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Introduction
• We have previously developed image processing and

computational modeling methods to characterize patient-
specific tumor-associated vasculature[1] and hemodynamics[2].

• Quantitative evaluation of the ability of image processing
methods to perform as designed is important but challenging.

• Employing virtual MR simulation on a dynamic digital
phantom of contrast agent perfusion and extravasation can
help systematically evaluate the sensitivity of developed
quantitative MRI methods[1-2] to image quality, including
spatial resolution, temporal resolution, and SNR.

• Overall goal:
Develop a framework based on a dynamic digital phantom and
virtual simulation to rigorously determine an acquisition-
reconstruction protocol that can be implemented in the routine
clinical setting, thereby enabling the developed quantitative MRI
analyses to be widely available.

Methods
There are three major steps in the virtual simulation based on
dynamic digital phantom.
Step 1: Geometric model of digital phantom
• Geometry of the digital phantom constructed from the ultra-

high spatial resolution (31 μm isotropic voxel) MR data of a
male Sprague-Dawley aged (52 weeks) rat kidney[3].

• Segment the whole kidney tissue from the T1-w image[4]

• Construct the vascular skeleton using tracking approach in the
T2*-w image[4] and automatically determine the local radius.

Figure 1. Geometric model of the digital phantom. Panel (a) shows the MIP of ultra-high spatial resolution
MRI data. And Panel (b) presents the 3D rendering of the whole vasculature, with the kidney as semi-
translucent volume. Panels (g) – (h) shows the individual renal arterial trees, respectively corresponding to
the labels (blue) in the panel (a).
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Step3: Virtual Simulation
• The virtual simulator[5] is illustrated as Fig 3

• Acquire k-space signal with continuously updated status of digital phantom
• Collect the center of k-space as spatial down-sampling
• Optimization-based image reconstruction allows higher reconstructed

temporal resolution than simple IFFT[5]
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Figure 3. Illustration of virtual MRI simulation. The virtual simulator take the spatiotemporal-resolved digital phantom as input and generate k-
space signal with specific acquisition and k-space sampling setting. The generated k-space signal is imported into the optimization-based
reconstruction algorithm to produce eventual simulated DCE-MR images with varying spatiotemporal resolutions and SNRs.

Figure 2. Dynamics of the
digital phantom. Panel (a)
present MIP of the
calculated bolus-arrival
time (𝜏) in the coronal
orientation, which
indicated the blood flow
direction. Panels (b) – (d)
present the interstitial
pressure, magnitude and
streamlines of interstitial
flow velocity in the
extravascular space of the
kidney tissue. Panels (e) –
(i) show the spatial
distribution of contrast
agent concentration at 5 s,
10 s, 15 s, 20 s, and 25 s
after the initial delivery of
the bolus, respectively.
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Step 2: Dynamic model of digital phantom
• Realistic physiological properties assigned on mesh
• Steady-state flow environment modelled with a 1D-3D

coupling CFD system[2]

• CA delivery modelled with an
advection-diffusion equation

- Blood flow (Poiseuille’s law):

- Fluid exchange (Starling’s law): 

- Interstitial flow (Darcy’s law):
ut = −κ ∇pt

Qv = − πR
4

8µ
⋅
dpv
dl

qe = Lp ⋅ pv − pt ,ev( ),
nt ⋅ut = −qe

, x ∈ Ωt

, l ∈Λ

l ∈Λ

- Bolus propagation through vasculature:
Cp(t, l) = Cp,0(t - 𝜏(l)) , l ∈Λ

- delivery through extravascular tissue:

∂Ct/∂t = – ut∙∇Ct + ∇∙(D ∇Ct) + S,  x ∈ Ωt

with S = P (Cp - Ct),    l ∈Λ

Nominations:
Ωt: tissue domain (3D)
Λ: vascular domain (pseudo-1D)
x:  3D coordinate in tissue
l:  1D coordinate along vasculature

R:   vascular radius
𝜇:   dynamic viscosity of blood
Lp:  vascular hydraulic conductivity
𝜅: tissue hydraulic conductivity
Qv: blood flow rate
pv:  blood pressure
qe:  vascular extract flow rate
pt:   interstitial pressure in the tissue
ut:  interstitial flow velocity
pt,ev: exterior pressure on vessel surface

Cp,0: initial arterial input function
Cp: local vascular CA concentration
Ct: tissue CA concentration
S: source term defined along vessels
D: tissue diffusivity
P: vascular apparent permeability

Evaluation of morphological analysis
• All the morphological analyses evaluated are much more sensitive to the

spatial resolution than to the SNR.
• Measure #1: Accuracy of segmented vessel centerlines

• Measure #2: Accuracy of vascular connective structure

• Measure #3: Accuracy of identifying tumor-associated vessels (TAVs)

Results
Simulated images
• Simulate DCE-MR images of 5 pre-contrast frames and 1-min post-contrast

scanning with an array of spatial resolutions (s.r. = 30 to 300 μm, isotropic
voxel), temporal resolutions (t.r. = 1 to 10 s) and SNRs (= 5 to 75).

• Examples of simulated images and time courses are presented in Fig 4.

• Observation of contrast-to-noise ratios (CNR, i.e. the ratio of median value
in vessel ROIs to the standard deviation in non-vessel ROIs) indicates that
the contrast of micro-vasculature to the background are significantly
affected by both the down-sampling and increasing of noise.

• Capture of the peak and width of vascular bolus are significantly affected
by the temporal resolution.
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Figure 4. Simulated MR images
obtained with various
combinations of spatial resolution
and signal-to-noise ratio (SNR).
Panels (a) – (c) are the maximum
intensity projections (MIPs) of
the simulated images at 10 s after
injection with a spatial resolution
of 60 μm and SNRs of 75, 15,
and 5, respectively. Similarly,
panels (d) – (f) are the MIPs of
the simulated images with a
spatial resolution of 150 μm and
SNRs of 75, 15, and 5,
respectively. And panels (g) – (i)
are the MIPs of the simulated
images with a spatial resolution
of 300 μm and SNRs of 75, 15,
and 5, respectively. From the
datasets with the spatial
resolution of 300 μm, one artery
voxel is picked to show simulated
time courses. Specifically, panels
(j) – (l) shows the one-voxel time
courses obtained with varying
temporal resolutions (t.r. = 1 s, 4
s, 7 s, 10 s) with the SNRs of 75,
15, and 5, respectively.

- CNR = 16.99, 10.29, 6.90 for SNR = 30 and s.r. = 60 μm, 150 μm, and 300 μm
- CNR = 9.47, 7.36, 5.65 for SNR = 5 and s.r. = 60 μm, 150 μm, and 300 μm

Let X to be the true images, &𝑿 to be the reconstructed images, Y to be the k-space signal,
the measuring domain in k-space of this simulator defined as

K = ∪t∈{1,2,…,T} (Kt ×{t}) ⊂ {1, 2, …, n}×{1, 2, …, T},
where Kt is the sampled points in k-space at the time t

n = nx·ny·nz is the total number of points in k-space, determined by matrix size nx, ny and nz
T is the total number of time points in the reconstructed images

Then the reconstruction procedure can be implemented as maximizing smoothness of reconstructed
signal over time, i.e.

argmin +𝑿{&𝑿 C &𝑿′| ℱ (&𝑿)K=YK},
Where ℱ represents the Fourier transform

C is the smoothness penalty matrix over time
Eventually solve the optimization problem via preconditioned conjugated gradient descent method.

For further information please contact Chengyue Wu (cw35926@utexas.edu) and Thomas Yankeelov
(thomas.yankeelov@utexas.edu) Lab homepage -- http://cco.ices.utexas.edu/ 

Discussion & Conclusion
• We developed a digital phantom providing a detailed characterization of

vasculature, realistic tissue properties, and physical flow dynamics.
• We established the novel workflow to systematically evaluate quantitative DCE-

MRI analysis methods using the digital phantom and virtual simulation of MRI.
• This framework can successfully evaluate the morphological analysis regarding

tumor-associated vasculature that developed in our previous work [1].
• Future directions:

- Currently utilizing the framework to evaluate the DCE-MRI-driven pharmacokinetic
modeling and hemodynamic analysis.

- Parallelize the analysis to significantly improve the performance.

- IA: portion of vessels in certain
generation that can be accurately
segmented comparing to true vasculature.
- Major vessels in the vasculature (i.e. 1st

generation) can be preserved with
accuracy above 95% for s.r. up to 240 μm.
- Small branches and arterioles (i.e. 2nd

and 3rd generations) can only be preserved
with 95% accuracy for s.r. up to 60 μm.
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Figure 5. Accuracy of identifying vessel centerlines.
Panels (a) – (d) compare the example 3D rendering of the
true (black) centerlines of vasculature and segmented (red)
vasculature from the images with SNRs of 50 and 5, and
s.r. of 60 μm and 300 μm. Panels (e) – (f) present the
identification accuracy (IA) of segmented vasculature
regarding each generation.
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- GED: cost of edits (add or remove vessels) needed to transform the segmented into true vasculature
- In the spatial resolutions where small branches of vasculature can be seen, gap filling algorithm improves
the accuracy of the segmented vasculature’s connective structure, by approximately 35% for s.r. = 60 μm
and 20% for s.r. = 75 μm, respectively.
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(a) s.r. = 60 μm (c) s.r. = 300 μm Figure 6. Accuracy of connective structure of the
segmented vasculature and the effect of gap filling
process. Panels (a) – (b) show the graphs of the
connective structure of vasculature originally
segmented from data with SNR of 70 and s.r. of 60 μm
and the corresponded one after filling gaps. The
yellow and cyan circles represent the terminal ends
and branching points, respectively. The red and blue
curves presents the vessels connected to branching
points and with two terminal ends, respectively.
Comparing panel (b) to panel (c) indicates the process
successfully filled most of breaks in the segmented
vasculature and reduce the number of isolated vessel
segments. Panel (c) – (d) present a similar comparison
in the case of s.r. = 300 μm. Panels (e) – (f) present the
graph edit distance (GED) from the segmented
vasculature before (red) and after gap-filling (blue) to
the true vasculature, with SNRs = 5 and 50,
respectively. GED measures the structural dissimilarity
between the segmented and true vasculature.
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(f) SNR = 50
×105
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(e) SNR = 5

×105

- Randomly generate 60 spherical lesions and apply the detection of tumor-associated vessel for each
- SDA: source detection accuracy, portion of detected TAVs with a source matching with the truth.
- SDB: spatial detection bias, spatial distance between the detected TAVs and the true ones.
- On average, SDA > 80% when s.r. ≤ 90 μm; when s.r. climbs to 300 μm, SDA falls to approximately 60%.
- On average, SDB ≤ 0.25 mm when s.r. ≤ 60 μm and maintains to be ≤ 1.25 mm with s.r. up to 300 μm.

Figure 7. Accuracy of tumor-
associated vessel detection. Panels
(a) – (b) show TAVs for one
example lesion (green volumes)
detected from images with SNR of
70 and s.r. of 60 μm and 300 μm,
respectively. The whole segmented
vasculature (black), detected TAVs
(red) and tracked paths (blue) that
leads from the vasculature to the
lesion. Panels (c) – (d) indicate the
two measures evaluating the
accuracy of TAV detection for all
the lesions, SDA and SDB, with
SNR of 70 and s.r. of 30 to 300 μm.
Panels (e) - (f) present the p-value
of pair-wise Welcoxon tests to
comparing SDA and SDB between
different s.r. at SNR = 70, with
significant threshold of 𝛼 = 0.05/12
for Bonferroni correction.
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