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Introduction ResultsResults
q Immunotherapy has become one of the most exciting breakthroughs in cancer research

q Upon proper education and activation, the immune system has the capability to eradicate 
cancerous tumors1

q Immunotherapies modulate the activity of major immune cells towards enhanced recognition 
and killing of cancer cells through distinct mechanisms, the most successful ones being the 
immune checkpoint inhibitors (e.g. anti-PD1, anti-PD-L1 and anti-CTLA-4)1

q General response rates to immunotherapies are highly variable and only a small subset of 
patients would respond favorably even in biomarker-selected cohorts2

q Objective: to develop an integrative mechanistic understanding of cancer-immune cell 
interactions using state-of-the-art, multiscale models to help answer critical questions, with 
the ultimate goal to reduce clinical trial failures and improve treatment efficacies in patients

q The use of multiscale quantitative systems pharmacology (QSP) models has become widely 
used4-6 and due to the rapid discovery of novel mechanisms and therapies in immuno-
oncology, there is a need for rapid model development

q In this work, we present QSP-IO, a modularized QSP modeling platform based in MATLAB 
(MathWorks, Natick, MA) that allows efficient formulation of physiology-based immuno-
oncology models and quantitative simulation of patient outcomes in response to different 
immunotherapy combinations

q QSP-IO can be downloaded at www.github.com/popellab/qspio

Figure 4. Latin Hypercube Sampling of parameter space. A. Tumor volume as a function of time
for a Latin Hypercube Sampling (LHS) (n = 100) of a subset of the parameter space; five of the 100
parameterizations did not reach the initial tumor diameter. Ten parameters were varied over a
physiological range; see Table 1. B. Percent change in tumor diameter as a function of time for the
LHS. Dashed lines indicate the threshold for the Response Evaluation Criteria In Solid Tumors
(RECIST); regions are labeled with PR/CR for partial/complete response, SD for stable disease and
PD for progressive disease. C. RECIST values as a function of time for the LHS. D. Waterfall plot
showing the percent change in diameter at 60 days following the start of treatment. Each bar
represents a simulation, with height representing the percent change in tumor diameter.

Figure 2. Simulation results as a function of time for control (blue) and anti-PD-1 treatment
(red). A. Tumor volume B. Concentration of free antigen in the tumor. C. Naïve T cell density in the
blood. D. Number of cancer cells. E. Number of antigen-MHC complex molecules per APC binding
site. F. Activated Treg density in the blood. G. Number of antigen presenting cells. H. Concentration
of nivolumab in the blood. I. Activated T cell density in the tumor.

Figure 3. Simulated pseudo progression. A. Tumor volume as a function of time. B. Number of
viable (blue) and dead (red) cancer cells as a function of time. C. Cell count for viable (blue) and
exhausted (red) T cells as a function of time. The parameters from Example 1 were used with kclear =
0.001 day-1 and kTcell = 8.7 day-1 to demonstrate the pseudo-progression phenomenon.
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Figure 4. Simulated resistance. Simulation of a patient with two different cancer cell clones, C1 and
C2: where C2 has a slower growth rate and lower rate of death from T cells. The simulation is run over
approximately 8 years (3000 days), with treatment given for one year. A. Tumor volume as a function
of time. B. Number of cancer cells as a function of time. The vertical dotted line indicates the end of
the treatment.
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Figure 1. Overview of QSP-IO. A. Diagram of immuno-oncology QSP model interactions. Naïve and
mature antigen presenting cells are represented by APC and mAPC, respectively, and naïve and
proliferating T cells are represented by nT and aT, respectively. B. Workflow for creating a model in
QSP-IO. The user starts by creating a SimBiology object using the QSP-IO’s initialization function.
Module can be added to include the necessary detail in the model based on the research questions.
The initial conditions are then generated based on the model parameters using the novel initial
conditions procedure. Finally, the simulations can be run using standard SimBiology functions and
visualization can be preformed using MATLAB plot functions or using QSP-IO’s plotting function.
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q We present a readily reproducible modular model platform to conduct in silico virtual clinical 
trials on patient cohorts of interest 

q Our platform allows us to make step-by-step modifications to our models based on insights 
on the effect of therapeutics on the immune system and resistance mechanism in tumor 
development from ongoing clinical trials

q This work serves as an important step towards the development of personalized medicine in 
immuno-oncology    
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