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Multi-Scale Modeling of Atrial Electrophysiology
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e A combination of machine learning (ML) and

mechanistic simulations of atrial fibrillation (AF)

induction (SimAF) predicts AF recurrence following

pulmonary vein isolation (PVI) with an average

validation sensitivity of 82%, specificity of 89%,

and area under the curve (AUC) of 0.82.

 |Inclusion of features extracted from SimAF leads to

highly generalizable (excellent validation and

testing results) AF recurrence risk prediction with

minimal training data.

Overview

Characteristics of PxAF cohort

Background

* Untreated AF leads to stroke and heart failure.!
* PVIleaves only 78% of patients free from AF 12 months later.?

* AF recurrence results in morbidity, often requires repeat ablation
with additional fibrotic substrate modification.3

* It is unknown how to determine, before the PVI procedure, which
patients are likely to experience AF recurrence and might benefit
from a more extensive initial ablation strategy targeting pro-
arrhythmic regions of fibrosis.*

* Goal: to develop a methodology that combines personalized multi-
scale modeling and machine learning to predict the risk of AF
recurrence after PVI using only pre-procedural clinical images.

AF recurrence risk prediction methodology
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No statistically significant differences in clinical characteristics
between patient who did and did not experience AF recurrence.

Results
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AF Recurrence Risk Prediction with ML and Multi-Scale Modeling
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Simulations alone are not sufficient for AF recurrence risk stratification, but when combined with ML,
they can provide clinical explainability and mechanistic underpinning to ML classifier predictions.

 Training receiver operating characteristic (ROC) curves for prediction of AF recurrence after PVI using the number of AF-
inducing pacing sites (Pgp,mar, Solid red line) and number of RDs and MATs (ngp.mar, dashed blue line) achieve AUCs of

0.72 and 0.69, respectively.
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A combination of ML and multi-scale mechanistic
| modeling accurately predicts which patients will
experience AF recurrence in a retrospective cohort

' of 32 patients.
 |f features extracted from SimAF are included, features
extracted directly from raw clinical images (I) are not

[+SimAF (AUC=0.65) required for risk prediction.

e (AUC=0.40) * More training data would be needed to achieve strong
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generalizability if only features extracted from raw
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1 - Specificity achieving accurate AF recurrence risk prediction with
minimal training data.

AF Recurrence Risk Prediction with Multi-Scale Modeling Alone
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The proportion of AF-inducing pacing sites (Prp,mar) @and the number of RDs and MATSs (nrp.pat)

—T are higher for patients who experienced AF recurrence than for patients who did not, but this
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is not statistically significant.
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