
• Couple to mitochondria model to assess effects of dATP on energetics
• Extend model to simulate both healthy and heart failure conditions
• Solve coupled electromechanical myocyte model in a finite element 

framework to assess effects of dATP on regional stress and strain

• GaMD simulations show dATP causes separation of cytosolic domains 
of SERCA, which suggests increased pump speed

• Association rate for dATP binding to SERCA is 80% higher than the 
association rate for ATP (Table 1)

• Association rate for Ca2+ binding to SERCA is increased due to altered 
electrostatics in transmembrane region (Table 1)

• Unable to fully predict experimental dATP Ca2+ transient by modifying 
SERCA parameters from BD alone, dATP may have downstream effects 
on SERCA pump function (e.g. ADP dissociation rate) (Figure 3)

• Optimizing NaK and PMCA fluxes suggests dATP may affect other 
ATPases (Figure 3)
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• Heart failure remains a significant cause of morbidity, mortality, and 
medical costs

• 2-deoxy-ATP (dATP): a novel heart failure therapeutic shown to 
improve contractile function without impairing relaxation [1]

• dATP acts on myosin to increase the rate of crossbridge cycling, and has 
been shown to increase the rate of Ca2+ transient decay [2, 3]

• We hypothesized that dATP acts on the sarcoplasmic reticulum ATPase 
(SERCA), the pump responsible for removing Ca2+ from the cytosol 
following contraction, which could explain this increased Ca2+ decay

• Mechanisms of dATP still not fully understood, may have multiple targets 
in the myocyte

• Difficult to fully assess the mechanisms of dATP experimentally
• We developed a novel multiscale modeling approach to investigate 

whether the effects of dATP on myosin and SERCA are sufficient to 
explain its therapeutic effects

• dATP is a promising therapeutic for treating heart failure
• dATP enhances SERCA pump function via increased rates of dATP and 

Ca2+ association due to altered electrostatic interactions, leading to 
faster Ca2+ decay

• Mechanism may be generalizable to other ATPases, additional work is 
needed

• Therapeutic effects of dATP likely depend on its effects on both myosin 
and SERCA

• Changes in Ca2+ buffering on sarcomere with dATP alone are insufficient 
to explain changes in Ca2+ transient, must account for effects of dATP on 
SERCA to accurately predict force

• Novel multiscale modeling framework allows for assessment of function 
from atomic to cellular levels

• Limitations: no lipids in BD simulations, Monte Carlo results are noisy, 
additional experimental data needed for validation

[1] Thomson et al. JACC Basic Transl. Sci. 1(7): 666-679. 
[2] McCabe et al. Proceedings of Biophys. Soc. 62nd Annual Meeting, San Francisco, CA, USA, 2018.
[3] McCabe et al. Proceedings of Biophys. Soc. 64th Annual Meeting, San Diego, CA, USA, 2020.
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• Gaussian Accelerated Molecular Dynamics (GaMD) simulations were 
used to assess the effects of dATP on SERCA conformation

• Brownian Dynamics (BD) simulations were used to obtain association
rates for ATP/dATP binding to SERCA and Ca2+ binding to dATP-SERCA 
and ATP-SERCA using lowest energy structures from GaMD (Figure 1)

• A myocyte model containing several ion channels including SERCA was 
utilized to assess the effects of dATP on Ca2+ handling; model was first 
optimized to match experimental data for ATP [3]

• The myocyte model was coupled to a Markov model of crossbridge 
cycling: state occupancies were input into the myocyte model to 
compute Ca2+ buffering and Ca2+ concentration determined from the 
myocyte model was input into the sarcomere model (Figure 2)

• Rates from BD were input as association rates in the SERCA model 
within the myocyte model, and crossbridge cycling parameters were 
altered based on previous study to simulate dATP treatment [2] (Table 1)

• Altering crossbridge cycling parameters in coupled model to simulate 
dATP treatment shows increased force but minimal changes in Ca2+
transient

• Altering both SERCA and crossbridge parameters to simulate dATP
treatment shows smaller increase in force and increased Ca2+ decay
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Figure 1: Overview of Brownian Dynamics 
simulations performed on SERCA

Figure 2: Model coupling scheme

Table 1: Parameters altered to simulate dATP treatment

Figure 3: (A) Altering ATP and Ca2+ association rates based on BD simulations. (B) Same as (A) but with optimized ADP-
SERCA dissociation rate. (C) Same as (A) but with optimized NaK and PMCA fluxes.

Figure 4: Coupled model altering (A) just crossbridge cycling parameters. (B) both crossbridge cycling and SERCA parameters.
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