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Compartment Model:

2D Transient diffusion equation

Boundary Conditions:

Definition of terms:
Ct, concentration of tracer in tissue
Ktrans, transfer coefficienct from plasma to extra-vascular compartment
Cp(t), population arterial input function
ve, extra-vascular extra-cellular volume fraction
D, molecular coefficient of diffusion

P, vessel permeability
V, imaging voxel volume
S, vascular surface area
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1st order ODE:

Solution with known Cp(t) [2]:

Scale bars: 50 microns

Dynamic contrast enhanced MRI (DCE-MRI)

Used to evaluate vascular and cellular properties of tissue in cancer

Utilizes contrast agents with well-known magnetic properties

Rapidly-aquired T1-weighted images measure dynamic signal

Resulting time course for each voxel can be fit to a family of phar-

macokinetic models.

Curve fitting results in estimations of perfusion, permability,

tissue volume fractions [1].

Standard models assume instantaeous equilibration of CA within

the domains.

They do not account for leaking of contrast agent between voxels,

or unevem distribution of contrast agent within the voxel [3].

Hypothesis: The Standard Model of DCE-MRI does not accurately 

capture CA dynamics of a slowly diffusing CA
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Whole-Tumor ResultsSingle Voxel Results

Single Vessel Results
Error in the standard analysis of DCE-MRI data can be attributed to the slow diffusion of contrast agent within 

the tissue domain, which contributes to the uneven distribution of contrast agent within the tumor domain. In 

order to improve the accuracy of the standard model, we propose the inclusion of a diffusion term which cor-

rects for physiological levels of contrast agent diffusivity. The ability to determine the arrangement of cells and 

vessels at the sub-voxel scale will be important in improving the model.
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An example voxel time course demonstrated for 3 different values of molecular diffusivity, D. The amount of contrast agent within the domain at a given time point is demonstrated by the 3D plots of the FEM mesh. These time points are 

then converted to an aggregate signal intensity for the entire voxel domain. As the diffsivity increases, the total signal enhancement in the voxel increases. This is due to a bottle-neck at the vessel boundary caused by slow diffuion of the 

contrast agent. As the diffusivity of the contrast agent increases, the domain fills more evenly and in a shorter amount of time. A higher diffusivity corresponds to a quicker equilibration of contrast agent within then voxel, and a core-

sponsing decrease in parameterization error, shown in the column on the far right.

Analysis of this domain was performed using windows of increasing radii around the central vessel. As window size increases, parameter estimation becomes less accurate. Contrast agents with higher diffusivity fill the domain more quickly, 

and therefore continue to approximate the parameters of the standard model better than slower diffusing contrast agents.

FEM simulation of contrast agent entering the tumor domain was performed for the entire tumor at 4 different values of D. The middle 

row demonstrates the estimated error of a DCE-MRI curve fit of the Standard Model where D = 2.6.  This is the molecular diffsivity of 

Magnevist (Bayer), a commonly used DCE-MRI contrast agent. Simulated DCE-MRI resolution is 438 microns in X and Y.


