

OBJECTIVE

- Image-based computational modeling of cerebrovascular flows can provide quantitative data to aid clinical decision-making.
- We are developing a framework for modeling patient-specific hemodynamics in order to provide clinically-relevant quantitative descriptors that cannot be obtained from imaging.

Case Study 1: Giant Basilar Aneurysm

3D model of aneurysm and surrounding vasculature prior to surgery.

CT images showing a giant basilar aneurysm (red arrow). Imaged at Barrow Neurological Institute

Pre-Operative

Pre-Op

time (s)

Post-Op

Streamlines illustrating flow pre- and post-surgery. The left vertebral artery was clipped in an attempt to reduce flow through the aneurysm, but the compensating flow (assumed to be 0.75% of the original total flow) from the right vertebral artery created a high-speed jet and intra-aneurysmal mixing.

Average wall shear stress normalized by the averaged parent wall shear stress at systole pre- and post-surgery

Patient-Specific Computational Modeling of **Cerebrovascular Hemodynamics**

Kimberly A. Stevens^{1,2}, Ivan C. Christov¹, Vitaliy L. Rayz^{1,2} ¹School of Mechanical Engineering, ²Weldon School of Biomedical Engineering Purdue University

We can evaluate postoperative flow conditions that would result from alternative surgical options with image-based CFD models.

METHODS

- Models generated from MR, CT, and/or rotational X-ray angiography data using ITK-Snap
- Blood flow computed FEM via open-source package SimVascular
- Unstructured tetrahedral mesh generated from imported STL. Boundary conditions in the presented case studies are assumed based off of the literature, but would be measured in patient-specific cases.
- "Virtual surgery" performed on the model and post-operative flow 3. conditions determined
- Hemodynamic parameters known to influence arterial wall remodeling and 4. intra-luminal thrombus deposition (e.g. wall shear stress, oscillatory shear index, etc.) are compared by averaging over the last cardiac cycle.

CONCLUSIONS

The hemodynamic impact of surgical procedures can be simulated, providing clinicians additional information to consider when developing a treatment plan for patients with cerebrovascular lesions.

The presence of the AVM is simulated by reducing the distal resistance in the feeding artery to 1/10th of the healthy case.

aneurysm wall.

Case Study 2: Flow-Related Arteriovenous Malformation

X-ray angiography showing a right superior cerebellar AVM (red arrow) and two flow-related aneurysms (R PICA, black arrow, and R superior cerebellar, white arrow). Imaged at IUSM

3D model of anterior (red) 🤝 and posterior (blue) circulation.

