. See STANDARDS.4VERIF			
Diagrams represent the key elements of the system			
Reference to Publication describing the model			
Context and Purpose of model defined			
Group 2. Data for Validation testing. FIGURES and NOTES describe validation			
Experimental data available, and described. Reproducible?			
The data are defined, figures and parameter sets (All matched)			
Data figures: Titles appropriate			
Data figures: axes labeled with symbol, name and units			
Figures use very short tab labels fitting topic.			
Graphs use same colors and line types for same variable in every figure.			
Ontology consistent in notation of .mod, Figures and Notes and Par sets			
Notation consistent with diagrams, code, Website, publication			
Parameters sets: Description and rationale for each set of data			
Optimization re data or other model: Opt Choice, par set, Notes			
Loops: purposes and settings; par set			
Group 3. Validation evaluation:			
Initial and boundary conditions in accord with physiology?			
List Data provided and fitted by model, and sources.			
Balance checks. (Mass, charge, osmotic, energy)			
RMS error and CV for all data sets. Different data sets comparable?			
Show fits of data in Figures, and optimization results			
Notes defining contents of each situation, figure or par set			
Parameters estimated and evaluated against literature or other			
Parameter correlations not near 1			
Parameters omitted from optimization?			
Sensitivity functions. How to plot. Why useful. Notes. Use same colors.			
Residuals random or systematic?			
 Group 4. Uncertainty Quantification: See STANDARDS-UQ for detail			
Parameters and Variables chosen re sensitivities to critical parameters			
Define measures of uncertainty for system overall behavior			
Make choices for contour maps and pdfs of projected results			
5. Hake endices for contour maps and pais of projected results			
Group 5: Scientific Publication: See STANDARDS-PUB for detail			
Summary of the Validation criteria and success			
Weaknesses in validation; parameters/model components undefined			
Define future expts, model revisions, commentary and responses			

	STANDARDS.6. UNCERTAINTY QUANTIFICATION:	Auth	2nd	Note
Group 1: Ident	ification of UQ in data, model, computation, parameters			
	Model Name and No:			
	Code verified, runs correctly. See STANDARDS.4VERIF			
	Diagrams for UQ evaluation?			
	Reference to UQ approaches and methods			
	Methods chosen here			
Group 2. DATA	A UNCERTAINTY: UQ dependence on data			
·	Experimental data reproducible?			
	Correlation structure in data sets			
	Description of data, noise, shapes of pdfs			
	Critical missing data that would constrain solutions			
	Constraints from literature. Relevance (species, age, sex, etc)			
Group 3. INPU	T and ENVIRONMENT UNCERTAINTY			
	Variability in ICs, Input functions and in assumptions about exper. conditions			
Group 4. PARA	METER UNCERTAINTY:			
•	Sensitivity functions. How to plot. Why useful. Notes. Use same colors.			
	Joint sensitivities for partially correlated parameters			
	Loops: stepped setting to illustrate behavior			
	Optimization re data: Confidence, descrip, Correl in covariance matrix			
	Parameters sets: Description and rationale for each param set, Notes			
	Parameters chosen for MonteCarlo. Sensitivities, lit data, constraints			
	Magnitudes of effects on systems behaviors (function space)			
	Ranges and shapes of param pdfs to use in MonteCarlo;			
	Ranges and shapes of cross section through output trajectories			
	Selection of region of predicted responses to characterize			
Group 5. MODE	L STRUCTURAL UNCERTAINTY:			
	Modules most subject to uncertainty			
	Modules insensitive for the particular data sets			
	Modules most critical to the need to predict a chosen outcome			
	Notes defining contents of each situation, figure or par set			
	Relation between parameter and model uncertainties			
	Alternative models: Testing by module substitution. Randomized?			
Group 6. Asses	sing Uncertainty Quantification:			
	Identify major sources of Uncertainty (data, noise, model, params)			
	Meaningfulness and implications of uncertainty			
	Potential means of Reducing Uncertainty			
Group 7: Scien	tific Publication: See STANDARDS.7.PUB for detail			
	UQ as a major goal of the scientific evaluation			
	Meaning of observed UQs			
	Recommendations re data, models, improving prediction			

These tables are the in-house checknists used for the ow Model Repository a	it www.	pnysio	me.or
STANDARDS.7.PUBLICATION	Auth	2nd	Note
Group 1: Identification, Description, and role of MODEL in the field			
Purpose: to present REPRODUCIBLE SCIENCE with this advancement			
What is the special contribution of the model			
Was model used in experiment design? Analysis? Validation? UQ?			
Context for this work in the field. The science advanced.			
Novel or confirmatory?			
Acknowledgments. Authorship criteria.			
Group 2: Technical aspects of the paper			
Abstract, Intro, Methods, Results, Discussion, Acknowledgment, Appendices			
Every figure has axes labeled with symbol, name, units. Clean. No clutter			
Graphs use same colors and line types for same variable in every figure.			
Ontology consistent in notation of .mod, Figures, Notes, Par sets, Website			
Equations complete and match notation			
Parameter and Variable notation: symbol, name, units, description			
Tables of all parameters, initial conditions, steady state or equilibrium condn			
Parameter influences: Loops: purposes and settings; par set FIGURES?			
Optimization re data or other model: description, par set, Notes			
Graphs; confidence limits, data symbols consistent			
OPEN SOURCE site identified (DATA, MODEL in Project file)			
Parameter files and notes for each Figure in the paper? Tested by running?			
Group 3. The Modeling and the analyses			
Model completely defined, with rationale, provenance,			
Verification methods: See STANDARDS-VERIF for detail			
Validation methods: See STANDARDS-VALID for detail			
Assessment of validation process and adequacy of data and analysis			
Model variants defined, invalidated, or not invalidated (=working hypoth)			
Comparing with past work: the novelty (doubts and confidence level)			
Uncertainty Quantification: See STANDARDS-UQ for detail.			
Were predictions testable?			
Reproducibility of Modeling and Data analysis			
Discussion of contribution to science			
Future needs defined?			
Group 4. Scientific Publication			
Journal choice, OPEN SOURCE, freely downloadable			
Site for Supplements, data, code, project files,			
The REP, REPRODUCIBLE EXCHANGE PACKAGE, and the storage site			
Website for public dissemination, commentary and responses		1	
Treative for public dissernmentary commentary and responses			
NOTE Checklists to be checked by Author and 2 checkers			
NOTE Checking to be directed by Addior and 2 checkers		l	<u> </u>