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+[icos~(In+1 + 4n-i) +»0 ]tt" = o (2)

Q„=—(g„+i—Q„ i)(1 + y,g„)sin a,
where Q is the column vector, (@i,@2, ..., @„...), and 0
is the matrix defined by the left hand side of Eq. (2).
Equation (2) with vanishing boundary condition consti-
tutes a nonlinear algebraic eigenvalue problem for local-
ized states. Equation (3) determines the time evolution
of the localized states. [Note that the above ansatz and
results (2) and (3) are readily generalized to D & 1.]
When a = 0 or n, P„ is stationary. We shall call a local-

The discrete 1D NLS equation we study is

i4'~ =—(4~+i + 4' —i)
—[p(4 +i+4' -i)+»& ]14' I'

where the overdot stands for the derivative with respect
to time t, n is a site index, and p, & 0. This can be
derived from the Hamiltonian

&=—).4 0'+i+Cd'+i
n

——).14 I'+ —,).»(1+ply I')
P

with the deformed Poisson brackets

(4 4')=i(1+pl& I')4
) =(y„', y' ) = 0,

and the equation of motion P„= (H, P„). We will re-
fer to this system as IN-DNLS. The system has an en-
ergy conservation law. The quantity X= p, P„ln(1+
p, 1$„1 ) is also conserved and serves as a norm. Notice
that the limits of H, JV exist, as p, ~ 0.
If p, = 0, Eq. (1) reduces to a familiar discrete NLS

equation (referred to as N-DNLS below) which is non-
integrable. If v = 0, Eq. (1) is the Ablowitz-Ladik NLS
(referred to as I-DNLS), which is integrable and possesses
an infinite number of conservation laws [6]. Because of
the scaling property between the nonlinear coefficient and
the amplitude, both N-DNLS and I-DNLS have a sin-
gle measure for the strength of the nonlinearity, respec-
tively, vI/1 and p, 1/1, while IN-DNLS has two, y, 1/1
and v/y, . All these DNLS equations are discretizations,
up to a trivial gauge transformation, of the integrable
continuum NLS equation, iP = —P —2&1/12/, which
possesses bright and dark soliton solutions for e & 0 and
z ( 0, respectively. However, the discreteness of the sys-
tems gives rise to several interesting features which are
not present in the continuum limit.
We seek an oscillating solution of IN-DNLS in the form

—i(~t- en+cro)
)

where Q„ is real and ao is a constant phase. From the
real and the imaginary parts of Eq. (1), we have

Clearly, if Q„& 0 and IvI is not too large, the stag-
gered state lies above the phonon band, while the un-
staggered state lies below. Particularly, if p, = 0, there is
no such localized state, staggered or unstaggered, below
the phonon band for v ( 0, or above the phonon band
for v ) 0. In the following discussion, we focus mainly on
those staggered states whose frequencies lie outside the
phonon band.
One can easily show that IN-DNLS possesses the fol-

lowing reflectional symmetry: If an unstaggered state,
Q„exp(—iut), is a solution of the eigenvalue problem
(2), then the staggered state, (—1)"@„exp(i~t),is a so-
lution of the dual eigenvalue problem, i.e., Eq. (2) with
v ~ —v. From this symmetry, for N-DNLS, it follows
that there exists a staggered localized state whose fre-
quency is above the phonon band for v ( 0 if there is
an unstaggered localized state below the phonon band
for v ) 0. Later we will return to the stability issue of
the staggered localized states in the dark N-DNLS (i.e.,
p=0, v(0).
For I-DNLS, we can exactly solve the nonlinear eigen-

value problem. The localized solutions are of the form

sech[P(n —ut —xo)]e '( ' "+ 'lsinh P
p

= —2coso;coshP,
u = 2P sinusinhP,

, (4)

(5)
(6)

and have the energy E = H:
E = —4p cos o. sinh P.

These localized states are precisely the exact one-soliton
solutions obtained via, e.g. , the inverse spectral trans-
form [6]. One can readily show that the solutions in Eq.
(4), under the above refiectional transformation, trans-
form to a set of solutions identical to the original set in
Eq. (4) but with a difFerent parametrization. It follows
that these one-soliton solutions possess this exact self-
dual refiectional symmetry.
Another striking property related to these localized

states in I-DNLS is that they have continuous transla-
tional symmetry and for each P there exists a band of
velocities at which a localized state can travel [see Eq.
(6)] without experiencing any Peierls-Nabarro (PN) pin-
ning from the lattice discreteness [see Eq. (7)] [14]. This
is in contrast to the case of N-DNLS in which a Inov-
ing localized state experiences dispersion and eventually
decays [10]. We note in passing that, contrary to the
general discrete case, a soliton of some fixed amplitude
in the continuum NLS can always be Galileo boosted to

ized state staggered if 0, = ~, and unstaggered if 0, = (3.
From Eq. (2), we have

M =—2coso,'
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Wave turbulence: MMT model

alters the observed spectra. These distinct observations are very
reminiscent of the two spectra that we observe in our model with
focusing nonlinearity. In our studies, the distinct time scales as-
sociated with different coherent excitations (and the comparison
of these time scales with natural mixing and turnover times) pro-
duces an interpretation of the mechanisms responsible for the
different spectra—an interpretation that is likely to extend to
more realistic settings of fluid turbulence. In any case, our nu-
merical study indicates that the one-dimensional class of models
introduced in ref. 1 permits precise numerical experiments to-
ward the resolution of issues necessarily left ambiguous in the
simulations of more realistic models of turbulence in two and
three spatial dimensions.

2. Background
Model Nonlinear Wave Equation. A model system was introduced in
ref. 1 for the purpose of testing and clarifying the assumptions
of the theory of weak-turbulence via four-wave resonances. This
model takes the form

iqt = !∂x!αq5 !∂x!−σ
(∣∣!∂x!−σq

∣∣2!∂x!−σq
)
$ [1]

or equivalently in “k-space”

iq̂t = ω#k$q̂

5
∫

q̂#k1$q̂#k2$q̂∗#k3$
!k1!σ !k2!σ !k3!σ !k!σ

δ#k1 + k2 − k3 − k$dk1 dk2 dk3' [2]

This model depends on two real parameters, α , 0 and σ .
The parameter σ is introduced to control the nonlinearity. For
σ = 0, a standard cubic nonlinearity results. The parameter α
controls the dispersion relation ω#k$ = !k!α, which, for α + 1,
leads to resonance quartets in this model; that is, to nontrivial
solutions of

k1 + k2 = k3 + k

ω#k1$+ω#k2$ = ω#k3$+ω#k$'

The 5 sign is quite important in determining the properties
of the nonlinear waves of this model equation, with the −#+$
sign representing focusing (defocusing) nonlinearity. The focus-
ing case is the most unstable—with indefinite Hamiltonian, long-
wave instabilities, and solitary waves. In contrast, waves in the
defocusing case behave more linearly—much as radiation in lin-
ear wave equations.

Dispersive Wave Turbulence. The characteristic feature of dispersive
wave turbulence is flux in k-space; that is, the flow of excita-
tions from long spatial scales to short ones (the direct cascade),
or from short spatial scales to long ones (the inverse cascade).
Conceptually, such fluxes could be created by adding forcing and
damping terms to the wave Eq. 2—each of which is restricted
to relevant spatial scales, that is, “localized in k-space.” For ex-
ample, a balance between forcing that is restricted to k ı 0 and
damping restricted to !k! , Kd & 0 could set up a direct cas-
cade. Thus, to provide the flexibility to study both direct and
inverse cascades, we add damping terms to Eq. 2 that are re-
stricted to k ı 0 and to !k! , Kd , as well as forces that are
localized in k space. Throughout the inertial ranges, there is no
forcing nor dissipation, and the free Eq. 2 holds. For some of
the numerical experiments, this force is white noise in time, and
for other experiments, it is deterministic and steady. The dissi-
pation terms are of the form −i(iq̂#k$, where (1 , 0 (restricted
to k ı 0), (2 , 0 (restricted to !k! , Kd), with no dissipation
elsewhere.

Two Types of Spectra. The spectra of dispersive wave turbulence
are described through two point correlation functions,

n#k$ t$ A
〈
q̂#k$ t$q̂∗#k$ t$

〉
$ [3]

where in our numerical study '· · ·( denotes time average. The
general goal of theories of dispersive wave turbulence is to ob-
tain a closed equation for the correlation functions n#k$ t$.

The classical closure, known as WT theory (2), is summarized
in ref. 1, together with its steady state spectra for Eq. 2:

n#k$ = c equipartition of particle number [4]

n#k$ = 1
ω#k$

equipartition of energy [5]

n#k$ = !k!8σ/3−1 direct cascade [6]

n#k$ = !k!8σ/3−1+#α/3$inverse cascade' [7]

These statistically steady state (SSS) spectra are time-
independent solutions of the kinetic equations of weak tur-
bulence. Their associated fluxes in k-space will have the correct
signs for both direct and inverse cascades for only a limited
range of the parameters: σ + #3−4α$/8 or σ , 3/8. As param-
eters cross these ranges, WT theory would indicate detectable
changes in observed behavior.

In the numerical experiments reported in ref. 1 the spectra
predicted by WT theory were not observed. Rather, the ob-
served spectra had exponents different from those predicted by
WT theory. Moreover, these observed spectra agreed with the
predictions of an alternative closure (MMT) that was heuristi-
cally proposed in ref. 1. For Eq. 1 at α = 1/2, this spectrum is

n#k$ = !k!2σ−5/4 direct cascade' [8]

Numerical Algorithm. We simulate the full dynamics of our sys-
tem by using a pseudospectral method in combination with an
integrated factor method (for details, see ref. 1). For the time
dynamics, we use a 4th-order adaptive stepsize Runge–Kutta in-
tegrator. For most runs, the total number of modes is 213, and
the system size L 7 400. The largest number of modes we use
to selectively verify our results is 216.
In the following, we will describe the details of our numerical

experiments. We will use the convention that the unit for the
wavenumber k is 2π/L, thus k is labeled by integers.

3. Results
Four Spectra. We begin in a freely decaying setting, in which both
the direct and inverse WT cascades are observed. First, we cre-
ate a sufficiently stirred state that evolves from a smooth initial
data under a random forcing at long wavelengths. This state is
then used as initial conditions for our weakly decaying studies,
for both defocusing and focusing nonlinearities and for various
σ and α values. Then, to study freely decaying WT, we set the
force at 0 and add damping (1 on large spatial scales !k! 7 1
and (2 on small spatial scales !k! , Kd . (Kd = 2600 for most
experiments.) When (1 ) (2, the state gradually relaxes to the
direct WT cascade. As shown in Fig. 1b, this WT spectrum oc-
curs over four decades of energy, and three decades of spatial
scales. Alternatively, when (1 & (2, i.e., stronger dissipation
on large spatial scales, the state relaxes to the inverse WT cas-
cade, as clearly shown in Fig. 1c. Theoretically, the spectrum
of WT direct cascade is independent of α, a fact confirmed (not
shown) in our freely decaying numerical simulations. We empha-
size that throughout these studies of freely decaying turbulence,
the states remain nonlinear.

As described in Two Types of Spectra, for the theoretical WT
spectra to be physically meaningful, the direction of their fluxes
in k-space should be consistent with those of the direct and
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Coherent Structures and Resonant Waves in Energy Transfer—Coexistence
of Equilibrium, Inverse, and Direct Cascades. The next numerical ex-
periment illustrates the cycle of energy transfer in the SSS—a
cycle that involves interaction of coherent structures and reso-
nant waves as they form the equilibrium, inverse and direct WT
cascades simultaneously. As described above, modulation insta-
bility in our focusing dynamics induces spatially coherent “soli-
tonic” excitations at random spatial locations to form a thermal
equilibrium bath. The formation of these excitations can actively
transfer energy into high ks via their focusing processes in space,
where the wavenumber ks is determined by the spatial scale of
these localized waves. This energy injection process associated
with the creation of the localized excitations is a relatively fast
process, while the decay of these coherent structures is slow,
and gradually transfers energy back from the scale of ks to low
k via the radiation of long waves. The long wave radiation con-
sists of relatively coherent waves, which can participate in wave
resonant interactions. Thus, we expect this radiation to form
a WT inverse cascade. This is indeed the case. Fig. 7a shows
an excellent example of the coexistence of a thermodynamical
equilibrium state of these coherent structures and the inverse
cascade induced by their slow radiation of long coherent waves.
For spectrum a, we have ks , 1000. We note that, for k even
higher than ks, the usual WT direct cascade should be expected,
since the coherent excitations do not have strong influence on
energy transfer at spatial scales much smaller than their coher-
ence length. Fig. 7b demonstrates this phenomenon, where we
have tuned the dynamics to a regime such that only very few long
waves are unstable. These inject energy into ks 7 100, resulting
an inverse cascade for k + ks and a direct cascade for k , ks.
(To help in the interpretation of these equilibrium spectra, we
note that, in general, the distribution for the thermodynamical
equilibrium is 1/!ω+µ", where µ is chemical potential. We are
able to tune the value of µ in our experiments by controlling
the forcing strength. The thermodynamical equilibrium distribu-
tion of those unstable long mode k̃ in Fig. 7 corresponds to the
limit in which µ # ω!k̃".) We emphasize that the formation and
decay of coherent excitations in thermal equilibrium, together
with the resonance wave interaction of the direct and inverse
cascades induced by the coherent excitations, form a complete

Fig. 7. (a) Coexistence of thermodynamical equilibrium and the inverse WT cas-
cade, for the focusing nonlinearity (α = 1/2, σ = 0), driven by a steady force on
$k$ = 1. The flat part of the spectrum (dot-dashed line) shows thermodynamical
equilibrium. (b) Coexistence of the inverse and direct WT cascades. The dotted
(dashed) line has the exponent of inverse (direct) WT cascade.

cycle of energy transfer in SSS—in contrast from standard de-
scriptions in plasma turbulence, which only utilize collapse with
high k dissipation (10, 11). Finally, we point out that, even when
driven extremely strongly, e.g., a value so strong that the total
norm is increased by a factor of 102 with respected to the cases
shown in Fig. 7, the defocusing dynamics does not possess this
energy transfer cycle simply because it does not have long wave
instabilities, and localized excitations.

Nonlocality. Finally, we address the locality of resonant energy
transfer in k-space, a property that underlies many prevalent
intuitions about the energy transfer mechanisms of turbulence.
Fig. 8 shows a case in which a WT direct cascade spectrum
is observed for an intermediate k range. The system is forced
at $k$ = 1 only, while the broad range 2 ! $k$ ! 10 is strongly
damped. The system reaches an SSS eventually, whose spectrum
is depicted in Fig. 8. Strikingly, in this state, the power in the
range 10 + $k$ + 2600 does not decay and is sustained by the
$k$ = 1 forcing alone, despite the little power and large dissipa-
tion in the range 1 + $k$ ! 10. In light of this broad “blocking”
dissipation, one may conclude that the flux in k space is highly
nonlocal, although our system satisfies the locality requirement
as defined in the usual sense of WT theories (2). This example
illustrates that locality sometimes can be a subtle issue, at least
for energy transfer from the pumping regime.

4. Conclusion
Taken together, these numerical experiments seem to indicate
that, when there is a large “flow-rate” from the injection scales
to the dissipation scales, the turbulent state is often described by
the MMT spectrum—with fronts and leading edges in k-space
profiles, and/or with growing norms. On the other hand, when
there is relatively little “flow” from forcing to dissipation scales,
the state is often described by WT—as in freely decaying tur-
bulence with slowly decaying energy, and in steady states with
constant mean energy. It also seems that the WT spectrum is an
intrinsic property of the free wave system, whereas the MMT
spectrum is associated with the entire driven-damped system.
These indications are somewhat counter to the current intuition
about dispersive wave turbulence, and certainly merit further
investigation.

Fig. 8. Nonlocality. The WT direct cascade spectrum for focusing nonlinearity with
α = 1/2 and σ = 0 is sustained by forcing at $k$ = 1, despite strong damping in
2 ! $k$ ! 10. The dashed line has the slope of WT direct cascade.
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Figure 5:

Hikosaka line-motion 
illusion in V1
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FIGURE 6. (Colour online) Comparison of spatiotemporal manifestation of SWs in the
linear regime (#⇤ = 0, �m = 5 ⇥ 10�4) (first column), in the weakly nonlinear regime
(#⇤ = 1, �m = 5 ⇥ 10�4) (second column), and in the strongly nonlinear regime (#⇤ =
1, �m = 2.5 ⇥ 10�2) (third column). The first row (a–c) displays the snapshot of the BBF
and the spatiotemporal evolution of SWs ⇠1 = ⌅ ⇤

1 + ⇠ ⇤
1 . The parameters of the BBFs are

given in table 1. The second row (d–f ) and the third row (g–i) display the zoomed-in
versions of SW profiles. The red line corresponds to the positive phase velocity of the
right-moving short-mode SWs. The white line (blue line) corresponds to the group velocity
of right-moving short-mode SWs when SW packets propagate from the trailing (leading)
edge towards the leading (trailing) edge. The ranges of colour bars in panels (a–f ) are
automatically tuned. To observe the small-amplitude SW packets that propagate from the
trailing edge towards the leading edge (white lines), the ranges of colour bars in panels
(g–i) are manually tuned to be smaller. The fourth row ( j–l) displays the snapshots of
SWs and IWs at T = 15 000. It can be seen that spatiotemporal manifestation of SWs
differs greatly between the linear (or weakly nonlinear) regime and the strongly nonlinear
regime. In the strongly nonlinear regime, SW packets are located at the leading edge due
to the class 3 triad resonance (see text).
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