Modeling the Impact of a T Cell-escaping Mutation on the Within-host and Population Dynamics of Influenza A Virus

¹Zheng-Rong Tiger Li^{*}, ¹Veronika I. Zarnitsyna, ¹Anice C. Lowen, ¹Jacob E. Kohlmeier, and ¹Rustom Antia ¹Emory University, Atlanta, GA, USA

Research Question

Why are the T cell epitopes of influenza A virus conserved?

- The internal proteins have lower nonsynonymous mutation rates than the surface proteins.
- Within NP and M1, the CD8 T cell epitope region has less sites of dN/dS > 1 than nonepitope region.
- Heterosubtypic infection is cross-protected by pre-existing CD8 T cells in mice and human.

Experimental Design

Scientific Contributions & Funding

- Li ZT et al. Quantifying memory CD8 T cell-mediated immune pressure on influenza A virus infection *in vivo*. Submitted to *PLoS Pathogens*. Accessible on BioRxiv.
- Li ZT et al. Why are CD8 T cell epitopes of human influenza A virus conserved? *J Virol*. 2019 Mar 5;93(6):e01534-18.
- This project is funded by the NIH grant U01 HL139483.

Relating replicative fitness and transmissibility

• Transmission fitness is modeled by the area under the logtransformed viral growth curve, i.e.,

$$w = \int_0^T V(t) dt \approx \sum_{i=1}^T [\log$$

• The increase in transmission of MT is expressed as the ratio of fitness of MT to fitness of WT.

	Early stage (0-4 dpi)	Whole infection course
i.n. x31 B6	0.16 [0.08, 0.23]	0.24 [0.15, 0.35]
i.m. x31 B6	0.05 [0.03, 0.07]	0.20 [0.13, 0.29]

Population Genetics Model

		Host g
	HH]
Genotype frequency	$(1-f)^2$	2f(
Relative fitness of WT	1	
Relative fitness of MT	1 - m	1 - r

NP₃₆₆₋₃₇₄ ASNENMETM ASNENMETM ASNEQMETM Lung-resident Others V

 $V(t_i) - \log V(t_{i-1})](t_i - t_{i-1})$

Epidemiological Model

Escaping mechanisms

Mutation abrogates peptide-MHC binding.

Conformation change prevents TCR recognition.

Compensatory immunity may be induced by the MT infection and decreases the selective advantage.

Conclusion

1. In mouse, escaping from an immunodominant CD8 T cell response confers ~25% of advantage. Lung T_{RM} may be the primary driver of immune pressure.

2. If invasion depends entirely on selection, it will take 5 to 10 years for the mutant to reach 50% prevalence. Furthermore, compensatory immunity may render the invasion transient. Therefore, the small selection pressure and MHC

polymorphism may explain the conservation of T cell epitopes of IAV, in addition to functional constraint.