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BUILDING A SAFER HEALTH SYSTEM
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98,000 Americans die per year of medical
errors [Institute of Medicine, 1999]
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Challenges of the residency model:
Patient safety
Complex cases
High cost ~ $50K/year/trainee
Subjective assessment
" ) Not adaptive
A2 Gl i Eovrs. 166 Primarily procedural skills
Reduced patient contact
= 80 hour work week
= |ncreased malpractice liability
= Reduced hospital stays
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Rensselaer Surgical Training in the Age of Al

why not change the world?®

s
Kinemiatic force,
physiological, brain activity

Learner model

Predicts possible actions
based on current state

Feedback

Selects feedback based
on action mismatch

Cognitive model

Predicts possible correct
actions based on current state
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Artificial
intelligence
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Grand Challenges of Engineering

“True virtual reality creates the illusion of

actually being in a difference space. It

can be used for training, treatment, and
=8 communication”

a
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Real time graphics (min 30
frames/sec)

Real-time haptics (min 1000
frames/sec)

High fidelity
Multi-physics
Multi-phase
Multi-scale
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« Widely used to cut and coagulate tissue at
the same time.

« 17.5 M procedures annually in the US with
40,000 burn cases

« Heat is generated in the tissue due to radio
frequency (0.3-5MHZz) electric current.

« With RF current, the large protein ions

A o . . . .
, é:,, oscillate in the intra-cellular fluid (cytosol),
gose heating it though kinetic losses
o F
RF Current
large protein ions 60-100°C >100°C
oscillate in the cell protein denaturization vaporization of the cell
generating heat water evaporation

10/23/2019 Office of Research




@ Rensselaer  Electro-surgical SImulations ws setcnange te worie-

« Multi-physics (mechanical, thermal, electrical)
« Multi-phase (solid, liquid, vapor)
« Multi-scale (tissue and cellular)

TISSUE LEVEL CELLULAR LEVEL

harge conservation: | \\\\ \ \
ik Jﬁ §\\\\\§ . \.\\
Linear momentum J@ \\ \\\\ \\\\\\\
| Solve EOS for
Energy balance: therrr;wodync?mfirc st_ates
pe=oieraiia J d(:r;siti/?gpeecifiecc tfll\éeat
capacity, thermal

 Quasi-static Maxwell's 4. ~10°m

» Quasi-static linear momentum

conductivity and heat
generation. j
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= Level set function Neumann
<0 XE 'Qh boundary
p(x,t) ={>0 x € Qy r
=0 XE Fl(t)
= Level set evolution equation
d¢
—+v:-Vp=0 Dirichlet

Ot  — Interface velocity boundary

= Free energy functional ¥ = ¥ (g, T, ¢)

Evolving interface
= Clausius-Duhem inequality: py + pnT —6: € < 0 [;(t) = x| (x,t) = 0}.

= Constitutive relations: » 6=-pl+7T
. Cauchy stress 6 = p oY Hydrostatic pressure =—— ——
o€ Deviatoric stress T = 6 — é tr(o)l
= Specific entropy n = —g—lﬁ B = _pa_‘/J
0¢

— B > 0, Kinetic coefficient

= Dissipation inequality Pg_i‘ﬁ <0

Han, Z., Rahul, De, S. (2018) Comput. Methods Appl. Mech. Eng. 337, 527
Osher, S., & Sethian, J.A. (1988). J Comp Physics, 79, 12-49.

10/23/2019 Office of Research




) Rensselaer Solution Approach N——

= Finite element discretization
Electric potential: V(x) = X; N;(xX)V;
Temperature: T(x,t) = X; N;(x)T;(t)
Displacement: u(x) = Y; N;(X)u,
Solved using

= Kixt Krylov subspace iterative

| i i i i t = F = K
Linear algebraic equations: F' =<F; 0 Kr0[(T(= solver (e.g. GMRES)

F, KVOO{V}
0 0 K,|\WU

éﬂ

Han, Z., Rahul, De, S. (2018)
1

1
— t+-At . )
Fr = (M; —SAtK;) T¢ + AtF, © (Midpoint rule)  Comeut Methods Appl Mech. Eng

iZT'zz (BGT +‘§JAtI(T)

= Numerical approximation of the level set equation:

)., @ fy (e =017 gld0
Z?a}meaS(Tl)

BHAE — 4 A
Volume of simplex T;

Bounded, positive weighting coefficients
computed on simplex T;
T := triangulation set in R%
T=UT;, T;nTyj=0fori+#j
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= End-to-end learning — general way of applying
deep learning (DL) to simulate a physical system

= Accumulated errors over the time steps

Electrical

» Data inefficiency due to unaccounted interactions

=Thermal
between phySiCS c 1072 —Mechanical
5 - Simultaneous
= Slower to converge S
= Hybrid approach ° 10

» Use DL to learn computationally expensive 2 .

component (i.e. solution of linear momentum o0

balance) 10-10 \
» Use efficient FEM solver to handle interactivity

10 20 30 40 50

= CNN’s sparse interaction characteristic enables Number of iterations

fewer weight parameters to be trained
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Training
_p u
'S
Mechanical
&Level set Tg
solver
Prediction
Electro-thermal Convolutional
Input 1% u Topolo
current problem ‘ Neural Network ‘ lé\e;;ﬁjt;er: (pTgt)g Y
flux (FEM solver) (CNN)
' Tgt—l I
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IR Camera
400kHz | — Active
MR [5Y electrode
Electrosurgical —‘ Ex vivo
Unit (ESU) — porcine liver
—J -
1OQJ Return
AV, electrode

Comparison of temperature evolution (FEM solver) with the
experimental data for ex vivo porcine liver
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Han, Z., Rahul, De, S. (2018)

Karakiet al. (2017) Comput. Methods Appl. Mech. Eng. 337, 527.

IEEE Trans. Biomed. Eng., 64, 1211.
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High-fidelity

multiphysics

model 11 =BDF

Hybrid-CNN . |

(L2error:  £%
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High-fidelity 1
multiphysics | Zeorcn
model 0.8 +BDF+PGD
Hybrid-CNN £ *¢
(L2 error: & o4
9.6%)

0.2
PGD (L2 ;
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