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Conclusion: Approximate Bayesian Computation (ABC) utilized in a novel 
way for parameter estimation in Agent-Based Models (ABMs)
BNs let us use probabilistic models to fit parameters that are not measurable in literature (e.g. translating model space 
to real two-dimensional volume) – more consistent mathematical approach than traditional “best guess by experts”

Future Work: Machine learning using combined ABM and ABC models to 
develop image-based prediction tools
ML algorithms take the same data gained from parameter sweeps and adds clustering for validating known behavior & 
learning to identify emergent behavior. ML doesn’t take away from existing workflow, only adds to it. We are using the 
PCA results in Figure 6 to train a random forest ML algorithm to read image data and predict overall growth rate of 
colonies based on efflux pump expression.

ABSTRACT

The global emergence of multidrug-resistant Gram-
negative bacteria, such as Escherichia coli, is a growing
threat to antibiotic therapy. Clinically-relevant drug efflux
mechanisms in individual E.coli cells greatly contribute to
antibiotic resistance and present a major challenge for
antibiotic development, but their spatiotemporal effects on
whole bacterial colonies remain elusive while key
parameters for modeling these effects are unknown. We
present an agent-based model of antibiotic efflux by E.coli
that utilizes Approximate Bayesian Computation (ABC) to
estimate key parameters for volume exclusion, growth,
and efflux in individual cells.
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AcrAB-TolC efflux pumps in E.coli

Figure 1 (a): A schematic

representation of AcrAB-TolC

efflux pumps expressed in

E.coli and other gram-

negative bacteria. (b) efflux

pump expression confers

multidrug resistance (c)

Schematic showing when

ΔacrB cells are surrounded

by cells with AcrAB-TolC

pumps, they grow more

slowly than when surrounded

by other ΔacrB cells when

both groups are treated with

antibiotics. This is due to the

increased local concentration

of antibiotic from neighbor

cell efflux.

Figure 3 (left): (a) Schematic of the model base

logic, which initializes E.coli cells as agents, then

accumulates antibiotics in their local environment

that are then either taken up by the cell or

removed by pumps. (b) Model parameters as

decision “nodes”, with probabilities that indicate

the likelihood of each agent acquiring a parameter

value based on a node’s probability and the

previous nodes in the directional chart. (c, below)

Nodes that cannot be derived directly from data

are computed using Approximate Bayesian

Computation (see panel below). A representative

example is selected here – the patch_full node,

which calculates the amount of cells that can fit in

a given area of the model.

Figure 4 (above): Screenshot of the agent-

based model running in NetLogo 6.0.4

compared to a plate culture of E.coli with color-

based volume exclusion turned off.

Figure 5 (above): A representative example of how ABC can assist in parameter estimation for agent-based

models. In our model, the number of cells per “patch” (discrete 2D area) cannot be derived from real data, as the

patches do not correlate with dimensions in real space. However, using the published growth rate of E.coli we can

approximate a value for the distribution of patch_full?, i.e. we can estimate the probability that a patch will be

available to store a new E.coli agent based on the number of cells that already exist in the patch, how old they are,

where they are facing, and whether or not their neighbors express efflux pumps. Using the technique shown in the

panel below, we can estimate the parameter without potentially intractable parameter sweeps.

Effect of single Bayesian node change (patch_full?) on predicted growth rate
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c.

Spatial Agent-Based Rules

Figure 2: Wen et al. (2018)

proposes a model of two-

dimensional, grid-based efflux

antibiotic diffusion in E.coli colonies

that accounts for changes in

antibiotic concentration C due to

uptake and efflux with a change in

cell biomass N. We adapt this

function for our agent-based model

logic (see Figure 3)

Figure 6 (above): Principle component analysis (PCA) of 150 model runs performed using different

starting positions of E.coli cells with and without efflux pump expression. In all model runs, the

number of cells expressing efflux pumps remains the same, but their starting locations are different.

Clusters are separated by color. The red cluster is associated with the highest mean growth rate of

all colored clusters, and shows circular arrangement of efflux-expressing cells (black) in both

individual starting conditions (a, top) and an overlay of all 19 points in the cluster (a, bottom).

Meanwhile, the other clusters show a more uniform distribution of efflux-expressing cells both in

individual data points (b, top) and an overlay of all 131 points in the cluster (b, bottom).

Takeaway: multiscale models that use mathematical approaches should also be built 

& designed in a mathematical way, and we are enabling that!

Applying 
ABMs

Building 
ABMs

• Bayesian Networks

• Bayesian Computation

• Better Parameter Estimation

• Random Forest and NN learning

• Multi-dimensional clustering

• Identifying emergent behavior

Regression correction
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Figure 7: Sampling a

parameter value θi from

its prior distribution

allows us to sample a

dataset yi using the

agent-based model.

From this simulated data

we compute a summary

statistic S(yi) (in our

case, mean growth rate

of colonies) and compare

with an observed statistic

S(y0). Values within

tolerance range ε are

sampled and adjusted

according to a linear

transform θi
* (green) to

compute a posterior

distribution of θi

i θi S(y0) Δ Choice

1 2 0.0091 0.0009 Accept

2 5 0.0307 0.0086 Reject

3 1 0.0018 0.0082 Reject

4 8 0.1441 0.1341 Reject

5 3 0.0121 0.0021 Accept

c.

Published Growth Rate: 0.01
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