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Research Collaborative

Collaborating Hospitals:
Beth Israel Deaconess Medical Center (MA)

Massachusetts General Hospital (MA)

Cambridge Health Alliance (MA)

Mount Auburn Hospital (MA)

Tufts University (MA)

Yale University Medical School (CT)

University at Buffalo (NY)

Baylor University Medical Center (TX)

University of Texas Southwestern Medical 

Center (TX)

University of Texas San Antonio (TX)

Academic Collaborators:
Harvard Medical School

University at Buffalo

Wright State University

University of Central Arkansas

Industrial Partners:
Kitware

Simquest

CFDRC

Infocitex

Charles River Analytics
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Surgery is a complex task performed in a complex

environment



source: http://www.cdc.gov
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To Err is Human

98,000 Americans die per year of medical

errors [Institute of Medicine, 1999]

Causes of death in the US, 2013
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Challenges of the residency model:

Patient safety

Complex cases 

High cost ~ $50K/year/trainee

Subjective assessment

Not adaptive

Primarily procedural skills 

Reduced patient contact 

▪ 80 hour work week

▪ Increased malpractice liability

▪ Reduced hospital stays

Residency Model

“The Agnew Clinic” Thomas Eakins, 1889
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Surgical Training in the Age of AI

Feedback

Virtual 

Preceptor

Selects feedback based 

on action mismatch

Learner model

Kinematic, force, 

physiological, brain activity

Predicts possible actions 

based on current state

Predicts possible correct

actions based on current state

Cognitive  model

Kinematic, force, 

physiological, brain activity

Learner

Virtual Intelligent Preceptor
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Overall Research

Artificial 

intelligence

Brain

imaging

Virtual 

reality
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NAE Grand Challenge

“True virtual reality creates the illusion of 

actually being in a difference space. It 

can be used for training, treatment, and 

communication”

Enhance Virtual Reality



10/23/2019 Office of Research 10

High fidelity

Multi-physics

Multi-phase

Multi-scale

Technical Challenges

Interactivity

Real time graphics (min 30 

frames/sec)

Real-time haptics (min 1000 

frames/sec)
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Electrosurgery

• Widely used to cut and coagulate tissue at 

the same time.

• 17.5 M procedures annually in the US with 

40,000 burn cases

• Heat is generated in the tissue due to radio 

frequency (0.3-5MHz) electric current.

• With RF current, the large protein ions 

oscillate in the intra-cellular fluid (cytosol), 

heating it though kinetic losses

60-100C     

protein denaturization

water evaporation

> 100C        

vaporization of the cell 

large protein ions 

oscillate in the cell 

generating heat

RF Current
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Electro-surgical Simulations

• Multi-physics (mechanical, thermal, electrical)

• Multi-phase (solid, liquid, vapor)

• Multi-scale (tissue and cellular)

TISSUE LEVEL

Energy balance:

𝜌 ሶ𝑒 = 𝛔: ሶ𝛆 + 𝑞 − 𝛻 ∙ 𝐪

CELLULAR LEVEL

Linear momentum 

balance: 𝛻 ∙ 𝛔 + 𝐛 = 𝟎

Solve EOS for 

thermodynamic states 

(𝑝, 𝑇) and effective 

density, specific heat 

capacity, thermal 

conductivity and heat 

generation.

𝑞 = 𝜌𝑐
∆𝑇

∆𝑡

𝛔 = −𝑝𝐈 + 𝛕

Charge conservation:

𝛻 ∙ (𝜎𝛻𝑉) = 0
𝑞𝑓 = 𝐉 ⋅ 𝐄

• Quasi-static Maxwell’s 

• Quasi-static linear momentum

210wave m
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Tissue Dissection

▪ Level set function

𝜙 𝐱, 𝑡 = ቐ

< 0 𝐱 ∈ Ωℎ

> 0 𝐱 ∈ Ω𝑑

= 0 𝐱 ∈ Γ𝑖 𝑡

▪ Level set evolution equation
𝜕𝜙

𝜕𝑡
+ 𝐯 ∙ 𝛻𝜙 = 0

▪ Free energy functional 𝜓 = 𝜓 𝛆, 𝑇, 𝜙

▪ Clausius-Duhem inequality: 𝜌 ሶ𝜓 + 𝜌𝜂 ሶ𝑇 − 𝛔: ሶ𝛆 ≤ 0

▪ Constitutive relations:

▪ Cauchy stress 𝛔 = 𝜌
𝜕𝜓

𝜕𝛆

▪ Specific entropy 𝜂 = −
𝜕𝜓

𝜕𝑇

▪ Dissipation inequality 𝜌
𝜕𝜓

𝜕𝜙
ሶ𝜙 ≤ 0

Evolving interface
Γ𝑖 𝑡 = {𝐱|𝜙 𝐱, 𝑡 = 0}. 

Interface velocity

𝛽 ሶ𝜙 = −𝜌
𝜕𝜓

𝜕𝜙
𝛽 > 0, Kinetic coefficient

𝛔 = −𝑝𝐈 + 𝝉

Hydrostatic pressure

Deviatoric stress 𝛕 = 𝛔 −
1

3
𝑡𝑟(𝛔)𝐈

Han, Z., Rahul, De, S. (2018) Comput. Methods Appl. Mech. Eng. 337, 527 

Osher, S., & Sethian, J.A. (1988). J Comp Physics, 79, 12-49.
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Solution Approach

Bounded, positive weighting coefficients 

computed on simplex 𝑇𝑙

Volume of simplex 𝑇𝑙

▪ Finite element discretization

Electric potential: 𝑉 𝐱 = σ𝐼𝑁𝐼(𝐱)𝑉𝐼

Temperature:  𝑇(𝐱, 𝑡) = σ𝐼𝑁𝐼(𝐱)𝑇𝐼(𝑡)

Displacement: 𝐮(𝐱) = σ𝐼𝑁𝐼(𝐱)𝐮𝐼

▪ Linear algebraic equations:  𝐅𝑡 ≡

𝐅𝑉
ത𝐅𝑇
𝐅𝑢

=

𝐊𝑉 𝟎 𝟎

𝟎 ഥ𝐊𝑇 𝟎
𝟎 𝟎 𝐊𝑢

𝐕
𝐓
𝐔

≡ 𝐊𝑡𝐗𝑡

ത𝐅𝑇 = 𝐌𝑇 −
1

2
𝛥𝑡𝐊𝑇 𝐓𝑡 + 𝛥𝑡𝐅𝑇

𝑡+
1

2
𝛥𝑡

(Midpoint rule)

ഥ𝐊𝑇 = (𝐌𝑇 +
1

2
𝛥𝑡𝐊𝑇)

Ω

𝑇𝑙

𝒯 ≔ triangulation set in ℝ𝑑

𝒯 =∪ 𝑇𝑗, 𝑇𝑖 ∩ 𝑇𝑗 = ∅ for 𝑖 ≠ 𝑗

▪ Numerical approximation of the level set equation:

𝜙𝐼
𝑡+𝛥𝑡 = 𝜙𝐼

𝑡 + 𝛥𝑡


𝑙

𝑛

𝛼𝐼
𝑙 𝑇𝑙

(𝜓𝑒 − 𝜅)|𝛻𝜙|𝑑𝛺


𝑙

𝑛
൯𝛼𝐼

𝑙𝑚𝑒𝑎𝑠(𝑇𝑙

Solved using 

Krylov subspace iterative 

solver (e.g. GMRES)

Han, Z., Rahul, De, S. (2018) 

Comput. Methods Appl. Mech. Eng. 

337, 527.
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Hybrid CNN Approach

▪ End-to-end learning – general way of applying 

deep learning (DL) to simulate a physical system

▪ Accumulated errors over the time steps

▪ Data inefficiency due to unaccounted interactions 

between physics

▪ Slower to converge

▪ Hybrid approach

▪ Use DL to learn computationally expensive 

component (i.e. solution of linear momentum 

balance)

▪ Use efficient FEM solver to handle interactivity

▪ CNN’s sparse interaction characteristic enables 

fewer weight parameters to be trained
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Hybrid CNN Approach

Electro-thermal 

problem

(FEM solver)

Convolutional 

Neural Network

(CNN)

Level set 

evolution

Topology 

(𝑇g𝑡)

𝑇g𝑡−1

𝑝 𝐮Input 

current 

flux

Training

Prediction
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Experimental Validation

Temperature (℃)

8010

IR Camera

Return
electrodeVi

10

Vt

Electrosurgical 
Unit (ESU)

400 kHz

Ex vivo 
porcine liver

Active 
electrode

Karaki et al. (2017)

IEEE Trans. Biomed. Eng., 64, 1211.

Han, Z., Rahul, De, S. (2018) 

Comput. Methods Appl. Mech. Eng. 337, 527.

Comparison of temperature evolution (FEM solver) with the 

experimental data for ex vivo porcine liver
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Static Electrode

High-fidelity 

multiphysics 

model

Hybrid-CNN 

(L2 error: 

6.9%)

PGD (L2

error: 13%)
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Moving  Electrode

High-fidelity 

multiphysics 

model

Hybrid-CNN 

(L2 error: 

9.6%)

PGD (L2

error: 

30.7%)



Thank you! 


