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Immunomodulation via cytokines is a potential alternative or complementary The mechanisms required to explain the viral and cell A) Mechanisms N Qualitative Criteria Both model #1 (immune regulation + viral escape) and
treatment for HIV. The cytokine IL-15 promotes the proliferation and activation dynamics were evaluated by: i @’b Uiantitative Critena %Clo/ ,@Clo/ ,@Clo/ model #3 (immune regulation + drug tolerance) were used to
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N-803* (formerly ALT-803) is an IL-15 superagonist that combines an IL-15 each had a different combination of mechanisms (Fig. 1A, lef) %,,o %% Q‘o% s % U B By T T S B B @%% %, > — Increasing the dosing period could achieve the strong initial killing rate
mutant with improved bioactivity [1] with an IL-15Ra-Fc complex to improve — Comparing models using the Negative Log-Likelihood (NLL) to = f/’ j j - T ! '- — "\] 7 N more often. The effect of a 4-week dosing regimen is shown (Fig. 3).
serum retention [2]. N-803 has been shown to induce proliferation of CD8+ T measure G?Od”ezs'lo‘c'f't alnd_Aki'_ke i:formdag:on Criterion (AIC) Model #1 I | | J N i — Limitation of regulation could be achieved by simultaneously blocking
cells and NK cells in human cancer trials [3-4], as well as transiently reduce to account for model complexity (Fig. 1A, middle). Model #2 < \ v - the PD-1/PD-L1 pathway. For example, N-809* combines IL-15 with an
the viral population In SIV-infected macaqgues [5]’ an animal model of HIV. — Evaluating key quality criteria for each model, which are based Model #3 \ = — \ \ \ anti-PD-L1 agoniSt [9] The effect of redUCing klllmg regulation Strength
on the distinct viral responses observed during each N-803 _ ] g _ by 40% is shown (Fig. 3).
Though Initially responsive, the SIV population rebounded as treatment treatment cycle (Fig. 1A, right it - — . . .
9 y Tesp . POP yele (Fig. 1A, right) Worse Fit Worst Model Observations from treatment exploration (Fig. 3)
continued, despite elevation of bulk CD8+ T cell and NK cell over . . . Bodlsd  Oudle® Foclel [ s Data
Observations from model comparison (Fig. 1A-D) B y y y Requlation blockad ted i ¢ ol . h th
pretreatment values [5]. Response of SIV returned somewhat after an (o iation) did not replicate the d | ) %, o — Regulation blockade resuited In a stronger viral suppression with the
. : . . — no immune regulation) did not replicate the drop an ' ' i '
extended break in treatment [5]. This work uses a mechanistic mathematical i of the during reatment cycle 1IO P Fold first dose and a weaker viral rebound during subsequent doses (Fig. 3A)
model to probe possible explanations Of these Observed dynamics_ _ _ _ _ Chang-e N 0.1 — Dose spacing resulted in more consistent CytOtOXiC activation (Flg 3B)
> Model #4 (only immune regulation) did not replicate the weaker virus and viral suppression (Fig. 3A) with each dose
viral response of cycle 3 (as compared to cycle 1) 0.01 o _ |
— Model #1 (immune regulation + viral escape) and model #3 —> Cf(f)m:)mmg both regulation blockade and dose spacing had the strongest
Mecha“istic Mathematical Model (immune regulation + drug tolerance) both met all three Fold enect.
gualitative criteria changg in 0.1 — Model #1 was more resistant to treatment improvement, suggesting that
. . virus - - i
_ _ _ _ _ + viral escape may ultimately limit N-803 therapy
— CD8* T-cell and NK cell effector populations, with N-803 stimulation of proliferation and because it allowed a better fit to the CD8* T cell and NK cell C) Fold control -vewev---- Dose Spacing Regulation Blockade ........... Combination
stimulation of killing, the latter convolving increased activation and migration evidenced response (Fig. 1C-D) change in Viral Escape Scenario Drug Tolerance Scenario
by enhanced CD8* T-cell presence In germinal centers [6] — Note: The full model was Comparab|e to model #3. CD8+ T cells A) 1 : (Model #1) - (Model #3)
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Drug tolerance to N-803 evidenced by IL-15 receptor downregulation [5] Observations from model #1 & model #3 (Fig. 1E-G) D) 9 _ 02t
Immune regulation of effector cell killing and proliferation representing regulatory T-cell — The per-cell killing is the effective killing rate constant averaged Fold i [ %’ 0061
expansion, effector cell PD-1 and CD39 expression [5], and NK cell suppression of CD8* over both cytotoxic cells and viral strains (Fig. 1E) change in S [ S 0.02 |
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T-cells via IL-10 [7] — Both models predict an early increase in cytotoxic activation that NKcells 37 0 00031
Viral escape from CD8* T-cell response representing a shift in strain frequencies [5] Is followed by a reduction in per-cell killing below pre- 14 2 0.002
treatment levels during each N-803 treatment cycle E) 100 « = 0.001
Injection Site I — Both models predict a recovery of per-cell killing after each i 8:888;
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N-803 | | death enabled by long-term reduction in drug efficacy (Fig. 1G) changein 0.1 = E
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— Either drug tolerance or viral escape were necessary to explain drug efficacy o4 C) Docos
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= — Drug tolerance reduced viral suppression indirectly by 4 2 0 2 4 6 8 10 12 14 16 32l3l4.36 38 40 42 44 46 48 50 Doses A E—
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— Viral escape reduced viral suppression directly by influencing
Models were calibrated to published NHP data [5]. Three rhesus macaques, the response of the virus to CD8* T cells Figure 1.
chronically infected with SIVmac239 for at least 1.5 years, were given weekly
0.1 mg/kg subcutaneous doses of N-803. The regimen consisted of three
cycles of four treatments each, with a 2 week break between the first and
second cycles and a 29 week break between the second and third cycles

(Fig. 1H). Peripheral blood was routinely assayed for SIV viral RNA, CD4+ T

A) Summary table for model comparison; B-H) fitted outputs for models, shown as _ Result of treatment exploration for model #1 and model #3, shown
mean and range of outputs from top 20 fitted parameter sets for each model Flgure 3. . ean of outputs from top 20 parameter sets for each model
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Future Directions

Sensitivity Analysis

' ' NN ' : ;- Cycle 1 virus drop: : swo- Cycle 3 virus drop:
cells, CD8+ T cells, and NK cells. All three animals had been vaccinated The relative influence of model mechanisms were analyzed by: L1 V() - minv () £20v(37) ~ minv (37.41))
against SIV epitopes prior to infection in a previous study [8]. — Sampling parameter values across 2+ orders of magnitude and  f  }\ | T/~ _ Primary conclusions from this project are:
luati Log <= Cycle 2 virus drop: :
evaluating model results for each parameter set . ¥ : . . :
Virus =54 V(5) —min[V (5,9)] — Model Comparison demonstrated that immune regulation reduces
— Calculating the Partial Rank Correlation Coefficients (PRCC) between | Cycle1 Cycle 2 Cycle 3 cytotoxic activity during weekly N-803 doses, while either drug tolerance

R f ren A W parameter values and measures of treatment efficacy (Fig 2), considering = @ b————— s or viral escape may reduce N-803 efficacy across breaks in treatment.
ererences & Ckno Iedgme“ts those where p<=0.00001 across 3 repetitions of 10,000 samples 4 -2 0 2 4 6 8 10 12 14 16 32 34 36 38 40 42 44 46 48 50

Weeks post-treatment Sensitivity Analysis highlighted regulation strength and timing as
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